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Summary

Ray tracing has come to the fore in the computer synthesis of realistic images over the last 

decade. This algorithm synthesises a particularly high degree of realism in both the 

shading and shape of surfaces. Surface shading calculations incorporate not only local 

diffuse and specular radiance but also global shadowing, multiple reflection and refraction 

of view and light attenuation, all according to the laws of optical physics. Complex object 

shapes may be modelled as boolean constructs from exact specifications of many common 

geometries. A wide range of objects may be modelled exactly without resorting to 

polyhedral approximation.

Early implementations of ray tracing synthesised some of the most realistic images up to 

that date, but imposed an extremely high computational load for complex scenes. 

Synthesis times proved to be linear in object count, and projected times for scenes of a few 

thousand objects extended into months on popular mini-computers. This prevented the 

wide-spread application of ray tracing on non-specialised hardware. Various methods have 

been proposed over the last few years to improve the efficiency of ray tracing for more 

viable synthesis times.

This thesis addresses scene decompositions for the acceleration of ray traced image 

synthesis. The decomposition of a globally complicated scene into simpler local regions is 

shown to reduce the computational load imposed by ray tracing. Algorithms are presented 

for the construction and use of various types of scene decomposition. Their relative merits 

are compared and the ‘octtree* decomposition is shown to be particularly suitable for 

accelerating the synthesis of complex scenes.
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Preface

Synopsis:

This preface describes the structure of the thesis and its reference system. This 

should assist the reader in following references within the thesis and to other relevant 

publications.

Reading this Thesis

This thesis addresses the efficient synthesis of realistic images by computer. Novel 

algorithms are presented which exploit scene decompositions to avoid the computationally 

expensive arithmetic of previous synthesis methods. An understanding of the associated 

mathematics is necessary to appreciate the extent of gains in efficiency. The thesis 

therefore consists of a narrative overview of image synthesis algorithms punctuated by 

detailed mathematical explanations.

Where possible such mathematics are referenced from the narrative text in separate 

figures, allowing the reader to follow the general chain of reasoning without becoming 

trapped in detail. The narrative is distinguished from figures by font. The narrative is in 

‘helvetica font’:

Helvetica Font: Jackdaws love my big sphinx of quartz 

Figures are printed in ‘Roman font’:

Roman Font: Jackdaws love my big sphinx of quartz

The Narrative

The narrative is structured by the Dewey digit system. For example, section two of chapter 

four is referenced as [Section 4.2]. Each chapter is preceded by a synopsis of its contents.

The Figures

Each figure is placed on the first available new page after the initial reference from the 

narrative. The position of any figure within the narrative is indicated by its reference. This
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is a reference to the containing narrative section followed by a letter for unique 

identification. For example, the third figure in section two of chapter four would be [Fig 

4.2c].

Geometric Notation

Linear Algebra is used extensively in realistic image synthesis. For example, linear 

transformations including projection and rotation are modelled with matrices acting on 

vectors. A standard notation is adopted for such algebra.

Vectors are denoted in underlined lower case: v. The components of a vector are denoted 

with an appropriate subscript: v = (v x vy vz ). Vector dot product is denoted as 

v.u = vxux + vyUy + vzuz and cross product as v x u = ( vyuz-vzuy, vzux-v xuz, vxuy-vyux).

Matrices are denoted in upper case: M. The column vectors of a given matrix are denoted 

as M = [ m^ m2, m3 ]. Any matrix is taken to act on column vectors by pre-multiplication: 

u = Mv = m̂ Vx + m2vy + m3vz.

References to Relevant Publications

Relevant publications are referenced by author and year. Where the same author has 

several relevant publications in the same year a letter is added for unique identification. A 

bibliography of all references is appended.

The Meaning of ‘Realism’

The thesis addresses the synthesis of realistic images from a given scene model, rather 

than the generation of realistic scene models. The term ‘realism’ refers to the accuracy of 

synthesised images. This is judged in terms of surface shape for exact object 

specifications without resorting to polyhedral approximation, and of surface shading for 

exact surface normals allowing for various optical effects. The reader should not expect to 

be presented with specimen images of complex buildings or vehicles. This is due to 

limitations in the available scene models rather than the synthesis algorithms. The 

algorithms presented will synthesise realistic images from complex instances of a general 

scene model. This is verified by specimen images of scenes containing many objects with
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various optical properties. For convenience these are arranged by procedural mathematics 

rather than according to realistic scenes. The synthesised realism would be the same in 

either case.
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Chapter 1: Computer Image Synthesis

Synopsis:

Chapter one addresses the motivation for computer image synthesis. The 

development of this field is outlined up to the advent of ray tracing.

1.1 Motivation for Computer Image Synthesis.........................................................  2

1.2 The On Going Development of Computer Image Synthesis............................... 2

1.3 Ray Traced Image Synthesis............................................................................. 5
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1.1. Motivation for Computer Image Synthesis

‘One picture is worth more than ten thousand words’. Bartletts Familiar Quotations lists this 

well known saying as an anonymous Chinese proverb. The entry refers the reader to a 

similar quotation of the Russian author Turgenev - ‘A picture shows me at a glance what it 

takes dozens of pages of a book to expound’. Neither has lost relevance in translation or 

time.

Pictures are a fundamental means of communication, transcending many barriers of 

language. They assist visualisation, specification and simulation. In the engineering 

industry, designs are visualised throughout their development with diagrams. The final 

design generally results in a draftsman’s plans as a specification for manufacture. The twin 

tasks of designing a complicated vehicle and communicating the resultant specification to 

the manufacturer would be far less efficient in a purely textual format. Pictures also provide 

a means of simulation. A building’s design is easily changed if the client recognises any 

adverse implications when presented with a pictorial simulation which is still ‘on the drawing 

board’, but less flexible once construction has begun. Vehicle pilot training currently makes 

extensive use of animated simulations. A trainee’s error has far less serious consequences 

on a flight simulator than when flying a real aeroplane and allows early hands on 

experience. Animated simulation has also been used for special effects in films and 

scientific visualisation.

Images provide an indispensable aid to many applications since they are easily understood. 

However, the manual generation of these images is a more difficult task. Draftsmen and 

artists undertake skilled work which takes time. The delay is inconvenient when updating 

designs and renders real-time applications such as flight simulation impossible. This 

motivates image synthesis by computer for enhanced speed and flexibility.

1.2. The On Going Development of Computer Image Synthesis

Computer image synthesis has developed in parallel with hardware technology both for 

computation and display. Graphical displays first became available only a few decades
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ago. These were vector devices only capable of drawing lines between screen points in a 

limited number of colours. The computational power available at the time for floating point 

intensive 3D geometry was limited. In its infancy computer image synthesis therefore 

addressed only simple wire frame object models. Such models are easily projected onto an 

arbitrarily placed view screen either with or without perspective. Lines along 3D edges in 

an object model are projected to 2D lines across the screen. Projection is therefore a 

linear operation and may be represented by a matrix. Early image synthesis exploited this 

linearity to restrict the expensive matrix computation of projection to object vertices. The 

projections of vertices linked by edges in the 3D model were then joined by lines in 2D 

screen space by the vector display hardware, requiring no further computation. Some 

enhancements were developed to this simple synthesis for extra realism. Where displays 

allowed, wire frame edges were depth-cued by contrast. The distance from the view 

screen to an object vertex is easily found with appropriate linear algebra. Hidden line 

algorithms were also developed. These synthesised images of objects modelled as 

polyhedral boundary approximations with black polygonal faces and white edges rather than 

wire frame models without faces. However, the limited capabilities of vector display 

technology precluded any attempts to shade such polygonal faces.

The opportunity to synthesise area shaded images arose with the advent of raster display 

devices. These display pictures as an array of picture element tiles or pixels in a 

rectangular arrangement. Each pixel is assigned a unit of memory whose contents define 

the colour displayed at the associated tile. Since many such discrete pixels are needed for 

an acceptable approximation to a continuous colour image, the raster device only entered 

into popular use as computer memory cost decreased. Raster displays may be driven 

similarly to vector displays with efficient 2D line generators [Bresenham;1965] to outline 

polygonal projections. Pixels in the interior of such projections may be set to an 

appropriate colour to synthesise surface shading. Whilst computational power improved 

with display technology, computation rates were still limited at the advent of the raster 

display. This necessitated the exploitation of image coherency to shade polygons at
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reasonable speeds. Polygon shading was either in homogeneous colour or used 

incremental techniques to keep synthesis times feasible. In the simplest case polygons 

were assigned a constant colour, independent of surface orientation. More realistic shading 

was synthesised by allowing for this orientation, applying Lambert’s law for diffuse shading 

and Phong’s approximation for specular shading [Amanatides;1987]. However the faceted 

nature of polyhedral object approximations remained evident with homogeneous polygon 

shading. This was hidden by techniques developed by Gouraud and Bui-Tuong Phong to 

interpolate polygonal colour across the 2D raster screen [Gouraud;1971: Phong;1975]

The interpolation typically filled each polygon with incremental geometry, first between 

projected vertices along projected edges and then between projected edges across raster 

scan lines. Each object vertex was assigned a surface normal as an average over 

adjacent polygonal faces. Gouraud [1971] applied shading calculations at each vertex 

according to surface normal and interpolated colour directly within the polygon’s interior. 

Phong [1975] interpolated surface normals to apply an independent shading calculation at 

each interior pixel. Interpolation proceeded incrementally to keep down computation costs. 

Facet artifacts have also been avoided by approximating object boundaries with local 

surface patches. Unlike polygons these join smoothly with continuous surface normals; bi

cubic patches are a typical example. Various algorithms have been developed to mask 

hidden surfaces such as the painter’s algorithm, scan-line algorithms, Z buffers and 

Warnock’s algorithm. These also generally attempt to exploit image coherency.

These methods synthesised far more realism than wire frame images. However, they 

synthesised images by projecting scene objects down onto the view screen. This supported 

only a local model of the interaction of light with scene objects before reaching the view 

screen - directly from light sources to a visible object surface and then to the screen. Since 

the interaction of light with other scene objects before reaching a visible surface was 

unknown, reflected and refracted views and shadows on object surfaces were difficult to 

synthesise. Some enhancements were made to synthesise shadows by visible surface 

calculations with respect to light sources rather than the viewer. Any surface obscured

Chapter 1: Computer Image Synthesis 4



from a light source was taken to be in shadow. Reflected and refracted views were at best 

approximated with environment texture maps [Amanatides;1987]. The local illumination 

model limited the realism of such synthesis.

Whilst techniques have been developed to hide the faceted nature of polyhedral object 

approximations in image synthesis, other problems presented by this model remain. A 

synthesised image is not always an end in itself. It may be an intermediary stage in some 

other process, for example providing visualisation during computer aided design (CAD) 

where the final goal is the actual manufacture of an object by computer aided manufacture 

(CAM). The graphical disguise of object facets does not carry over to computer controlled 

machining. Though modelled as polyhedral approximations, objects should be machined as 

exactly as possible. A more sophisticated object model and illumination model is desirable 

for many applications.

1.3. Ray Traced Image Synthesis

The on-going increase in computational power has made ray traced image synthesis 

feasible. Rather than projecting object silhouettes down onto a view screen, this synthesis 

traces light rays from the screen back into a scene. Extended interactions of each light ray 

with scene objects is modelled to support a global illumination model, allowing for multiple 

surface reflections of view, volume refractions of view, and surface shadowing [APPENDIX 

Hj. The incremental geometry of polyhedral approximations may be abandoned to support 

a more complex object model. Objects are typically modelled from solids defined implicitly 

by polynomials. These model a wide range of objects without resorting to approximations.

Ray tracing rejects the computational savings achieved by previous techniques exploiting 

image coherency in favour of supporting sophisticated models for greater realism. This is 

not without computational cost. Chapter two describes the fundamental synthesis in detail. 

The specific cause of the high computational cost incurred by ray tracing is identified. This 

cost is shown to be catastrophically high for scenes containing more than a few objects, 

motivating research for more efficient strategies synthesising the same realism. This thesis 

is the culmination of such research.
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Chapter 2: The Ray Tracing Algorithm

Synopsis:

Chapter two describes the synthesis of realistic images by ray tracing. This leads to 

an appreciation of the high computational cost involved, traditionally resulting in slow 

synthesis times. The cost is shown to be concentrated at a particular stage of 

synthesis. This bottleneck must be overcome to accelerate image synthesis.

2.1 Image Specification by Scene and View Models ...............................................  7

2.2 Visible Surface Calculations............................................................................... 8

2.3 Shading Calculations ........................................................................................  12

2.4 The Computational Bottleneck........................................................................... 16
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2.1. Image Specification by Scene and View Models

Ray-tracing exploits the laws of optical physics to synthesise highly realistic images 

[Amanatides;1987: Whitted;1980: Appel;1970]. The application of these laws requires a 

suitably detailed description of the image to be synthesised. This is provided by two 

models. On one hand, the scene model specifies objects in terms of shape, position, 

orientation and constituent material [Fig 2.1a]. In an analogy to a film studio, the scene 

mode! describes the set. On the other hand, the view model specifies the viewing 

conditions, defining the viewer in terms of position, the view screen in terms of position, 

size and orientation, and the light sources in terms of position, intensity and colour [Fig 

2.1b]. In the same analogy, the view model describes the camera and lights respectively.

