23 research outputs found

    The Computer Graphics Scene in the United States

    Get PDF
    We briefly survey the major thrusts of computer graphics activities, examining trends and topics rather than offering a comprehensive survey of all that is happening. The directions of professional activities, hardware, software, and algorithms are outlined. Within hardware we examine workstations, personal graphics systems, high performance systems, and low level VLSI chips; within software, standards and interactive system design; within algorithms, visible surface rendering and shading, three-dimensional modeling techniques, and animation. Note: This paper was presented at Eurographics\u2784 in Copenhagen, Denmark

    System integration report

    Get PDF
    Several areas that arise from the system integration issue were examined. Intersystem analysis is discussed as it relates to software development, shared data bases and interfaces between TEMPUS and PLAID, shaded graphics rendering systems, object design (BUILD), the TEMPUS animation system, anthropometric lab integration, ongoing TEMPUS support and maintenance, and the impact of UNIX and local workstations on the OSDS environment

    A Method of Rendering CSG-Type Solids Using a Hybrid of Conventional Rendering Methods and Ray Tracing Techniques

    Get PDF
    This thesis describes a fast, efficient and innovative algorithm for producing shaded, still images of complex objects, built using constructive solid geometry ( CSG ) techniques. The algorithm uses a hybrid of conventional rendering methods and ray tracing techniques. A description of existing modelling and rendering methods is given in chapters 1, 2 and 3, with emphasis on the data structures and rendering techniques selected for incorporation in the hybrid method. Chapter 4 gives a general description of the hybrid method. This method processes data in the screen coordinate system and generates images in scan-line order. Scan lines are divided into spans (or segments) using the bounding rectangles of primitives calculated in screen coordinates. Conventional rendering methods and ray tracing techniques are used interchangeably along each scan-line. The method used is detennined by the number of primitives associated with a particular span. Conventional rendering methods are used when only one primitive is associated with a span, ray tracing techniques are used for hidden surface removal when two or more primitives are involved. In the latter case each pixel in the span is evaluated by accessing the polygon that is visible within each primitive associated with the span. The depth values (i. e. z-coordinates derived from the 3-dimensional definition) of the polygons involved are deduced for the pixel's position using linear interpolation. These values are used to determine the visible polygon. The CSG tree is accessed from the bottom upwards via an ordered index that enables the 'visible' primitives on any particular scan-line to be efficiently located. Within each primitive an ordered path through the data structure provides the polygons potentially visible on a particular scan-line. Lists of the active primitives and paths to potentially visible polygons are maintained throughout the rendering step and enable span coherence and scan-line coherence to be fully utilised. The results of tests with a range of typical objects and scenes are provided in chapter 5. These results show that the hybrid algorithm is significantly faster than full ray tracing algorithms

    A quadrilateral rendering primitive

    Get PDF
    The only surface primitives that are supported by common graphics hardware are triangles and more complex shapes have to be triangulated before being sent to the rasterizer. Even quadrilaterals, which are frequently used in many applications, are rendered as a pair of triangles after splitting them along either diagonal. This creates an undesirable C1-discontinuity that is visible in the shading or texture signal. We propose a new method that overcomes this drawback and is designed to be implemented in hardware as a new rasterizer. It processes a potentially non-planar quadrilateral directly without any splitting and interpolates attributes smoothly inside the quadrilateral. This interpolation is based on a recent generalization of barycentric coordinates that we adapted to handle perspective correction and situations in which a quadrilateral is partially behind the point of view. \ua9 The Eurographics Association 2004

    Realism in Computer Graphics: A Survey

    Full text link

    Toward accurate computation of optically reconstructed holograms

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Architecture, 1991.Includes bibliographical references (p. 163-165).by John Stephen Underkoffler.M.S

    Computer-Aided Geometry Modeling

    Get PDF
    Techniques in computer-aided geometry modeling and their application are addressed. Mathematical modeling, solid geometry models, management of geometric data, development of geometry standards, and interactive and graphic procedures are discussed. The applications include aeronautical and aerospace structures design, fluid flow modeling, and gas turbine design

    Optimization of Optical Inspections Using Spectral Analysis

    Get PDF

    Scene decompositions for accelerated ray tracing

    Get PDF
    corecore