The scene model deals with solid objects in a scene whilst the view model deals with light 

rays interacting with the scene. A raster image is ray traced pixel by pixel. The view 

screen Is split into an array of rectangular tiles, each corresponding to a pixel in the 

synthesised image. Each pixel is assigned the colour observed by the viewer through the 

associated tile. This colour is found by tracing light rays backwards along their paths in 

three dimensional scene space - hence the algorithm’s name. It depends on both the 

visible object surfaces, found by solution of the scene model, and the light reaching the 

viewer from these, found by solution of the view model [Fig 2.1c]. For purposes of display, 

colour is modelled as a three dimensional vector of intensities for the primary light 

frequencies corresponding to red, green and blue. Ideally, each intensity in the colour 

assigned to an indivisible pixel should be taken as the average over the associated view 

screen tile. This would allow for many visible objects contributing different colours over a 

single tile. Whilst such an average may be well defined as an integral over a tile’s area, its 

evaluation is intractable for all but the most trivial cases. However, a standard statistical 

estimator such as sample mean is usually an acceptable approximation. A sample is taken 

of light intensity over a set of points within a tile. The sample points may be regularly 

distributed in a grid, or dispersed by some stochastic process [Cook et al;1984]. In the 

simplest case a single point sample is taken at a tile’s centre. This is under the implied
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Fig 2.1a: A Specimen Scene Model

An example of a textual scene model accepted as input for ray tracing:-

MATERIAL China
COLOUR 1 0.7 0.1
SURFACE 10
REFLECTION 0.5
MIRROR 0
TRANSLUCENCY 0
ATTEN_RATE 0
REFRACTION 1

PRIMITIVE Handle
NAME TORUS
CENTRE 15 0 0
DEFORMATION 1 0  0 

0 0 - 1  
0 1 0

SCALE 10 3

PRIMITIVE Inner
NAME CYLINDER
CENTRE 0 1 0
DEFORMATION 1 0  0 

0 1 0  
0 0 1

SCALE 13 20

PRIMITIVE Outer
NAME CYLINDER
CENTRE 0 0 0
DEFORMATION 1 0  0 

0 1 0  
0 0 1

SCALE 15 20

OBJECT ( Outer
MADE_OF China

+ Handle

Name of material to be specified
Colour as RGB triple
Sharpness of Specular Highlights
Ratio of Specular to Diffuse Radiance
Proportion cf Mirrored View
Proportion cf Refracted View
Attenuation on Light per Unit Length of Transmission
Refractive Index

Name of Primitive to be Specified 
Primitive Type 
Coordinates of Centre
Deformation Matrix (90° Rotation About X  Axis)

Major Radius of 10, Minor Radius of 3

Name of Primitive to be Specified 
Primitive Type 
Coordinates of Centre 
Deformation Matrix (Identity)

Radius 13, Height 20

Name of Primitive to be Specified 
Primitive Type 
Coordinates of Centre 
Deformation Matrix (Identity)

Radius 15, Height 20

) - Inner Object Specified as CSG Construct 
Constituent Material

Fig 2.1a 1



Fig 2.1b: A Specimen View Model

An example of a textual view model accepted as input for ray tracing:-

XMAX 256 Pixel Width of Image to be Synthesised
YMAX 256 Pixel Height of Image to be Synthesised
SCREEN 1 1 1 Screen Width, Height & Distance from Viewer
VIEW 0 30 -60 Coordinates of Viewer
SCENE_CENTRE 0 0 0 Coordinates of Centre of Interest
SCR_ROT 0 Screen Rotation from Upright
BCOLOUR 1 1 1 Background Colour as RGB triple

LIGHT FINITE Finite Light Source Specification
INTENSITY 2 Light Intensity
ORIGIN -1 0 0  100 -100 Coordinates of Light Source
COLOUR 1 1 1 Light Colour

LIGHT FINITE Finite Light Source Specification
INTENSITY 1 Light Intensity
ORIGIN 100 100 -100 Coordinates of Light Source
COLOUR 1 1 1 Light Colour

Fig 2.1b 1



Fig 2.1c: The Ray Tracing Algorithm

Light
Source

Illumination
Ray

Reflected 
View Ray

Primary 
View Ray Transmitted 

View RayViewer

Scene Object

View Screen

Fig 2.1c 1



assumption of colour being approximately constant over the tile, say with at most one 

visible object, so that a good estimate is obtained. This sampling method requires only the 

straightforward point evaluation of visible colour rather than integration over a two 

dimensional tile.

2.2. Visible Surface Calculations

Consider solving the scene model to find the visible surface through a single tile point. 

There is clearly at most one directly visible surface - the nearest, should this exist. This 

nearest surface is found by solving the scene model for a light ray starting at the viewer 

and extending through the point in question.

A ray is modelled as a half line by two vectors - the source position and unit direction [Fig 

2.2a]. Any point on the one dimensional ray is then parameterised by path length from the 

source. The nearest surface is that yielding the non-empty ray intersection of minimal 

non-negative path length.

2.2.1. The Scene Model

The Constructive Solid Geometry (CSG) model is a common scene model [Roth;1982: 

Wyvill et al;1986]. This specifies a wide range of objects as binary boolean constructs from 

appropriately deformed instances of simple primitive solids. A range of common primitive 

geometries is modelled, typically comprising the planar bounded half-space, cube, sphere, 

cylinder, double cone and torus. Each is defined in a convenient local space centred at the 

local origin and oriented with the local axes. The choice of coordinate system is arbitrary. 

By convention, a left-handed system is taken throughout this thesis with increasing X going 

from left to right, Y from down to up and Z from behind to front. Each primitive has a size 

parameterisation within its local space, specifying aspects such as radius or height.

A primitive is instanced in the scene model by a transformation to the world coordinate 

system comprising any sequence of linear transformations such as translations, rotations, 

scalings, reflections and shears. Associated transformations such as the inverse to local 

space and surface normal transformations are derived from this [APPENDIX A].
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Fig 2.2a: The Ray Model

The ray model is

Ray(s.d) = " EeR3 : e  = s+Ad ; Â O

where
I  = ray source 
d = ray direction 
X = path length

Fig 2.2a 1



Typical boolean operations are binary union, intersection, subtraction and symmetric 

difference together with unary identity, under the usual definitions.

A local cube Is modelled as a suitable planar half space intersection in local space. The 

finite local cylinder and cone are modelled as the intersection of the infinite form with two 

clipping planar half-spaces. Any convex polyhedron is instanced in world space as a planar 

half space intersection. A concave polyhedron is instanced with extra boolean operations 

such as union. More complex curved objects are instanced with the full range of primitives, 

deformations and operations. CSG objects are conveniently described by their binary 

evaluation trees in which the internal nodes represent boolean operations and the leaf 

nodes represent primitive solids [Fig 2.2.1 a]. A major advantage of this model is the exact 

specification of a wide range of curved objects without resorting to polyhedral 

approximations. The range of primitives may be augmented with volumes of revolution and 

extrusion, bi-cubic patch boundary representations and volume densities 

[Sederberg,Anderson;1984: Joy,Bhetanabhotla;1986: Burr;1986: Sweeny,Bartels;1986: 

Kajiya.Von Herzen;1984]. However the basic CSG model has proved general enough for 

many applications and is well established in fields such as computer aided design 

[Myers;1982j. Many objects can be modelled from a limited set of common primitives 

under suitable linear deformations and boolean combinations.

Each local primitive is modelled by a field function expressed as a trivariate polynomial in 

local space coordinates [APPENDIX B]. This specifies a notion of height above the 

primitive surface at any local point. This height may not be in a usual Euclidean sense, but 

will be zero for a point on the primitive surface, increase as this point is moved above the 

surface or decrease as it is moved below. The height function may be compared to the 

concept of height above sea level. The height above a primitive instance at a world scene 

point is taken as the local height value at that point’s local image [APPENDIX A]. A scene 

point is on a primitive’s surface when the associated world height function evaluates to 

zero, outside when the height is positive and inside when the height is negative.
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Fig 2.2.1a: The Constructive Solid Geometry (CSG) Model

A mug constructed from two cylinders and a torus, as specified by Fig 2.1a.

Handle ) subtract

Inner

subtract

Outer union Handle

union

Fig 2.2.1a 1



2.2.2. The Solution of Scene Model Equations

A ray is intersected with a world primitive instance by the substitution of its local equation 

as the argument to the local height function. This yields univariate polynomials in the ray’s 

path length [APPENDIX C]. Any intersection with the primitive’s surface is then 

characterised by a root of these polynomials. This may be substituted back into the ray 

equation to find the visible surface point’s position in either local or world space.

Height functions immediately generalise from primitives to CSG boolean constructs thereof 

and indeed to constructs of constructs. A height function is defined for a construct as 

piecewise segments of those already defined for the arguments [APPENDIX B]. A height 

function may then be recursively defined at each node in a CSG object’s binary tree 

structure, yielding a height function for the whole object at the root. The substitution of the 

ray equation into these yields univariate continuous piecewise polynomials in the ray’s path 

length [APPENDIX Cj.

The roots of a construct’s height function may be found without calculating the explicit 

piecewise segments from the argument functions. Clearly, any root of the binary 

construct’s height function must be inherited from one of the two arguments’ height 

functions. A check on which roots of the arguments’ simpler height functions remain roots 

of the construct height function is sufficient to locate all the tatter’s roots.

To look at the problem another way, consider finding a ray’s intersection with an entire solid 

rather than just the surface boundary. This is expressed as the path length section over 

which the associated height function is negative. It does not consist of a few boundary 

points, but is rather the union of a finite number of path length intervals. Points on the 

boundary of this section correspond to ray intersections with the object surface as before. 

The path length section is distributive over all the boolean operations, in that the path 

length section for a 3D combination of objects is the corresponding 1D combination of the 

objects’ path length sections [Fig 2.2.2a].

Such unions of a finite number of intervals are a convenient type for computation. They 

may be represented by a flag indicating whether the ray source is inside the associated
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Fig 2.2.2a: Path Length Sections for Boolean Constructs

Let r = { s+Ad : A>0 } be a ray, and A 3  £  R3 be two constructs

A ray’s path length section within any construct X is defined as Sx = { A > 0 : s+Ad e  X}

This definition is distributive over boolean operations. Consider the union of these constructs,

SA unionB  = { A > 0 : s+Ad e A union B }

= { A > 0 : s+Ad g A } union { A > 0 : s+Ad e B }

So for union

Sa union b  = Sa union S b

Similarly,

S a  intersect b  = SA intersect SB 

Sa subtract b  = Sa subtract SB 

S a  difference b = SA difference SB

Fig 2.2.2a 1



construct, followed by a list of surface intersection points in path length order. Though this 

flag indicates whether the ray is initially inside or outside the construct, it is set according to 

the ray’s final state. This avoids the impact of rounding errors in calculating the height 

function at any ray source which is close to the surface of a geometry. The source of a ray 

is taken to be inside a geometry if the leading coefficient of the height function along its 

path is positive and there is an odd root count, or if this coefficient is negative and there is 

an even root count. The source is taken to be outside the geometry otherwise. An 

implementation of binary boolean operations on this data type handles ray intersections 

with CSG objects by an elegant recursion over the associated binary construct tree 

structure. Spatial object coherency may be exploited to restrict computation to a path 

length sort over the arguments’ surface intersection lists filtered by the appropriate boolean 

operators. The section for the entire object provides not only surface intersections but also 

the ray’s path length within this object. This is needed to calculate the attenuation of a ray 

passing through a transparent object when solving the view model [APPENDIX Gj.

The intersection of a ray with the surface of a CSG object is calculated by isolating the 

roots of such polynomials. Roots may be found analytically for polynomials up to degree 

four [Kom,Kom;1968a], or with reliable numerical techniques for any degree 

[Korn,Kom;1968b]. The visible surface is the nearest to the ray source, on the object 

whose height function yields the minimal positive path length root.

2.2.3. The Efficiency of Visible Surface Calculations

The original method of solving the scene model for this minimal root is a computable but 

naive exhaustive search [Whitted;1980]. Each object is queried in turn for ray intersection 

whilst maintaining a record of the nearest intersected surface found to date. Having been 

initialised to an infinite root indicating that no visible surface has been found this record is 

updated whenever an object’s surface is intersected by the ray at a shorter positive path 

length. If the record is still infinite after considering every object then no visible surface has 

been found and a background colour is assigned. This may be constant or textured 

[APPENDIX Dj. Otherwise, the record indicates the nearest visible surface point, and the
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visible colour may be found by solving the view model for the ray at this point. Each object 

query carries a considerable computational tariff. The roots of the associated height 

function are identified from those of the combined primitives. The location of roots to each 

primitive’s height function involves costly multiplicative floating point arithmetic 

[Korn,Kom;1968a]. This is preceded by other floating point vector arithmetic in calculating 

the function’s coefficients and transforming to local space [APPENDICES C.A]. Since 

every object is queried, the computational load of the scene model’s solution by naive 

exhaustive search increases linearly with object count and becomes catastrophically 

expensive for any non-trivial count.

2.3. Shading Calculations

Consider solving the view model to find the visible cotour reaching the viewer along a ray 

from a visible surface point. Light falling on a surface is called irradiance whilst that 

reflected back is called radiance. The view model’s solution finds the irradiance falling on 

the viewer from the view direction due to radiance from a known visible surface point. 

Whilst a full colour image is synthesised, primary light frequencies are considered 

independently thereby simplifying the colour problem to monochrome over each of the three 

primaries. The radiant intensity of each primary is found by the laws of optical physics 

[Amanatides;1987].

2.3.1. The View Model

Surface radiance is summed over five categories corresponding to different types of 

irradiance and surface characteristics. These are

• Diffuse radiance

due to irradiance falling directly from light sources. This results from the interaction of 

irradiance with matte surfaces such as porous chalk. Irradiant light penetrates such 

surfaces and is scattered through many internal reflections before re-emerging as 

diffuse radiance. This extended scattering distributes radiance uniformly in all 

directions according to Lambert’s law, and attenuates light to the surface’s
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characteristic colour.

• Specular radiance

also due to irradiance falling directly from light sources. This results from the 

interaction of light with mirrored or shiny surfaces to produce highlights. Light does 

not penetrate such surfaces, but reflects straight back according to Newton’s law of 

reflection. Specular radiance is highly directional, but in practice is never restricted to 

a single direction since no actual surface is perfectly smooth. Real surfaces have 

many micro-facets, whose normals average out to the overall surface normal but are 

distributed with some variance. This is heuristically modelled by Phong’s bell-shaped 

distribution [Amanatides;1987]. A more rigorous model has been proposed which is 

derived from Fresnel’s laws [Amanatides;1987], but this offers only a limited increase 

in realism at higher expense. In the absence of any extended surface interaction, 

specular radiance is not attenuated according to surface colour in the view model.

• Ambient (diffuse) radiance

due to irradiance which is not direct from light sources but radiant from other surfaces 

in the scene. A model has been presented to allow for this radiance and so 

synthesise optical effects such as caustics [Cook et al;1984]. However, this model is 

somewhat complicated and ambient radiance may be approximated with a constant 

term which proves adequate for many applications. Like diffuse radiance, ambient 

radiance is attenuated to the surface’s characteristic colour.

• Reflected radiance

from a mirror or refractive surface with total internal reflection, due to irradiance from 

the direction according to Newton’s law. This carries a reflected view and like 

specular radiance is not attenuated to the surface colour.

• Transmitted radiance

from a surface on a transparent refractive object without total internal reflection, due 

to irradiance from the direction according to Snell’s Law. This carries a refracted view 

and is attenuated on transmission through the surface by characteristic colour.
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2.3.2. The Solution of View Model Equations

The intensity of each radiance category depends on the viewing conditions according to 

optical laws. The direction in which the surface is viewed is known, as is the visible point. 

The surface normal may be found according to the surface’s geometric type, negating when 

the surface is carved out by boolean complement in subtraction or symmetric difference 

[APPENDIX D]. The colour of the visible point may be constant across the surface, or 

textured according to local position [APPENDIX E]. Light sources are modelled as points. 

These may be at a finite distance from the surface at a known position, or at an infinite 

distance in a known direction. A unit direction vector towards the source is easily found in 

either case.

These viewing conditions are fed into the view model to find the total visible surface 

radiance as an average of the radiance categories weighted by surface characteristics 

[APPENDIX G]. The irradiance from each light source is required to calculate diffuse and 

specular radiance, as is that from the reflected view direction for reflected radiance and 

from the refracted view direction for transmitted radiance. Reflected and refracted 

irradiance are found by recursively tracing rays from the visible surface point in the 

appropriate directions, rather than from the viewer through the view screen. The 

appropriate directions are easily found [APPENDIX F]. The irradiance from each light 

source is also found by tracing a further ray. These are second generation or secondary 

rays, whereas those through the view screen are primary rays.

2.3.3. Synthesising Recursive Views

The reflected and refracted view rays are traced exactly as the primary view rays. The 

scene model is solved once more to find the nearest surface struck, as is the view model 

for shading. The latter may spawn yet further generations of rays, so that the final 

irradiance assigned as the visible colour along the primary ray is modelled as a branch- 

weighted average over a shading tree [Whitted;1980] in which each node represents a 

further visible surface [Fig 2.3.3a]. The tree terminates when a non-mirror, opaque surface 

is struck, or no surface at all. A background colour is assigned in the latter case. Some
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Fig 2.3.3a: The Shade Tree

The final irradiance falling on the viewer is a weighted average over the branches of a shade tree.

Viewer

Light

Viewer

Fig 2.3.3a 1



branches of the shading tree may satisfy neither of these criteria, such as when a lineage 

of reflected view rays becomes trapped in a mirrored enclosure. Due to branch weighting 

however, the contribution to the root average of each successive generation will decrease, 

eventually decaying to an insignfficant level. A maximum depth termination criterion is 

applied to the shading tree to prevent runaway. Any branch attempting to exceed this is 

pruned and assigned a background colour. This generally has little impact on the final 

image even when pruning only a few generations away from the root. The maximum depth 

is usually between five and ten. Pruning may also be applied to any branch contributing a 

lower proportion to the weighted root average than some minimum threshold, so avoiding 

unnecessary computation. The contribution of a branch is the product of all branch-weights 

over the path from the root, which is easily remembered when traversing over the tree. A 

minimum threshold of about one tenth is often used.

2.3.4. Synthesising Shadows

A ray traced to find the irradiance from a light source requires a slightly different solution of 

the scene model. This does not spawn further generations of rays. Such a ray is known 

as an illumination ray to distinguish it from the view rays discussed above. The scene 

model’s solution for an illumination ray finds the proportion of radiance from a light source 

surviving the direct journey through the scene to fall as irradiance on the visible surface. 

The attenuation will depend on the various transmissive media encountered. If the ray 

strikes any opaque object, attenuation is complete and the object casts a shadow from the 

light over the surface point since this is not visible from the light source. If the ray strikes a 

transparent object however, a proportion of the light will be transmitted. Two types of 

attenuation are modelled in this case. The first is due to the filtering effect of the object’s 

surface colour, whereby only each appropriate primary proportion is transmitted. This 

colour may be constant or textured by local position. The second is due to decay through 

the object’s body. The proportion of light transmitted is calculated according to exponential 

decay [APPENDIX Gj. This models a colourless transmissive medium, so that transparent 

objects are modelled as colourless bodies with a coloured surface somewhat like a
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cellophane wrap of insignificant thickness. The same exponential decay model is used 

when viewing a surface through an attenuating medium to find the fraction of radiant light 

leaving the surface which reaches the viewer [APPENDIX GJ.

2.3.5. The Efficiency of Shadow Synthesis

An illumination ray’s solution to the scene model must find not only the nearest object 

surface but all objects struck. These do not have to be considered in path length order, 

since the total proportion of light transmitted is modelled as the product over all objects, 

whose evaluation is of course commutative. Whilst view rays are traced from nearest 

surface to nearest surface, spawning a new generation each time, a single illumination ray 

is exhaustively traced from a visible point through the scene until reaching the light source. 

Again, the original method of the scene model’s solution for an illumination ray is a 

computable but naive exhaustive search [Whitted;1980]. Each object is queried in turn for 

the proportion of light transmitted. Having been initialised to unity to indicate no 

attenuation, a record of the total proportion transmitted is maintained by multiplication with 

the fraction transmitted by each object struck. If this record is zero after considering all 

objects the surface point is in full shadow from this light source. Otherwise, some 

proportion of irradiance survives and is allowed for in the view model. Once again, each 

object query carries a considerable computational tariff. The exhaustive search can be 

aborted if this proportion record becomes zero before considering every object, as the 

surface must be in full shadow. However, this saving is only significant when a large 

proportion of visible surfaces are in full shadow.

2.4. The Computational Bottleneck

Whilst the original exhaustive search methods for solving the scene model are computable 

they are clearly naive. A high unit computational cost is incurred for both view and 

illumination rays, increasing linearly with object count. A realistically detailed scene many 

contain thousands of objects. Each is considered in an exhaustive search for a given ray.
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This high cost could perhaps be ignored if the scene model were not solved very often. 

However, the solution of the scene model is at the core of the ray tracing algorithm [Fig 

2.4a]. Consider synthesising an image at a typical spatial resolution of 1024x1024 pixels. 

Even for the simplest case of a single sample per pixel, visible surface calculations require 

the solution of the scene model for over one million primary view rays, and proportionately 

more if the sample size is increased. Moreover, shadowing calculations at each visible 

surface point struck by a primary ray require the scene model’s solution for a secondary 

illumination ray to each light source. The majority of primary view rays will strike some 

surface for a busy or indoor scene. Many light sources may be needed to synthesise a 

realistic image, in which case the computation required for shadowing will often exceed that 

in finding visible surfaces. Any view ray striking a partially mirrored or transparent object 

will spawn further generations of view rays for which the scene model must be solved. 

These spawn more illumination rays in their turn, thereby increasing the number of 

solutions to the scene model yet further.

Ray tracing synthesises realism by quite literally solving the scene model millions of times. 

This high solution count is fundamental to the algorithm, providing the means for realistic 

synthesis. The high unit cost of traditional solution methods forms a catastrophic 

computational bottleneck resulting in notoriously slow rendering times. Thousands of 

objects may be needed to model a realistic image, resulting in literally billions of object 

queries. Research has shown that even for scenes containing only a few objects about 

three quarters of all computation time is spent solving the scene model [Whitted;1980]. 

When dealing with thousands of objects all but a tiny proportion is spent solving the scene 

model, with total synthesis times running into weeks and even months on non-specialised 

hardware.

This drawback of ray tracing has motivated research for a solution to the scene model of 

lower unit cost. The major part of this thesis addresses this task.
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Fig 2.4a: Fundamental Flow Diagram for Ray Tracing

The solution of the scene model for view and illumination rays is at the core of image synthesis.
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Chapter 3: Ray Tracing Acceleration Techniques

Synopsis:

Chapter three describes how ray tracing may be accelerated for faster image 

synthesis. Fine tuning techniques and their effectiveness are addressed before more 

fundamental innovations which can radically improve speed.

3.1 Motivation for Accelerating Ray Traced Image Synthesis..................................  19

3.2 Fine Tuning the Naive Solution to the Scene Model..........................................  19
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3.1. Motivation for Accelerating Ray Traced Image Synthesis

Naive ray tracing has been shown to synthesise a high degree of realism at the cost of a 

high computation load concentrated in solving the scene model [Section 2.4]. A more 

sophisticated solution to the scene model would provide a faster synthesis of the same 

realism.

3.2. Fine Tuning the Naive Solution to the Scene Model

Various opportunities arise for fine tuning the naive method. These improvements can 

reduce average rendering times by an appreciable factor, but do not produce the desired 

quantum leap in orders of magnitude since they offer no major innovation to the algorithm.

3.2.1. The Significant Path Length Interval

The calculation of a ray’s intersection with a CSG object is known as an object query. This 

finds the path length section over which the ray intersects an object. Intersections with the 

object’s surface boundary correspond to the boundary of this section. It is often the case 

when querying an object that the only surface intersections of interest are those within 

some significant path length interval Any valid surface intersection must always be after 

the ray source at some path length greater than zero. A view ray’s solution to the scene 

model finds the nearest surface struck. At any stage of this solution only those surfaces 

struck before the nearest found to date are significant. The significant interval contracts 

during a view ray’s solution of the scene model. When solving the scene model for an 

illumination ray to a finitely distant light source, only surfaces struck before reaching this 

light are significant. The significant interval remains constant during an illumination ray’s 

solution of the scene model. This significant interval can be exploited in various ways to 

reduce unit object query cost.

3.2.2. Boolean Laws

Each object is modelled by a CSG binary tree, wherein the internal nodes represent binary 

boolean operations and the leaf nodes primitive solids [Fig 2.2.1 a]. The path length section 

for the 3D construct corresponding to an internal node is found recursively as the
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equivalent 1D construct from the sections of the two branches. This incurs only low cost in 

the trivial path-length sort of the branch surface intersection points. The path length section 

for the primitive corresponding to a leaf node is found at high floating point arithmetic cost 

in polynomial construction and solution [APPENDIX C]. The cost of a CSG object query is 

concentrated at the leaf nodes, which number one more than the internal nodes. A naive 

complete traversal of the binary tree would visit all leaf nodes incurring high unit query cost, 

but is generally unnecessary.

Boolean laws may be applied to reduce unit object query cost. Consider an internal 

intersection construct node. By definition, the node construct is a subset of both branch 

constructs. Similarly, the path length section for the node construct is a subset of both 

those for the branch constructs. Whenever the ray misses either branch, their intersection 

must also be missed. If the first branch query yields an empty path length section, the 

section for the whole node construct is also known to be empty without incurring the tariff of 

a second query on the other branch.

Suppose the first branch query yields a path length section which is non-empty yet entirely 

beyond the significant interval. By the same arguments, any surface of the intersected 

construct can also only be struck beyond the significant interval. The traversal of the 

node’s sub-tree may therefore still terminate without querying the second branch.

Similar savings may be made for other boolean operations [Fig 3.2.2a]. In a realistic scene 

with many small objects adding fine detail, the majority of objects and their internal 

constructs will be missed by a given ray to yield an empty parameter section when queried. 

This scheme may be widely used in such circumstances to limit the number of primitives 

queried. However, the naive scene model solution will still query each object. These 

savings can only be made at any internal node after considering the first sub-tree, within 

which several primitives may yet be queried. Other schemes are required to reduce unit 

object query cost further.
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Fig 3.2.2a: Shortcuts in the Calculation of 

Path Length Section for a CSG Construct

Notation

Symbol Meaning

L, R Left and right branches of CSG construct corresponding to the
boolean operation’s arguments

Sx Path length section over which ray is inside construct X

F(SX) First surface strike of Sx in path length order

H Upper limit of significant path length interval

After querying the only left branch, the following shortcuts may be made in the calculation of path 

length section under the given conditions:

If SL=<t> or F(Sl)>M-, ^en

S l  union R =  S r  

S l  intersect R =  $  

subtract R $

S l  difference R ~  S(L  union R) subtract (L intersect R) — S l  union R S r

Fig 3.2.2a 1



3.2.3. Bounding Volumes

The cost of an object query is dominated by its geometry rather than size and hence its 

chance of actually being struck. The query of a sphere involves the construction and 

solution of a quadratic no matter whether its radius is large or small, even though the latter 

case is less likely to yield any real roots. To reduce the cost of an object query, any CSG 

object may be assigned a bounding voiume hierarchy [Rubin,Whitted;1980: 

Kay,Kajiya;1986: Goldsmith,Salmon;1987]. Each node in the object’s CSG tree is 

surrounded by a tightly fitting geometrically simple bound at a preprocessing stage. On 

reaching any CSG node during an object query, the simpler bound is considered before 

undertaking a more expensive query of the modelled construct, including the root object. In 

the likely event of this bound being missed the contained construct must be missed too, 

and the more expensive query is avoided. Otherwise, the recursive object query must 

continue. The bound query overhead then imposes a greater cost than otherwise at this 

node. The cost of this overhead is limited however by the geometric simplicity of the 

bound. Moreover, the scheme may yet yield savings at deeper stages of the query, and if 

bounds are made sufficiently tight a ray strike should prove the exception rather than the 

rule.

Once more, a stronger affirmation can be made when the significant interval is bounded 

above. The path length to the entry point into a struck bound provides a lower limit on that 

to any surface intersection with the contained construct. If the bound is struck but only 

beyond the significant interval, the contained construct cannot provide a significant surface 

intersection [Kay,Kajiya;1986]. The query may then terminate without recursing down the 

subtree, avoiding high leaf cost.

A typical bound is the box aligned with the world axes or other intersection of extent slabs 

with given normals [Kay,Kajiya;1986]. Clipping planes are placed around a primitive 

instance at the extent extremes in each normal direction to provide an extent slab of tight 

fit. These extremes may be located with LaGrangian multipliers [Kay,Kajiya;1986]. Bounds 

may then be fitted recursively around boolean constructs with the appropriate clipping
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planes from their branches’ bounds. The query of each plane involves a simple linear 

polynomial, and the pair forming each extent slab share their linear term. Since such 

bounds are intersections of these slabs, the previous scheme may avoid querying each 

slab [Section 3.2.2]. When dealing with the box bound for example, a ray may miss the 

infinite girder constituting the intersection of the X and Y extent slabs; the Z slab need not 

then be queried.

The sphere has also been proposed as a bound [Whitted;19S0], but suffers two drawbacks. 

A test for a ray intersecting a sphere can be made in the general case with two dot 

products [Fig 3.2.3a], involving up to seven floating point multiplications compared to six for 

an exhaustive world aligned box query. However, this will not yield the path length to any 

intersection with the sphere bound, and so as a first drawback the method described for 

ignoring surfaces beyond the significant interval cannot be exploited. The calculation of the 

path length to an intersection with a sphere requires the solution of a quadratic [APPENDIX 

C]. This would not be too inconvenient if bounding spheres were generally missed, but this 

is not the case. Whilst the sphere provides a good fit to constructs of similar extent in each 

direction, a poor fit is obtained to a construct extending more in some directions than 

others, such as a long cylinder. The fit of a construct’s sphere bound found recursively 

from those of the branches also tends to be worse than with clipping planes. This presents 

the second drawback of the spherical bound’s poor fit to general CSG objects.

3.2.4. Sturm’s Root Test

The query of a primitive isolates the roots of its associated height function, specified as the 

maximum taken over a number of polynomials [APPENDIX C]. Whilst the analytic isolation 

of a linear polynomial’s root is simple enough, the solution of a quadratic requires 

somewhat more involved arithmetic. The solution of higher degree polynomials requires 

extended arithmetic. The query of a torus necessitates the solution of a quartic. Ferrari’s 

method factorises a quartic into two quadratics with a root to a resolvent cubic 

[Korn,Kom;1968a]. The cubic root is found by Cardan’s method, which itself involves much 

arithmetic [Korn,Korn;1968a]. In the irreducible case when a cubic has three real roots,
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Fig 3.2.3a: Ray Intersection Test for Sphere

Notation

Symbol Meaning

s Ray source relative to sphere centre

d Ray direction

R Sphere Radius

Ray Intersection test

if ( s.s < R2 ) then ray source inside sphere

SPHERE HIT

else

if ( s.d < 0 ) then sphere behind ray source

SPHERE MISSED

else

if ( s.i -  i d 2 < R2 ) then ray approaches within distance R of sphere centre

SPHERE HIT

else ( s.s -  s.d2 > R2 ) then ray always beyond distance R of sphere centre

SPHERE MISSED

Fig 3.2.3a 1



Cardan’s solution cannot be performed within real numbers, but extends to the complex 

field. A trigonometric solution is then employed [Kom,Kom;1968a]. Unfortunately this 

proves unstable in practice. The error in the resolvent cubic solution is magnified 

unacceptably in the quartic solution. To avoid such accumulated numerical errors, the 

trigonometric solution is tidied up by substitution as the initial root estimate into Newton’s 

iterative method, requiring further extended arithmetic. Polynomials of any degree may be 

solved with such iterative numerical techniques which all involve extended arithmetic.

The high effort expended in such polynomial solutions is wasted when all roots are isolated 

outside the significant interval. The existence of roots within the significant interval may be 

checked by Sturm's method [Korn,Kom;1968b] before undertaking this such lengthy 

arithmetic [Fig 3.2.4a]. This comparatively inexpensive existence test may be exploited in a 

repeated bisection of an interval to reliably locate all roots of a polynomial therein to 

arbitrary numerical precision. The polynomial may be of any degree.

3.2.5. Reducing the Average Cost of Scene Model Solution for Illumination Rays

The majority of view rays will strike some visible surface in the synthesis of a busy or 

indoor scene. Each strike spawns an illumination ray to be recursively traced to each light 

source. If the view model contains multiple light sources the illumination rays traced will 

then outnumber the view rays. A higher total load is then imposed in synthesising shadows 

than views by exhaustive search. This search should clearly only be used as a last resort 

in shadowing.

3.2.6. Self Shadowing Surfaces on Opaque Objects

Whilst transparency is accurately synthesised by ray tracing, this optical property tends to 

be the exception rather than the rule.

A visible surface point will usually be on an opaque object. It will be shadowed by this 

object from any light source which is below the surface in the sense that a vector towards 

the light yields a negative dot product with the surface normal. This dot product is already 

calculated in the synthesis of diffuse radiance [APPENDIX G]. The sign may be checked
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Fig 3.2.4a: Sturm’s Method for Counting the Roots of a 

Univariate Polynomial in an Interval

Meaning

Univariate polynomial in x of degree n

Derivative of polynomial P(x)

Sturm polynomial of degree j.

The polynomial remainder after formally dividing the polynomial Q(x) into P(x)

A univariate interval of specified extremes

Number of sign changes through the indexed list [yJ£o ignoring zeroes

Root count of polynomial P(x) in the interval where the interval extremes are not 
roots

Sturm 's Method

Sturm’s method counts the number of roots to a univariate polynomial in an interval, provided that 

polynomial has no multiple roots [Kom.Kom; 1968b]. A sequence of ‘n+1’ Sturm polynomials 

(Sj(x))£o is derived for a polynomial P(x) of degree *n\ The sequence is similar to that in 

Euclid’s algorithm for the greatest common divisor of two numbers, and is defined by a recurrence 

relation from a seed pain

Sn(x) = P(x)

Sn_1(x) = P'(x)

SJ(x) = -mod(S*2(x),Si+1(x)) for j e [0,n-2]

S°(x) = -mod(S2(x),S1(x))

Sturm’s method counts the roots as follows:

R(P(x),X) = N([S*(X[)]>o) -  N([Si(Xs) ] ^

Notation

Symbol

i=0

P'(X)

Sj(x)

mod(P(x),Q(x)) 

X = [X,,XS] 

NOyJSo) 

R(P(x).X)

Fig 3.4.2a 1



The method still applies when any polynomial from the sequence is scaled by a positive factor, 

since this has no effect on sign. The recurrence relation may therefore be taken as the alternative

S (̂x) = -b^.1mod(A(x),B(x)) for j e  [0,n-2]

where

A(x) = S^2(x); B(x) = S ^ x ) ;  bj^ is the leading coefficient of B(X)

As will be seen, this scaling removes all division from the sequence’s generation. Sturm’s method

still applies when the coefficient bj^ is zero.

Any multiple root in a given interval is only counted once. This situation is characterised by the 

occurrence of a Sturm polynomial S (̂X) of true degree less than ‘j ’ whose xj coefficient is zero.

Implementation

The manipulation of a Sturm sequence requires some data structure for the representation of a 

polynomial. A dense representation is particularly convenient whereby a polynomial is stored as 

its degree and a vector listing its coefficients by increasing order. For example, the representation

n
of the polynomial P(x) = £piX* has the coefficient list (Pi)£o. This representation is particularly

F=0

suitable for a polynomial’s evaluation at some point a  by Homers rule:

n
P(a) = JjPxd = p0+ a ( p i  + a ( p 2 + a  ( pn_! + a(pn))))

i=0
This may be calculated in an iterative loop incurring V  multiplications and ‘n’ additions. The 

derivative of a polynomial is also easily found in this format:

n-1
P'(X) = Sti+ljpi+ix1 with coefficient list ([i+l]Pi+i)£o

i=0
The two seed polynomials of a Sturm sequence are the given polynomial S"(x) = P(x) and its 

derivative Sn-1(x) = P'(x). Subsequent polynomials are found according to the given recurrence 

relation. This finds the polynomial remainder from the quotient of the previous two Sturm 

polynomials. The quotient’s numerator is greater by one in degree than the divisor, and the 

remainder one less. The derived Sturm polynomial is this remainder scaled by the negated square 

of the divisor’s leading coefficient:
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Such remainders are easily found in the coefficient list format. Consider finding the polynomial 

remainder R(x) = mod(A(x),B(x)) for the Sturm polynomials A(x), B(x) defined as above by 

formal long division:

aj+2 aj+ibj+i—aj+2bj 

b}+i X + bj+!

Therefore

with the constants

and so

j+i . 
i^ ix 1
i=0

i+2

i=0

^i+2 
W) j+1

3ibj+i a ^ b i-!

3j+ibj+i aj+2bj

=i
j=0

(ajbj+i~ ĵ+2bj-i )b^i (a^ibj+i a^bj)^

R « = i
i=0

b£i

Uai-Vbi_1-Wbi

b£i

U = b ^ ;  V = a^bj-n; W = a ^ b ^ - a ^ ty  b_! = 0

Sj(x) = -b^R (x) = 2 (-U a i+Vbi_i+Wbi)xi
i=0

with coefficient list (-Uai+Vt^_1+Wbi)J=0 

The coefficient lists of successive Sturm polynomials are found by this relation. A triangular

matrix of these coefficients for the entire sequence is found by iteration.

Sturm’s method may be used to check for existence of roots to a given polynomial within the 

significant path length interval. This interval has a minimum of zero, at which point each 

polynomial in the sequence simply evaluates to its constant term. The number of sign changes
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through the evaluated polynomial list is then simply the count through the list of constants. If this 

count proves to be zero there are no roots in the significant interval. Otherwise, the number of 

sign changes is found through the list of polynomials evaluated by Homer's rule at the interval’s 

maximum. The number of roots in the interval is then the difference in these sign change counts.

Sturm's method may be adapted to locate the roots of a polynomial within a given interval to 

arbitrary numerical precision with a binary chop, rather than merely testing for their existence. 

The interval is recursively bisected until the current interval is either found to contain no roots or 

is of smaller width than the given precision. Any roots are conveniently found in increasing order 

by considering the halves of each bisected interval in that order. The convergence of the binary 

chop may be slower than other techniques such as Newton's iteration. However, this method is 

far more robust and is sufficiently reliable to always locate all polynomial roots when ray tracing.

The compound coefficients of successively generated Sturm polynomials may grow rapidly with 

the described iteration. When starting from a polynomial of high degree these coefficients may 

explode in modulus causing numerical overflow. This is easily avoided by normalising each 

successive polynomial to unit infinity norm over its coefficient vector. Scaling by a positive 

factor does not effect the sign counts and prevents such overflow. Under 'usual* circumstances 

this normalisation is only necessary for polynomials of 'high' degree, typically six or more.
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before recursively tracing an illumination ray from an opaque object surface, often avoiding 

the exhaustive search at no extra cost.

3.2.7. Spatial Shadow Coherency In Images

When synthesising an image in raster order, successive visible points found as view ray 

solutions to the scene model will usually be for primary view rays through adjacent pixels in 

the view screen. They will tend to be on the same surface, under similar lighting 

conditions. This coherency may be exploited by assigning each light source a record of the 

most recent opaque object found to cast a full shadow when solving the scene model for 

illumination rays [Haines,Greenberg;1986]. The record is initialised to an arbitrary object 

and is updated each time a new object is found to cast a full shadow from the light on a 

visible surface. The record is examined before recursively tracing an illumination ray to the 

light source. A single query is made of the corresponding opaque object and if this casts a 

full shadow an exhaustive object query search is again avoided. Otherwise, the search is 

undertaken without a repeated query for this object, so that the check involves no 

significant extra cost. The record is only updated during such a search.

3.3. The Effectiveness of Fine Tuning the Naive Solution to the Scene Model

The techniques for reducing unit object query cost do provide savings in the naive solution 

of the scene model for a view ray. However each object is still queried in an exhaustive 

search. Whilst these savings are worthwhile, the computational load of solution is still 

linear in object count which may be high in realistically detailed scenes.

The techniques for fine tuning the solution for an illumination ray all provide an opportunity 

to avoid an exhaustive search whilst imposing only low overhead themselves. They are 

certainly also worthwhile, but their impact is limited since in the general case the solution of 

the scene model returns to the catch-all exhaustive search. Even if these techniques 

succeed in filtering out half of these default cases, thereby halving the significant portion of 

the computational load, synthesis times would only improve by a factor of two.
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An improvement in orders of magnitude clearly requires a more efficient default solution 

than naive exhaustive search. This must be avoided always rather than merely sometimes 

if viable rendering times are to be achieved.

3A. Fast and General Solutions to the Scene Model

Much recent research has addressed this major obstacle in ray tracing. Some attempts 

have been made to reduce synthesis times by computing at a faster rate rather than 

reducing the computational bad. Various researchers have attempted to harness the more 

computatbnaily powerful hardware becoming available such as multi-processor and 

transputer systems [Dippe,Swensen;1984: Muller;1987: Plunkett,Bailer;1985:

Williams,Buxton,Buxton;1986]. Whilst hardware solutbns do indeed pay dividends they do 

not preclude gains offered by more sophisticated software solutbns to the scene model. 

Both avenues are worthy of exploratbn. Due to limitatbns in the hardware available for the 

research culminating in this thesis, only software solutions on a single processor system 

have been considered. These are applicable to a range of computing hardware. They do 

not rely on multi-processor systems, whbh though becoming more readily available are still 

less common than single processor architectures.

3.4.1. Avoiding Exhaustive Search

The gbbal scene model may contain many objects. Only a few of these will be significant 

to a ray’s scene model solution. Indeed only one is significant for a view ray - that with the 

nearest intersected surface. Many other objects are ‘obviously* insignificant. Consider a 

scene model of a room with a Venetian blind across a window. The blind comprises many 

slats, each modelled by a stretched cube. Suppose the view model specifies a viewer 

looking into the centre of the room with the window behind him. None of the slats are 

significant to any primary view ray; the intersectbn of any such ray with a slat would be at 

a negative path length, outside the signifbant interval. The entire blind should be 

‘obvbusly’ rejected from any local view ray solution. It should not be rejected from the 

gbbal scene model however, since the slats may cast shadows within the room. These will
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be synthesised by tracing illumination rays, to which the blind is significant. An efficient 

scene model solution should identify and reject insignificant objects in the global scene for 

a given ray.

Various algorithms have been proposed as efficient general solutions to the scene model 

for view and illumination rays [Amanatides;1984: Avro,Kirk;1987: Fujimoto et al;1986: 

Glassner;1984,1988: Goldsmith,Salmon;1987: Haines,Greenberg ;1986:

Heckbert,Hanrahan;1984: Kaplan;1985: Kay,Kajiya;1986: Marsh;1987: Wyvill et al;1986j. 

These exploit coherency to simplify the problem with a divide and conquer approach. They 

identify and reject objects which are locally insignificant to the scene model solution, 

thereby avoiding an exhaustive search. This is often carried out at a preprocessing stage 

but may be performed dynamically during image synthesis. Two broad camps may be 

identified - algorithms exploiting ray coherency in the view model and algorithms exploiting 

spatial coherency in the scene model.

3.4.2. Solutions Exploiting Ray Coherency in the View Model

These methods are motivated by the observation that similar rays generally have similar 

intersections with scene objects. In particular, they will tend to miss the same objects and 

intersect the others in the same path length order. Moreover, many rays generated by the 

view model are indeed similar and may be partitioned into a few equivalence classes. The 

concept of ‘similar rays’ varies slightly between proposed algorithms, but broadly applies to 

rays of close or often equal source position and close spherical direction. Since all ray 

direction vectors are of unit length, they occupy a unit sphere surface parameterised by 2D 

latitude and longitude rather than full 3D space. Methods insisting that similar rays have 

identical sources are often generalised from 2D acceleration techniques in previous image 

synthesis algorithms such as Warnock’s algorithm [Haines,Greenberg;1986: 

Heckbert,Hanrahan;1984: Amanatides;1984J. All primary view rays share a common 

source at the view point and are traced in successively similar directions when synthesising 

in raster order. Since an illumination ray’s solution to the scene model may consider 

intersected objects in any path-length order, all illumination rays associated with a finitely
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displaced light source may be traced from, rather than towards, that light and thereby also 

share a common source.

The positions of the viewer and finitely displaced light sources are key points in the scene 

being common focal points for many rays. They are known from the view model before the 

pixel by pixel synthesis. Primary view rays and illumination rays may therefore be divided 

into a partition of groups each containing rays with the same source and similar directions 

[Haines,Greenberg;1986]. For primary view rays each group usually corresponds to those 

rays passing through a given tile of the image. The silhouette of every object is projected 

down onto the screen to find those yielding non-empty intersections within each group. 

This provides a reduced list of objects significant to each group. When this involves difficult 

geometry, a simpler bound may be projected instead [Haines,Greenberg;1986: 

Avro,Kirk;1987]. For illumination rays, each finitely displaced light source may be 

surrounded by a cube of six such screens with given pixelation [Haines.Greenberg;1986]. 

The significant object lists for the groups on each screen are found similarly. For an 

infinitely displaced light source, a single pixelated screen large enough to shadow the entire 

scene from the light may be orientated normal to the direction of illumination. These group 

lists reject objects perpendicularly distant from the path of their associated rays. As 

described however this ray division by 2D direction loses path length depth information for 

each significant object and so cannot avoid querying objects perpendicularly near the ray 

path yet outside the significant interval. Depth information can be partially retained by 

allocating each object in a group a record of the path length extremes of intersection with 

the rays in that group [Haines,Greenberg;1986]. When this involves difficult geometry, 

estimates may be obtained using simpler bounds on objects and spherical ray direction. 

The group may be priority sorted according to these extremes to facilitate the rejection of 

insignificant surfaces. A bit record may also be allocated indicating whether the object 

surface is struck by all rays in the group or only some. This provides further savings for 

illumination rays when an opaque object casts a full shadow.
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The sources of secondary and subsequent generations of view rays are not so spatially 

coherent, but distributed between many surface points. Moreover, these surface points are 

not known before synthesis. A 2D grouping on ray direction cannot be preprocessed 

without knowing these points for silhouette projection. Some algorithms have been 

proposed which dynamically group rays by 2D direction during synthesis to allow for 

arbitrary ray source [Heckbert,Hanrahan;1984: Amanatides;1984]. A more general ray 

grouping has been proposed not only on 2D direction but also 3D source position yielding 

5D hypercube equivalence classes [Avro,Kirk;1987]. Rays need no longer have the same 

source to be classified as similar, but only close sources within some rectangle 3D box 

space grouping. These hypercube groups are created dynamically during image synthesis 

as secondary generations of rays are traced from new scene regions. The inherent 

complex geometry for a general scene model necessitates geometrically simpler bounding 

volume approximations.

3.4.3. Solutions Exploiting Object Coherency In the Scene Model

These methods are motivated by the observation that close points constituting small scene 

regions generally tend to be on surfaces of similar objects, if any. The number of objects 

with surfaces passing through such a local scene region is generally far less than over the 

global scene. These are the only objects significant to the scene model solution within the 

region. Any object which is entirely inside or outside a scene region is said to be 

homogeneous with respect to the region. Otherwise part of the object’s surface is within 

the voxel and this is said to be heterogeneous with respect to the region. An object is 

significant within a region when it is heterogeneous. An exhaustive object search may be 

avoided by considering only the heterogeneous objects of those regions visited by a ray. 

This avoids querying objects perpendicularly distant from the ray path. Moreover, by 

considering these regions in path length order all those outside the significant interval are 

easily ignored together with their associated objects. This avoids querying objects 

perpendicularly close to the ray path but distant from the ray source. The most common 

region is the rectangular box aligned with the world axes [Fujimoto et al;1986:
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Glassner;1984,1988: Goldsmith .Salmon;1987: Whitted;1980: Wyvill et al;1986] although 

other convex polyhedra have also been used [Kay,Kajiya;1986].

Recent research has addressed two major types of scene decomposition into hierarchies of 

such regions.

A bounding volume hierarchy may be built bottom-up from those of the scene objects 

[Goldsmith,Salmon;1987: Kay,Kajiya;1986: Rubin,Whitted;1980]. This hierarchy is a 

generalisation of that already described within CSG objects [Section 3.2.3]. Whilst the 

latter is an intra object hierarchy within each object, the former is an inter object hierarchy 

within the scene in which each object forms a leaf rather than the root. The scene is 

thereby modelled as a single entity rather like the union of all objects, but each leaf now 

has its own constituent material. By definition, the leaf regions of this hierarchy are the 

object bounds. These are generally dispersed irregularly throughout the scene without 

forming a partition thereof. Some scene points may not be included in any leaf region, 

whilst others may be in several overlapping object bounds. On one hand, this scene 

hierarchy reduces the computational load of ray tracing in the same manner as CSG 

construct bound hierarchies [Section 3.2.3]. On the other, the hierarchies’ constructions 

differ greatly. The CSG hierarchy inherits structure from the binary CSG description tree, 

and construction is straightforward. However, there is generally no such obvious choice for 

the inter object scene hierarchy. The scene model may have been constructed with some 

hierarchy but this will have been designed to facilitate modelling rather than image 

synthesis. The choice of possible hierarchies is enormous for any non-trivial object count. 

Hierarchies need not be limited to binary forms, or indeed any constant branching ratio. 

This extensive choice results in a wide range of potential savings in computation. The 

construction of an efficient hierarchy offering a good trade in the costs of image synthesis 

for construction is non-trivial.

Alternatively, a scene partition hierarchy may be built top-down from a region containing the 

entire scene [Fujimoto et al;1986: Glassner;1984,1988: Kaplan;1985: Marsh;1987: Wyvill et 

al;1986]. Such hierarchies are well established in 3D modelling applications [Wyvill et
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al;1986]. The scene may be decomposed with an octtree which recursively splits regions 

by simultaneous bisection in each dimension [Fujimoto et at;1986: Glassner;1984,1988: 

Wyvill et al;1986]. The bin-tree has been proposed, and bisects in a single cycled 

dimension [Kaplan;1985]. The regular grid partition or Spatial Enumeration has also been 

employed, comprising cells of uniform size [Fujimoto et al;1986: Marsh;1987]. These 

methods generate regular local scene regions. Each is called a voxel volume element as a 

30 generalisation of the 2D pixel picture element. By definition, leaf voxels in such 

schemes partition scene space. Each scene point is in one and only one voxel.

The construction of these top-down hierarchies is straightforward. Voxels are recursively 

split until either of two termination criteria is satisfied. The simplicity criterion tests for a 

voxel of heterogeneous object count below some upper limit. Any such voxel is considered 

sufficiently simple and the decomposition has been successful in this case. The depth 

criterion tests for a voxel of maximum permitted depth within the decomposition and 

prevents runaway. Any such voxel is considered too complex to be made simple, and 

decomposition has been at best a partial success in this case. However the voxel will be 

comparatively small being at this maximum depth and therefore rarely navigated by a ray. 

Since such hierarchies are both formed and queried top-down, they may be built during 

image synthesis by lazy construction.

3.5. The Utility of General Solutions to the Scene Model

Each group of acceleration techniques share common characteristics.

3.5.1. The Utility of Solutions Exploiting Ray Coherency

Whilst methods preprocessing rays of common source into groups of similar 2D direction 

offer a faster solution to the scene model where applicable, they are not fully general as 

they do not allow for secondary view rays [Haines,Greenberg;1986]. Moreover, some 

methods severely restrict the scene model to make the complex geometry involved in 

identifying significant objects more tractable, typically allowing only polyhedra or spheres 

without CSG [Heckbert,Hanrahan;1984: Amanatides;1984]. This would not be an
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overwhelming drawback when synthesising only the limited realism already produced by 

other schemes. Complex geometries in a scene model may be approximated with 

polyhedra and smoothly shaded with Gouraud or Phong techniques [Marsh;1987]. 

Reflected view may be approximated to one level with an environment map 

[Amanatides;1987] and refracted view with similar texture maps. However, the motivation 

for ray tracing is the high degree of realism synthesised with accurate solutions to general 

view and scene models. Approximations in shading and visible surface calculations can 

forfeit potential realism and so throw the baby out with the bath water*. Faster, well 

established scan line algorithms are more appropriate for the synthesis of limited realism. 

A truly realistic image of a general indoor scene must accurately synthesise object shape, 

shadows and several generations of views. Whilst perfect mirrors are rare, the radiance 

from many objects will contain some reflected view component such as polished floors, 

glass windows, plastic and metal surfaces and even gloss painted walls. Perfectly 

transparent objects are also uncommon, but any radiance from a transparent body such as 

a glass object, liquid or volume density will generally contain some refracted view 

component with refraction though a non-trivial index. These details are not unimportant 

minutiae, but must be realistically synthesised if the goal of photo-realism is ever to be 

achieved. This requires an efficient solution of the general scene model whose application 

is completely unrestricted.

The decomposition of rays into 5D hypercubes attempts to overcome these problems 

[Avro,Kirk;1987]. This supports a general view model, dealing with rays of arbitrary source 

for application to secondary view rays. However, the geometry required to directly identify 

objects significant to the solution of a general scene model within a hypercube region would 

be extremely complex. Both scene objects and hypercube projections are approximated 

with bounding volumes to ease the problem. Convex polyhedral object bounds are used 

with pyramidal hypercube projections, and spherical object bounds with conical hypercube 

projection bounds. The degree of approximation necessary to simplify the problem to a 

feasible level can be great, resulting in many objects being wrongly identified as significant
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to a hypercube. This is particularly true of those objects yielding a poor bound 

approximation such as a non-convex torus or CSG object. The holes in such objects may 

be wrongly identified as projecting a surface within a hypercube. Bounding approximations 

can also result in poor estimates of an object’s path length depth extremes within a group 

of rays.

Schemes relying on a view model decomposition share a common drawback when 

synthesising an animated sequence of images. The majority of a scene often consists of 

static or background objects such as the furniture of an indoor scene. Often only a few 

objects in the scene model change between frames, such as a dynamic figure walking 

through a static room. However, the view model often changes radically when dealing with 

a moving viewer such as in a fly past or walk through simulation. This generally low 

temporal coherency of the view model necessitates a repeated decomposition from scratch 

for each image. However, the generally high temporal coherency of the scene model may 

be exploited by schemes decomposing this model. They need only reprocess the scene 

decomposition for the limited number of dynamic objects over successive frames. A similar 

situation can occur even when synthesising a single static image. Scene models are easily 

visualised and a correct model is often produced first time, especially by automated 

computer modellers. However, several instances of the view model may have to be tried 

before achieving the desired perspective, visible surfaces, surface shading and other optical 

effects. Each instance requires a new decomposition. This observation is somewhat 

subjective, but is often the case in practice.

3.5.2. The Utility of Solutions Exploiting Object Coherency

Scene decompositions offer fully general solutions to the scene model. The bounding 

volume hierarchy method is particularly easy to implement if already used within CSG 

constructs, as much of the necessary code is already available. The hierarchy for an 

animated scene may be divided at the root level into a small branch of dynamic objects and 

a larger one of static objects. Only the former need be reprocessed for each synthesised 

frame.
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The use and automatic generation of bounding volume hierarchies is discussed in chapter 

four. However, simple convex bounding volumes can once more lead to over- 

appnoximation. A ray along the rotational axis of a torus through the central hole will miss 

this primitive. The convex hull is clearly struck however. Since this is the intersection of all 

convex bounds, any convex bound must also be struck. The torus would be wrongly 

identified as significant to the scene model solution and subsequently queried. The 

common rectangular box bound aligned with the world axes gives a poor fit to a long object 

not aligned with any world axis. The former may often be struck when the latter is missed, 

resulting in similar problems. Attempts to introduce other bounds of better fit can be 

counter-productive due to increased geometric complexity. Clearly the bound with the best 

fit to any object is the object itself, but this offers no savings to an object query.

Partition hierarchies overcome this drawback by decomposing right down to an object’s 

surface rather than merely to the body. Any convex bounding volume must contain the 

entire negative region of its content’s height function. Bounding volume hierarchies are built 

bottom-up, and so have an inherent fixed depth. Leaves must contain entire objects, or 

primitives for the CSG hierarchy case. Partition hierarchies are built top-down however, 

and can recursively decompose to any level. By decomposing to a great depth, leaves are 

made to focus not merely on object bodies but on surfaces. They then contain only the 

salient roots of height functions rather than being blocked at the less significant negative 

regions. Partition hierarchies can break through the barrier extremes of these negative 

regions to home in on any internal roots, and so have a greater impact in reducing 

rendering times. Alternatively, construction times may be reduced by decomposing to a 

lesser depth. A partition hierarchy may be constructed dynamically as required during 

synthesis as observed previously [Section 3.4.3], whilst a bounding volume hierarchy must 

be entirely preprocessed. The partition hierarchy is clearly more flexible.

The use and automatic generation of the regular grid partition is discussed in chapter five, 

whilst chapter six addresses the octtree decomposition.
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Chapter 4: Bounding Volume Hierarchies

Synopsis:

Chapter four addresses the decomposition of a scene by a bounding volume 

hierarchy. A single query of a branch bound within such a hierarchy can avoid 

querying all the object descendants. An efficiency metric is derived for bounding 

volume hierarchies. This is used to develop an algorithm for the generation of optimal 

or at least quasi-optimal hierarchies.

4.1 The Simplification of the Scene Model with Bounding Volume Hierarchies ........  35

4.2 Exploiting Clipping Plane Inheritance................................................................. 36

4.3 The Generalised Application of Bounding Volume Hierarchies........................... 37

4.4 Data Structures for Hierarchy Representation ...................................................  38

4.5 The Query of a Bounding Volume Hierarchy.....................................................  40

4.6 The Automatic Generation of Efficient Bounding Volume Hierarchies ................ 40

4.7 The Optimality Condition and the Huffman Tree Parallel...................................  42

4.8 The Implementation of a Generalised Huffman Construction.............................. 44

4.9 Drawbacks of Bounding Volume Hierarchies.....................................................  48
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4.1. The Simplification of the Scene Model with Bounding Volume Hierarchies

A ray is traced through the bound hierarchy [Section 3.4.3] to solve the scene model. The 

hierarchy is traversed top down, querying each bound node for contents significant to the 

scene model solution. The total hierarchy query cost should be minimised for fast image 

synthesis by both node count and unit node cost.

4.1.1. Minimising Query Count

Many researchers have addressed the minimisation of query count which is now well 

understood [Kay,Kajiya;1986: Rubin,Whitted;1980]. The number of bound nodes which are 

candidates to contain significant objects is recursively reduced by pruning entire branches 

from the hierarchal tree. If a ray misses a branch’s bound, no contained object can be 

struck and so the whole branch is rejected from further traversal. If hit however a further 

test is made for a contained surface possibly being within the significant interval [Section 

3.2.3]. The path length to a struck bound is immediately available from the bound query. 

Clearly, this is a lower limit on the distance to any surface intersection with the contained 

objects. Should this be beyond the significant interval, then by transitivity the entire branch 

may still be pruned. Otherwise, the bound’s contents remain significant. If the bound is a 

leaf, the single contained object is queried. Otherwise, the traversal descends over the 

branches.

This recursion is usually performed breadth rather than depth first to maximise the degree 

of pruning [Kay,Kajiya;1986]. When dealing with a view ray, a high object query cost 

incurred in the immediate descent down the first branch of the struck bound is wasted if 

this branch is subsequently found to be beyond an object intersection within another 

branch. The traversal rather queries all branch bounds, sorts those struck by increasing 

path length, and then recurses in this order so avoiding unnecessary computation. The 

scene model solution is complete when this traversal terminates, hopefully having pruned 

many entire branches.
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4.1.2. Minimising the Cost of a Single Bound Query

Research on the minimisation of unit query cost has not been so widely reported. The cost 

of examining the sign of a real variable is usually negligible compared to that of floating 

point arithmetic in its computation. This may be exploited to trivially identify many cases 

where bounds are missed by a ray without recourse to arithmetic, much as in the Cohen- 

Sutherland 2D clipping algorithm [Foley.Van Dam;1984].

For clarity, the 2D case for box bounds aligned with the world axes is described [Fig 

4.1.2a]. The method immediately generalises to the 3D case with slab intersection bounds 

of given normals. This query algorithm is of lower average unit cost than others described 

for a single bound [Kay,Kajiya;1986: Goldsmith,Salmon;1987].

4.2. Exploiting Clipping Plane Inheritance

Further opportunities arise for computational savings during queries in a hierarchy of 

bounds. When forming a node’s bound from those of its branches, the clipping plane 

extremes of each slab in the bound are simply those extremes taken over all branch 

bounds. During the top down traversal of the hierarchy each clipping plane of an internal 

node’s bound will therefore be inherited by one or another of the branch bounds. This may 

be exploited to avoid unnecessary repetition of clipping plane intersection. The path length 

to each intersected clipping plane may be forwarded from a struck bound to the branch 

queries rather than being recalculated.

This has an immediate implication on the preferred branching ratio of a hierarchy. An 

internal node could have any multiple branch count. These branches are queried 

independently. However, any pair could be bounded together to be simultaneously rejected 

with a single query. Provided the pair’s bound is sufficiently tight that the floating point 

arithmetic for this query would have been required by the branch queries anyway, only 

negligible extra cost is incurred from floating point examination. An inductive argument 

then shows the optimal branching ratio to be two. Binary hierarchies are therefore most 

efficient when exploiting clipping plane inheritance to remember rather than recalculate

Chapter 4: Bounding Volume Hierarchies 36



Fig 4.1.2a: Bound Queries

The bound in the 2D case below is formed by the intersection of two extent slabs. These have 

unit normals x = (1.0) and y = (0,1). The query method immediately generalises to 3D bounds 

formed by the intersection of any number of slabs with given normals.

Consider a query of the slab intersection bound by the given ray of source s and unit direction d-

y_max
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Two clipping planes border each extent slab. These are at the slab’s minimum and maximum 

extremes, displaced at ‘slabjnin’ and *slab_max’ respectively in the slab normal direction n from 

the world origin. The projections of the ray’s source and direction onto each slab’s normal are s.n 

and d.n. These are constant for a given ray, and need only be calculated once for all that ray’s 

queries [Kay,Kajiya;1986].

The extremes of each extent slab are displaced at ‘slab_min -  s.n’ and *slab_max -  s.n’ from the 

ray source in the slab normal direction. The ray spans this direction n at the rate d.n with respect 

to path length. It is therefore inside each slab over the path length section ( slab_entry, slab_exit) 

defined by

, slab min-s.n slab max-s.n N . , _
( ----- ^ -----= *  ) for d.n > 0d.n d.n
, slab max-s.n slab min-s.n N r , _(  =r — , ----- =------—  ) for d.n < 0

d.n d.n
( -oo, -H» ) for d.n=0 & 0 e [slab_min-s.n,slab_max-s.n] ( ray source inside slab)
( +0 0 , + 0 0  ) for d.n=0 & 0 ^ [slab_min-s.n,slab_max-s.n] ( ray source outside slab )

The ray intersects the bound over the path length section ( bound_entry, bound_exit) defined by 

( bound_entry, bound_exit) = ( max{slab_entry}, min{slab_exit) )
■lab (lab

A typical bound query algorithm calculates all clipping plane intersections to find this interval 

[Kay .Kajiya; 1986].

However, the ray is actually defined only for non-negative path lengths. This interval is therefore 

more strictly

(max {max {slab_entry} ,0} ,max {min {slab_exit) ,0})
slab slab

The ray can only strike the bound if the maximum of this interval is positive. This is only 

possible if the maximum of each slab’s interval is positive, that is

sign ( slab_exit_extreme -  s.n ) x sign ( d.n ) > 0 

More intuitively let an exit corner be an intersection of slab exit planes equal in number to the

world dimensions ‘D’. The ray can only strike the bound if at least one exit comer is in the same

D-ant relative to the ray source s as the ray direction d.

Any bound entirely behind the ray source may be rejected by applying this sign test to each slab 

without floating point multiplication. Such cases may be rare for primary view rays from a remote
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viewer facing the scene body, but will often occur for secondary rays originating within the scene.

The query need only proceed if this sign condition is satisfied by every slab. Floating point 

multiplication may still be avoided if the ray source proves to be within each slab. The ray is 

then known to enter the bound at path length zero. This occurs when the minimum of each slab’s 

path length section is negative, that is

sign ( slab_entry_extreme -  s .n ) x sign ( d.n ) < 0 

Floating point multiplication is only needed when at least one slab has an entry plane in front of 

the ray source, in the sense that this sign condition is not satisfied. Each slab is considered in 

turn. The path length to the slab entry plane is calculated when in front of the ray source, but 

simply set to zero otherwise. The minimum of the bound’s path length section is updated 

accordingly. The path length to the slab exit plane is also calculated, and the maximum of the 

bound’s path length section updated similarly. The interval’s minimum is tested for exceeding the 

maximum. If so, the ray is known to miss the bound and the query is complete. This may occur 

after considering only two slabs and incurring just two floating point multiplications.

The query may complete with no opportunity for such short cuts. However, the path length 

section over which the ray is inside the bound has been found and may be exploited for other 

savings. The path length to the bound entry plane provides a lower limit to any intersection with 

the contents [Section 3.2.3]. The existence of path length roots corresponding to surface 

intersections within the interval may be tested by Sturm’s method [Section 3.2.4].
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clipping plane intersections during the traversal.

4.3. The Generalised Application of Bounding Volume Hierarchies

So far only queries on inter-object hierarchies have been described. However these 

schemes may be adapted slightly to apply equally well to intra-object hierarchies within 

objects.

4.3.1. Bounding Volume Binary Hierarchies In CSG objects

Clipping plane inheritance may also be exploited in the query of a bounding volume 

hierarchy within a CSG object [Section 3.2.3]. The clipping plane extremes of an extent 

slab in a node’s bound are no longer necessarily the extremes taken over the branch 

bounds - consider the intersection of two boxes. However, the clipping planes of a node’s 

bound will still be inherited in some way by the branch bounds. An entire CSG branch is 

still pruned when a ray misses its bound. If hit the appropriate recursion over the branches 

depends on the associated boolean operation, as only surfaces struck within the significant 

interval are of interest.

For a union, both branch bounds are queried and those struck are sorted by increasing 

path length. The traversal recurses through this list whilst the path length to the current 

branch bound is within the significant interval.

Whenever an intersection node’s bound is struck both branch bounds must also be struck 

by the definition of intersection. The clipping plane intersections of any branch’s bound are 

calculated none the less before recursion for subsequent inheritance. The branch with the 

more distant bound is recursed down first, and only if this yields a non-empty intersection 

within the significant interval need the other be considered. The further branch is simply 

that inheriting the ray’s entry plane into the node’s bound.

For a subtraction, the left branch is recursed down first. Only if this yields a surface 

intersection within the significant interval need the other be considered. The left branch 

bound need not be queried since it inherits all the parent’s clipping planes.
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The symmetric difference operation may be expanded in terms of the union, subtraction 

and intersection. The appropriate order of recursion is then seen to be the same as for 

union.

4.3.2. Bounding Volume Hierarchies within Polyhedral Boundary Representations

The polyhedral approximation is a common model for the boundary representation of 

complex geometries. This approximates an object’s boundary with many polygonal facets, 

typically triangles. Similar models use fewer but more complex local surface 

approximations, such as bi-cubic patches [Catmull;1978].

Whilst the CSG model supports many geometries without resorting to approximation, 

extensive polyhedral modelling systems have been developed for the boundary 

representation of a wide range of objects. The large number of polyhedral models already 

available would provide an extensive modelling environment for ray tracing when allied with 

CSG and smooth shading techniques.

Each polygonal facet of a polyhedron is easy to ray trace. However, the entire path length 

section of a ray’s intersection with a polyhedron is required to fully integrate the polyhedron 

as a new primitive in the CSG scene model supporting all boolean operations. A naive ray 

intersection test on each facet followed by a sort into increasing path length is clearly 

inefficient for models containing thousands of facets. A hierarchy of bounding volumes 

around the polygonal facets of a polyhedron offers computational savings in the same 

manner as an inter-object hierarchy.

4.3.3. Three Applications of Bounding Volume Hierarchies

In summary hierarchies may be built from polygonal facets or other patches into a CSG 

primitive, from CSG primitives into an object, and from objects into a scene [Fig 4.3.3a].

4.4. Data Structures for Hierarchy Representation

Any binary hierarchy is canonically described by a binary tree. This may be represented as 

separate preorder lists of the internal and leaf nodes. Given that the leaves must be stored
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Fig 4.3.3a: Three Uses of Bounding Volume Hierarchies

Top - built from polygons within a polyhedral boundary approximation 

Middle - built from primitives within a CSG object 

Bottom - built from objects within a scene
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anyway, the only extra memory cost of this representation is for the internal nodes which 

number one less than the leaves.

Each internal node has

• Two branches * which should be easily beatable from the parent, for efficient tree pruning 

during traversal;

• An associated slab intersectbn bound - all of whose clipping planes are inherited by the 

branch bounds in some way or another;

• For CSG nodes only - a boolean operator.

A tree traversal must be able to recognise any leaf node as such rather than an internal 

node.

All these data may be represented at an internal node by

• A count of the leaves in the left branch - held as an integer;

• A set of slab clipping plane extremes - in fbating point format relative to the world origin;

• A clipping plane inheritance record - for the branches, often held in a single byte;

• For CSG nodes only - a boolean operator byte.

Branch pointers are not required. Any branch’s location is immediately apparent in the 

hierarchy preordering from the leaf count in the left branch. This also flags when a leaf is 

reached.

The clipping plane extremes held at an internal node are for those uninherited by the 

branch bounds.

The inheritance record defines which branch inherits each clipping plane. It constitutes a 

‘will’ of bit flags, one per clipping plane. Box bounds have six clipping planes and so 

require only a single byte record. An extra field is used for CSG nodes, as the branches 

need not necessarily be bounded. Whilst the intersection of a concentric sphere and plane 

is bounded, the plane itself is not. Each branch is allocated one bit flagging whether it is 

indeed bounded. The inheritance record still fits into a single byte for box bounds.
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4.5. The Query of a Bounding Volume Hierarchy

A recursive ray query of a hierarchy of these structures follows a top down traversal, 

starting at the root bound. If this is not struck, the ray misses every object and the scene 

model is trivially solved. If the root bound is struck but contains only a single object, this 

object is queried without incurring further cost within the hierarchy. Otherwise, the root 

node is internal and the query recurses over the branches. The bound of each internal 

node reached during the subsequent traversal is always known to be struck and all 

descendant leaves remain significant to the scene model’s solution. The following data are 

passed down from the parent:

• the path lengths to the clipping plane intersections of the node’s bound;

• the leaf count below the node;

• the count of leaves traversed so far - including those pruned.

The branches to be recursed down are determined in an appropriate order [Section 4.3.1]. 

Queries of branch bounds calculate clipping plane intersections only where not inherited. 

The unpruned branches are tested for being leaves. The left branch is a leaf whenever the 

left leaf count is exactly one. The same holds for its right sibling, whose leaf count is found 

as the difference of that below the internal node and that in the left branch. Whenever a 

leaf is reached, the next leaf record is read from the separate preorder list and the 

traversed leaf count is incremented. When pruning a branch, the count of traversed leaves 

is similarly incremented by the leaf count within that branch. If the left child branch 

represents an internal node, this will be the next internal node by dint of preordering. 

Similarly, if the right branch represents an internal node, this will be a number of internal 

nodes further on equal to the leaf count in the left branch. The left and right branches are 

therefore immediately located, whether external leaves or internal nodes.

4.6. The Automatic Generation of Efficient Bounding Volume Hierarchies

A CSG object defines its own canonical bound hierarchy. In general however there is no 

immediately obvious choice of hierarchy to build from the bounds of scene objects or a
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polyhedron’s facets. Many different binary hierarchies may be built from the same leaves, 

incurring differing computational cost when traversed during ray tracing. An exhaustive 

search for the most efficient hierarchy is infeasible due to the large number of choices for 

any non-trivial leaf count, and is impossible anyway without any criterion for assessing 

efficiency.

4.6.1. Previous Attempts at Automatic Generation

To date the issue has often been avoided altogether. Hierarchies built by scene modellers 

may yield some increase in the efficiency of synthesis. These tend to be sub-optimal 

however, being built specifically to simplify modelling rather than image synthesis. Better 

hierarchies which seem intuitively efficient have been employed.

Various median-cut construction algorithms have been described for binary trees, with 

clipping planes recursively partitioning a group of leaf bounds [Kay,Kajiya;1986]. However, 

such constructions tend simply to balance leaf count between branches rather than 

weighting by expected cost. Consider a scene containing an isolated big object close to the 

viewer and several little objects grouped distant from the viewer. A binary branching by 

median object cut at the root would yield one large bound containing the big object and half 

the little ones, and a smaller bound containing the remaining little objects. The former 

bound would be struck by most primary view rays and so provide limited computational 

savings. The latter would often be missed but this query would reject only half the little 

objects. A better root branching scheme would be to partition the scene with the big object 

isolated in its own branch and all the little objects grouped in the other. The former 

branch’s bound would still be struck by many rays, but less than before being smaller. The 

latter branch’s bound would usually still be missed, allowing all the little objects to be 

rejected with a single early query. Clearly, an optimal or quasi-optimal hierarchy should 

weight for the low expected query cost even after bounding all the little objects together. A 

construction algorithm has been published which attempts to allow for these weightings with 

an efficiency metric [Goldsmith,Salmon;1987]. This does not exploit clipping plane 

inheritance, but generates trees of variable branching ratio. This complicates the derivation
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of an efficiency metric which is taken as a loosely justified heuristic. A more rigorously 

derived metric measuring the expected cost of ray tracing a given hierarchy is desirable to 

identify the optimal or a quasi-optimal choice.

4.7. The Optimality Condition and the Huffman Tree Parallel

4.7.1. An Efficiency Metric on Bounding Volume Hierarchies

The traversal of a hierarchy incurs costs in bGund queries. These costs may be measured 

in units of six clipping plane intersections. A unit cost is incurred by the initial query of the 

root bound. If missed, there are no more costs within the hierarchy. Otherwise, an optimal 

hierarchy will incur minimal expected further cost. When the traversal of a hierarchy 

reaches a given node, the bound of that node is known to be struck as is that of the node’s 

parent, the parent’s parent and so on up to the root. As ancestor bounds in object and 

polygon hierarchies are strict supersets, the first statement is the strongest and implies the 

others. Both branch bounds are queried. In general this incurs a unit cost of six clipping 

plane intersections when exploiting clipping plane inheritance. No further traversal cost is 

incurred from a branch whose bound is missed or is found to be a leaf. Strictly speaking, 

the traversal also prunes any branch whose bound is struck but only beyond the significant 

path length interval. However, this case is difficult to allow for in a static efficiency model 

since the significant interval changes dynamically. Otherwise, the traversal descends down 

the branch. This generates a recurrence relation for the expected cost over the entire 

hierarchy. The relation may be simplified to an expression which is proportional to the sum 

of ray intersection probabilities over the internal node’s bounds. [Fig 4.7.1a]. Such 

probabilities are difficult to predict exactly. For a given ray source and uniform direction 

distribution the probability of a given bound being struck by a ray will be proportional to the 

solid angle subtended at the source. This is in turn approximately proportional to the 

bound’s surface area for a distant ray source. Surface area therefore provides a heuristic 

measure of the probability of an arbitrary ray striking a given bound 

[Goldsmith,Salmon;1987]. The probability sum to be minimised by an optimal hierarchy
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Fig 4.7.1a: An Efficiency Metric on 

Binary Bounding Volume Hierarchies

The Recurrence Relation for an Efficiency Metric

The expected cost incurred at any node reached during the traversal of a bound hierarchy for a ray 

of arbitrary source and direction is

Cost(N) =
0 For a leaf
1+ 2  P(BIN)Cost(B) For an internal node

B branch N

where

Cost(N) = Expected cost incurred at node N in units of six clipping plane intersections 
P(N) = Probability of an arbitrary ray striking the bound of node N 

and ‘B branch N’ denotes a branch of the node. Since any branch’s bound is a subset of the

node’s

p(b IN) = Z M 1 = JE2I
v } P(N) P(N)

The Expansion of the Recurrence Relation

Given a binary hierarchy, this recurrence for expected traversal cost at any node expands to

C ost(N )=w b x £  p®
'  '  I internal N

where ‘I internal N’ denotes an internal node in N’s subtree. This may be shown by induction on 

the hierarchy structure.

Induction Base: A single node tree 

CosKN) = 0 = - i - x  £
v '  em pty turn

Induction Step: A multi-node tree

Assume the hypothesis holds for all trees with fewer leaves than below this node.

Cost(N) = 1 + £  P(B I N)xCost(B).
B branch N

1 + £
B branch N P(BIN)pim 2  p®‘ I internal B
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= I2£+ £
T O O  B branch N m  2  P(I)I internal B

I internal N

An appeal to induction shows the hypothesis to hold for any tree. 

Applying this to the root, an optimal hierarchy will therefore minimise E  TO
I internal Tree
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may therefore be taken to be approximately proportional to the summed surface area over 

the internal nodes' bounds. The calculation of a box bound’s surface area requires only 

two multiplications and additions, barring an insignificant constant factor of two 

[Goldsmith,Salmon;1987]. The terms larger and smaller are applied interchangeably 

hereafter to a hierarchy node and the surface area estimate for the probability of an 

arbitrary ray striking its bound.

4.7.2. The Huffman Tree Parallel

An optimal or quasi-optimal bound hierarchy should minimise bound query count, and so 

behave like a Huffman encoding tree for data compression [Huffman;1952].

The leaves of a Huffman data compression tree hold the distinct data from a given set to 

be compressed. These are encoded as symbol strings of variable length describing the 

path from the root to the leaf position. Each encryption symbol defines the direction taken 

at the next internal node fork. These strings are decoded by filtering down from the root as 

dictated by each symbol until a leaf is reached. The datum encoded there is output, and 

the traversal returns to the root with no need for an encryption termination symbol. 

Huffman has described an elegant construction for such a tree which minimises average 

string length per encoded datum. An optimal bound hierarchy should similarly minimise the 

average bound query count per ray.

Admittedly, the two hierarchies are not completely analogous. Exactly one path is followed 

at each internal node of a Huffman tree, as the paths partition the encoded data set. In 

general a subset of the paths is followed from an internal node in a bound hierarchy since 

none, one or many branches may remain significant. Four cases of recursive traversal may 

occur for a binary bound tree compared to two in a Huffman compression tree. Some 

parallel is evident none the less, and a little analysis on the efficiency metric for a Huffman 

tree yields the same optimality condition as for a bound hierarchy [Fig 4.7.2a].
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Fig 4.7.2a: An Efficiency Metric on 

Huffman Data Compression Trees

The Recurrence Relation for an Efficiency Metric

The derivation of an efficiency metric on a Huffman tree is analogous to that given for a bound 

hierarchy [Fig 4.7.1a]. A leaf node has no branches, and hence requires no encryption routing 

symbol. An internal node incurs a single symbol cost, and the probability of an arbitrary leaf 

datum being held in a given branch is known beforehand. The average number of encryption 

symbols needed to differentiate the strings below a given node is therefore

Cost(N) = «
0 For a leaf
1+ £  P(BIN)Cost(B) For an internal node

B branch N

where

Cost(N) = Average number of symbols needed to differentiate strings below node N
P(N) = Probability of an arbitrary string being below node N 

and ‘B branch N’ denotes a branch of the node. Notice that since the strings in any branch are a

subset of those in the node’s entire subtree

P(BpiN) pm)
P(BIN) = ' ' =

v 7 P(N) P(N)

The Expansion of the Recurrence Relation

This recurrence relation is isomorphic to that for an efficiency metric on a bounding volume 

hierarchy, and the same conditional probability rule holds. An identical inductive argument 

therefore applies, yielding the expansion

C°S‘(N) = - ^ X X  P®
I internal N

Applying this to the root, an optimal data compression hierarchy will therefore minimise

x  p ®
I internal Tree
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4.8. The Implementation of a Generalised Huffman Construction

Huffman’s construction of an optimal data compression tree maintains a pool of tree nodes. 

Each node represents a branch of encoded strings and is assigned the probability of an 

arbitrary string from the encoded data set being amongst these. The pool is initialised with 

one node per leaf datum. For a binary tree the two nodes merging to the least probable 

composite are located and removed from the pool. They are combined to a single branch 

which is marked with the associated probability and returned to the pool. Population 

partitioning ensures that any composite’s probability is the sum taken over the branches:

P(N) = £  P(B)
B branch N

The nodes to merge will always be the two least probable. The process is iterated until 

only one node remains. This is the root of the hierarchy thus built.

The algorithm may be generalised to provide a construction of quasi-optimal bounding 

volume hierarchies for solving the scene model in ray tracing. Complete optimality is no 

longer guaranteed, essentially since only a weaker probability inheritance holds. The 

probability of a node’s bound being struck by an arbitrary ray is only known to be no less 

than that for any branch:

P(N)a max P(B)
B branch N

Under these conditions, the early stages of Huffman’s iterative construction of the least 

probable internal node can rob later internal nodes of the chance to yield a hierarchy of 

lower average query cost. However, there are generally many worse choices of nodes to 

merge at any stage of construction. Whilst trees so built by this generalised Huffman 

construction may be sub-optimal they are rarely catastrophically so.

This thesis derives a novel generalisation of Huffman’s construction for bounding volume 

hierarchies.

4.8.1. Data Structures of Huffman’s Generalised Construction

Huffman’s construction is traditionally implemented by linking the active pool nodes in a list 

of ascending probability order. When the strong probability inheritance holds, the
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composite node of minimal probability is simply the combination of the nodes at the list 

head. Unfortunately this does not carry over to bound hierarchies where only the weaker 

inheritance holds. Two small bounds of low probability may yet yield a large composite of 

high probability if spatially distant. Though the inheritance condition is weaker, it may still 

be exploited to reduce tree construction costs.

4.8.2. Initialisation of Huffman’s Generalised Construction 

A pool of representative nodes is initialised, in which each holds the following records:

• The bound - a set of clipping plane extremes and the surface area estimate of the 

probability of a strike by an arbitrary ray;

• The list link - a link to the next largest node;

• The minimal merge partner - the index from all larger nodes to that yielding the smallest 

composite and this surface area;

• The leaf count - the number of leaves held below the represented node;

• The index of the represented node - in the leaf list when the leaf count is unitary, or the 

bound hierarchy otherwise.

The pool is initialised with the given bounds and linked in ascending order. The nodes may 

be conveniently ordered through memory with a library sorting routine and then directly 

linked by ascending address. The initialisation of each node’s minimal merge partner 

requires a judicious implementation. An exhaustive search would require the consideration 

of all larger nodes, and hence a total cost dominated by the square of the node count. A 

better approach is to consider each larger node in ascending order as a candidate for the 

minimal merge partner. The order is followed through the list links. A record is maintained 

of the larger node yielding the smallest composite to date, and this surface area. Should 

the current candidate node ever prove larger than this, then by the weaker probability 

inheritance condition this candidate cannot be the minimal merge partner. Moreover, the 

same holds for all subsequent candidates by transitivity since the pool is linked in 

ascending order, and so the task is complete. The only extra requirement of this over an
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exhaustive search is that candidates are considered in a given order. Whilst the efficiency 

of this search will depend on the given bounds, costs will be no greater and generally lower 

than for an exhaustive search given an appropriately ordered list.

4.8.3. Iteration of Huffman’s Generalised Construction

The hierarchy is built bottom-up by repeated formation of the smallest possible composite 

from all active nodes. This is the composite formed by the node of smallest minimal merge 

with its partner, and is found in a search starting at the smallest active node. The search 

proceeds through the ascending linked list maintaining a record of the node with the least 

minimum merge to date. Should the current node ever be larger than the least minimum 

merge, then by probability inheritance again this cannot yield the overall minimum 

composite. By transitivity the same holds for all subsequent candidates and so the task is 

done.

This node is merged with its minimal merge partner to yield the minimum overall composite. 

The nodes to be merged are removed from the linked list, combined, and the composite is 

placed in one of the freed slots. The composite must then be inserted into the linked list 

presenting ascending order.

The insertion point may be found without resorting to an exhaustive search. Each 

composite node formed is always the smallest possible at any stage. The composites are 

therefore produced in monotone non-decreasing order. Should the insertion point be after 

a previously formed composite, it must therefore be after the immediately previous 

composite. Otherwise, the insertion point will be after a leaf representative, for there is no 

other type of node. If the pool is initialised to ascending order through memory, the largest 

of all active leaf nodes smaller than the composite may be found by repeated address 

bisection. The node after which any composite is to be inserted is then found by 

comparing the previous composite with the leaf candidate. The former is already known 

being the last composite formed, and the latter is found with the bisection of logarithmic 

complexity. The composite is inserted into the linked list after the larger of these.
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Before forming the next hierarchy node, the minimal merge partner records must be 

maintained. A complete repeated search is not required for each node, indeed, it is only 

necessary for the new composite and any node whose previous minimal merge partner 

was one of the deleted nodes. Great savings are made here over construction by repeated 

exhaustive search.

The only status change for nodes not robbed of their previous minimal merge partners by 

list deletion is the appearance of the new composite. This is a new minimal merge partner 

candidate. In such circumstances, only a single comparison of the previous minimal merge 

against that with the new composite candidate is required, updating the minimum merge 

partner record appropriately. By definition minimal merge partners are selected only from 

larger nodes. The minimal merge partner of any node larger than the new composite will 

not have been deleted, nor will the new composite be a valid candidate. The minimal 

merge partner is therefore unchanged in this case. Similarly, the partner of any node larger 

than both deleted nodes cannot have been deleted. The new composite is however a new 

valid candidate over all smaller nodes and is taken into account with a single comparison. 

The same holds for any node smaller than a deleted node whose previous minimal merge 

partner has not been deleted.

A complete repeated minimal merge partner search is only necessary for a limited number 

of nodes. These are the new composite and those nodes smaller than a deleted node 

whose previous minimal merge partners have been deleted. This search is performed as 

described before [Section 4.8.2].

4.8.4. Producing the Preorder Hierarchy

As each composite pool node is formed, a parallel node is created storing the bound node 

in the previously described data structure [Section 4.4] together with left and right branch 

pointers to the merged nodes. When the pool has been destructively reduced to a single 

node, the parallel hierarchy is traversed in preorder. The bound data are output without the 

branch pointers. The leaf nodes are permuted to tree-order and output in a second list, 

allowing any subsequent tree traversal to locate the correct leaves [Section 4.4]. The
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whole construction is performed at a preprocessing stage prior to image synthesis.

4.8.5. The Reduced Construction Costs of Super Hierarchies

To reduce construction costs, bound hierarchies may be built as super hierarchies. These 

are constructed from previously built hierarchies rather than objects or polygons. Super 

hierarchies are held in the same format and order as described above and are therefore 

queried identically.

The cost of hand drawn animation is traditionally reduced by overlaying images of dynamic 

foreground objects over a static background scene. The latter need only be drawn once to 

be used over an entire sequence, reducing total production cost. Relatively large cost may 

be justified for backgrounds used over many frames since this results in only low unit cost 

per frame. This technique is not directly applicable to computer generated animation of 

high realism, as simple overlay does not synthesise shadows, reflections or refractions 

between foreground and background objects.

However, an animated scene may still be partitioned into groups of dynamic foreground and 

static background objects to reduce total costs. Hierarchies may be built from such groups, 

which are then themselves combined in a super hierarchy. The static background 

hierarchy need only be built once, justifying even a high overhead cost for long sequences. 

Dynamic foreground hierarchies are re-built for each frame, but generally at low cost for low 

count. The majority of a scene is often static. Whilst a query of such a hierarchy may be 

less efficient than that generated from all dynamic and static objects, lower total costs may 

still result from a more efficient construction.

4.9. Drawbacks of Bounding Volume Hierarchies

Though conceptually simple, bounding volume hierarchies are prone to various drawbacks. 

These arise from both the characteristics of individual bounds and hierarchies thereof.
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4.9.1. Drawbacks of Individual Bounding Volumes

The geometry of a bounding volume must be simpler than that of its contents to provide 

any savings in a ray query. As a result simple convex bounds have been almost 

universally employed, typically the sphere [Whitted;1980], world axes-aligned box 

[Goldsmith,Salmon;1987] or extent slab intersection [Kay,Kajiya;1986]. Whilst the latter 

may be tailored to an arbitrarily close fit of convex contents, any convex bound will 

necessarily over-approximate non-convex contents [Section 3.5.2]. Bounds of better fit 

may be envisaged in such cases but tend to be more complex geometries and are 

therefore of little practical use [Section 3.5.2].

4.9.2. Drawbacks of Hierarchies of Bounding Volumes

A hierarchy of bounds can only decompose a scene to the level of the leaf bounds from 

which it is built. Such hierarchies therefore tend to stop at an object’s body rather than 

continuing down to the more salient surface [Section 3.5.2]. The degree of decomposition 

offered Is inflexible. In general, bounding volume hierarchies are fully constructed before 

image synthesis offering no opportunities for savings from lazy construction [Section 3.5.2].

Optimal hierarchies prove difficult to recognise before image synthesis, let alone construct. 

Attempts to define an efficiency metric on such hierarchies rely on assumptions and 

subjective heuristics to a greater [Goldsmith,Salmon;1987] or lesser [Section 4.6] degree. 

The justification of these is sometimes questionable. For example, a bound’s surface area 

is taken as an estimate for the probability of being struck by an arbitrary ray from the view 

model. No matter how large however, any bound entirely behind the source of all such 

rays with respect to direction will always be outside the significant path length interval and 

struck by none.

Such hierarchies are therefore prone to over-approximate a region’s significance to the 

scene model solution for a given ray. This arises from the over-approximation of both the 

contents and the probability of being struck by an arbitrary ray.
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Efficient hierarchies are difficult to construct. The cost of any construction attempting to 

recognise dependencies between bounds tends to be polynomial rather than linear in object 

count. Where possible the described construction of a quasi-optimal hierarchy avoids the 

exhaustive search incurring such expense, but this remains the general catch-all. The cost 

of hierarchy construction therefore tends to grow rapidly with object count despite efforts of 

restraint [Section 4.8].

Bound hierarchies are also irregular in structure and therefore offer no opportunities for 

navigation with efficient incremental arithmetic.

The decomposition of a scene by a regular partition avoids many of these problems 

[Section 3.4.3]. The simplest such partition is the regular grid or spatial enumeration 

[Fujimoto et al; 1986] and is addressed in chapter five.
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Chapter 5: Grid Partitions

Synopsis:

Chapter five addresses scene decompositbn by a grid partition. Both the navigation 

and generation of the grid partition are considered. An efficient construction of the 

grid partition is presented which is based on the octtree. This has been fully 

implemented and used extensively for realistic image synthesis.
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5.1. The Simplification of the Scene Model with Grid Partitions

A scene grid partition or ‘spatial enumeration’ is a 3D generalisation of a 2D raster screen 

[Fujimoto et al;1986: Marsh;1987]. Whilst such a pixelated screen may display a globally 

complicated image containing high detail, possibly from video capture, it is locally simple 

with each pixel set to a single colour. Similarly, a 3D grid partition of a rectangular box 

containing many global objects yields local voxel regions of greatly reduced significant 

object count [Section 3.4.3]. An object is significant to the scene model’s solution within a 

voxel when a section of its surface passes through that voxel. Such an object is said to be 

heterogeneous with respect to the voxel.

The scene model is locally simplified by the voxelation of a containing box [Fig 5.1 aj. This 

simplification may be exploited to reduce solution cost greatly. The box is first queried for 

ray intersection. If missed, none of the scene is significant and the model is solved trivially. 

Otherwise, the ray entrance point is transformed from the world to a local coordinate 

system in which each voxel is a unit cube. The voxel containing this point is identified as 

the first navigated by the ray. Subsequent voxels are found by navigating the ray through 

the grid in path length order [Fig 5.1b]. The heterogeneous objects in each voxel are 

considered for the scene model’s solution. The navigation terminates when no voxels 

remain or earlier if a voxel is reached beyond the significant path length interval. Any 

object heterogeneous to the first voxel encountered beyond the significant interval has 

either been considered already or is insignificant to the scene model solution. Moreover, 

since the ray is navigated through voxels in path length order, any subsequent voxels are 

beyond the significant interval. By transitivity, their associated objects may also be ignored.

The grid partition is therefore exploited to trade costs of object query for ray navigation 

between voxels.

5.1.1. Avoiding Repeated Object Query

Each object occupies its own leaf bound in a bounding volume hierarchy [Section 4]. In a 

grid partition however, one object may be heterogeneous over several voxels. The
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Fig 5.1a: Non-Empty Voxels in Cut-Aways 

of Grid Partitions for Two Scenes

Fig 5.1a
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Fig 5.1b: Ray Navigation through the 

Voxel Cells of a Grid Partition



surfaces of extended cuboids modelling the walls, floor and ceiling of an indoor scene may 

pass through many voxels. However, each object should only be queried once during the 

scene model solution. Repeated querying of an object over voxels is clearly inefficient, as 

the same result is obtained each time. Worse still, repeated querying by illumination rays 

can produce errors in the shadow cast by a transparent object. In reality such an object 

has a single chance to cast a shadow. Allowing for the object several times would wrongly 

increase its shadowing by the corresponding factor. Repeated object query must be 

avoided.

This is achieved by assigning each object a record of the previous querying ray, in much 

the same manner as each light source is assigned a record of the previous shadowing 

object [Section 3.2.7]. The record does not reference a ray by source and direction but 

rather by an integer count. A total count of all rays traced to date is maintained. This is 

incremented each time the scene model is solved for another view or illumination ray. 

Before querying an object in a voxel’s heterogeneous list, this record is checked against the 

current ray count. If equal, the object has already been considered for this ray and is not 

queried again. Otherwise the object must be queried, after which this record is updated to 

the current ray count so avoiding any subsequent repetition of the query.

5.2. Previous Grid Partition Navigation Algorithms

The grid partition trades scene model solution costs in object query for ray navigation. This 

immediately begs the question of how to navigate a ray between voxels in increasing path 

length order. The navigation should be as efficient as possible to maximise any benefit.

Voxels could be grouped together and navigated as a bounding volume hierarchy [Section 

4]. However the grid partition already has a regular structure which may be exploited in a 

more efficient navigation. Line generators for a 2D pixelated raster screen based on the 

DDA or Differential Digital Analyser may be generalised for ray navigation through a 3D 

voxel grid [Fujimoto et al;1986: Marsh;1987j.
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5.2.1. The Differential Digital Analyser

The path between successive pixels or voxels visited by a 2D line or 3D ray respectively is 

assumed to be navigated through a shared face. This involves no loss of generality, since 

diagonal steps may be filled in with appropriate intermediary regions sharing a face with 

both the pre and post step regions.

In the 2D case the next pixel navigated by a line of arbitrary direction will be one of the 

current pixel’s four shared-face neighbours. The direction of any line is constant and falls 

into a characteristic quadrant. This is easily found and reduces the number of candidate 

pixels to just two. The 2D DDA identifies the axis spanned at the greatest rate as the 

driving axis [Fujimoto et al;1986j. The other is called the passive axis. Lines are 

generated in pixel width steps along the driving axis. During any step along the driving axis 

at most one step can occur along the passive axis. Taking the former to go along and the 

latter to go up, the navigation must then choose between two step cases. These are along 

& up, along. The 2D DDA maintains a variable whose sign decides between these. This is 

known as a decision variable or control term. It is maintained across steps by a recurrence 

relation involving only the addition of predetermined increments.

5.2.2. Bresenham’s Enhancement

Whilst these increments are constant, their calculation involves division. This 

inconvenience generally necessitates floating point arithmetic to maintain accuracy even 

when lines are originally specified over the integers. Moreover, in some cases DDA’s 

involve a degenerate division by zero which has to be handled as an exception. 

Bresenham’s algorithm [Bresenham;1965] multiplies out all such division from a DDA whilst 

leaving the decision variable’s sign unchanged. This yields an efficient line generator for 

raster screens maintained by additive integer arithmetic with no exception handling. The 

DDA for 2D line generation through a pixelated screen and Bresenham’s enhancement may 

be generalised for 3D ray navigation through the grid partition of a voxelated box.
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5.2.3. The Generalisation of the DDA for 3D Ray Navigation

Generalisations of the basic 2D DDA to 3D have been developed by other researchers 

[Fujimoto et al;1986: Marsh;1987]. The next voxel navigated by a ray of arbitrary direction 

will be one of the current voxel’s six shared-face neighbours. Ray direction is constant and 

falls into a characteristic octant. This is easily found and reduces the number of significant 

voxels to three. ARTS, the Accelerated Ray Tracing System, navigates rays with two 

simultaneous 2D DDA’s and so maintains two decision variables [Fujimoto et al;1986]. The 

axis spanned at the greatest rate is identified as the common driving axis. The other two 

are passive. Rays are navigated in voxel width steps along the driving axis. During each 

such step at most one step can occur along each passive axis. Taking the driving axis to 

go along and the passive axes to go up and in, the navigation must decide between five 

step cases. These are along ; in, along ; up, along ; in, up, along & up, in, along [Fig 

5.2.3a]. Each decision variable is set to the difference of two distances measured along 

the driving axis. This is the passive distance to the next intersection with a partition plane 

normal to the associated passive axis minus the driving distance to the next partition plane 

normal to the driving axis. Since rays are navigated in voxel width steps along the driving 

axis only the passive distance changes. A non-negative decision variable indicates that the 

ray should stay in the same passive partition over the driving axis step. The passive 

distance changes by a voxel width decrement. The decision variable is maintained by the 

subtraction of this width. Otherwise, a negative decision variable indicates that the ray 

should step across the passive partition during the driving axis step. The next plane 

normal to the passive axis is then one further on. The passive distance changes by an 

increment of the reciprocal ray slope along this axis minus the voxel width. The decision 

variable is maintained by the addition of this amount. The sign of each variable therefore 

indicates whether the ray should stay or step along the associated passive axis. The 

difference of the two decision variables yields the difference of the two passive distances. 

When steps occur along both passive axes the sign of this difference indicates their order.
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Fig 5.2.3a: The Five Cases

of a Driving Axis Step
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This navigation is prone to the division problem of the basic DDA. A degenerate division by 

zero can arise in the calculation of the reciprocal ray slope along a passive axis, which 

requires exception handling. This reciprocal is the width of the decision variable's range for 

the associated passive axis. Whilst each decision variable is bounded within this finite 

range for any ray of non-zero slope, this range increases without bound for rays of slope 

approaching zero. The decision variables are therefore not uniformly bounded for all rays. 

The maintenance of decision variables in ARTS navigation was apparently optimised with 

integer arithmetic. The quantisation method was not published. However, both decision 

variables would have had to undergo the same quantisation to remain in the same units. 

This is necessary to ensure that the sign of their difference still indicates the order of steps 

over both passive axes. The quantisation was probably ray dependent, just fitting the 

larger decision variable range into a signed integer format. This would complicate 

quantisation. Moreover the quantisation’s resolution would vary between rays, becoming 

poor for rays with a passive slope approaching zero. The navigation of such a ray would 

appear to be prone to errors in the exact location of steps along the passive axes. An 

algorithm has been proposed to allow fixed point arithmetic by splitting decision variables 

into integer and fractional parts, but is somewhat convoluted and still requires exception 

handling [Marsh;1987].

5.3. The Generalisation of Bresenham’s Enhancement for 3D Ray Navigation

A generalisation of Bresenham’s DDA enhancement for 3D ray navigation would avoid any 

degenerate division by zero. The decision variables of such a navigation would be 

uniformly bounded and so have numerically stable quantisation. This thesis derives such a 

generalisation.

As in ARTS a decision variable is maintained for each passive axis, navigating a step or 

stay along that axis over successive voxel width steps along the driving axis. However, 

these two decision variables are no longer measured in the same units after all division is 

multiplied out. The order of steps occurring along both passive axes can no longer be 

deduced from the sign of their difference. An extra decision variable is introduced to
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decide this order. This is only examined when steps occur along both passive axes, but is 

maintained across any driving axis step for future reference. The navigation therefore 

maintains three decision variables in a decision vector which is actually the vector cross 

product of the ray direction and current ray point within the voxel. The current ray point is 

moved forward along the ray path from the source during navigation. The ray direction 

may be scaled to unit infinity norm rather than Euclidean norm to fully exploit the resolution 

of integer quantisation. A vector’s infinity norm is the maximum of its components’ moduli. 

This new version of Bresenham’s algorithm inherits all the established advantages [Fig 

5.3a].

5.3.1. Checking a Voxel Is within the Significant Interval

The navigation should terminate as soon as the significant interval is exceeded. A check 

for this could be made by quantising the interval’s maximum limit along the ray path 

according to the 3D voxelation. A voxel check would then require a comparison along up 

to all three axes against the 3D quantised maximum. Since navigation is in steps along the 

driving axis, a better approach is to project the maximum limit down onto this axis and then 

quantise. This check requires only a single comparison of the 1D quantised maximum 

against the current driving axis coordinate.

5.4. The Automatic Generation of a Grid Partition

5.4.1. Specifying the Grid Partition to be Generated

Since the structure of a scene grid partition is predetermined, its automatic generation is 

somewhat simpler than that of a bounding volume hierarchy. Rather than choosing from an 

enormous range of decompositions, the automatic generation of a grid partition need only 

select the voxelation’s resolution. This may be predetermined by subjective choice. 

Alternatively it may be increased until either the average number of heterogeneous objects 

per voxel cell falls below some limit or a maximum resolution is reached. The former 

termination criterion prevents further decomposition when the scene model has been made 

locally simple. The latter prevents runaway.
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Fig 53a: Ray Navigation of a Grid Partition: 

Bresenham’s Algorithm Generalised to 3D

The Navigation Method

A ray is to be navigated in path length order through the cells of a grid partition, from a known 

point in a known direction. This is achieved in a sequence of cell-width steps along the axis of 

greatest change, known as the driving axis. The other axes are called the passive axes. At most 

one step can occur over each passive axis during each driving axis step.

Each step is navigated according to the component signs of a decision vector. The navigation is 

maintained with an efficient recurrence relation using constant increments. It is optimised by 

quantisation to fixed point arithmetic.

Notation

Consider the octant in which the ray’s direction falls. In any cell navigated by the ray, this octant 

contains the vertex intersection of the ray’s exit planes from the cell. This vertex is called the exit 

vertex.

Let the ray have a distance vector § = ( x, y, z ) of distances to traverse from its current point to 

the exit planes of the current cell. All distances are strictly positive. This is simply the current 

ray point vector taken relative to the cell’s exit vertex. Let the ray have direction vector 

A = ( X, Y, Z ) of relative traversal rates across each dimension. All rates are non-negative and 

the maximum is strictly positive. This maximum corresponds to the driving axis, and is assumed 

to be the X axis with no loss of generality. The Y and Z axes are the passive axes.

Let each cell have width ‘W’.

The ray is iteratively navigated through the grid partition according to a decision vector which is 

the cross product A x £. The direction vector A remains constant throughout navigation. The new 

value of the distance vector £ after any step is denoted by a tilde superscript, £. The decision 

vector is maintained by an recurrence relation according to an increment vector u such that 

A x £  =  A x £  +  u.
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Step Navigation

Each step is navigated through one cell width along the driving axis, traversing exactly one X 

partition plane. The navigation will only traverse the Y or Z partitions during this step if these 

planes are struck before the X plane. The component signs of Ax§ are examined to determine 

whether the ray stays or steps across each partition.

Consider deciding whether the current cell’s X exit plane is struck after the Y exit plane. Let ‘X 

before or with Y* and ‘X after Y’ denote the X plane being struck before or simultaneously with

Y
the Y plane and after the Y plane respectively. Let ry = y-x— be the distance left to traverse

across the Y dimension to the Y plane at the intersection with the X plane. Clearly, the X plane 

is struck before or with the Y plane when this distance is non-negative, so that

Yy-x— = ry > 0 «-» X before or with Y 

Now X is known to be positive and since scaling by a positive factor has no effect on sign,

Xy-xY = Xry > 0 <-> X before or with Y

Now

A x 5 = ( X, Y, Z ) x ( x, y, z ) = ( Yz-yZ, Zx-zX, Xy-xY )

and so

[a x § j z = Xy-xY = Xry > 0  o X  before or with Y

The same workings hold for any cyclic permutation of dimensions. The sign of each component

of Ax8 therefore indicates which of the planes in the other two dimensions is struck first. If

positive, the plane in the cyclically proceeding dimension is struck first. If negative, the plane in

the cyclically preceding dimension is struck first.

Let *Y step* and ‘Z step’ denote respective steps over the Y and Z partitions during a driving axis 

step. Let the absence of any passive step be denoted ‘Y stay’ and ‘Z stay’ accordingly.

The order of any passive steps during the driving axis step is determined through a decision tree 

requiring up to three component sign examinations of the decision vector :
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M .
> 0 -» Y stay; [Ax§Jy‘ 

< 0 - » Y step; |ax5 j y

< 0 —> Z stay: Step order X 
> 0 —> Z step: Step order Z X

< 0 —> Z stay: Step order Y X

<0 -» Y after Z: Step order Z Y X 
>0 -» Y before Z: Step order Y Z X> 0 -» Z step;; [ax§ ].

The cells navigated during the step are simply those on the other side of the successively traversed 

planes. Each is located by an associated constant increment of the current index to the cell array. 

This location is under the caveat of the traversed plane being internal to the partitioned scene box. 

Otherwise, the navigation of the partition is complete and terminates.

Navigation Maintenance

After a driving axis step there is a new distance vector $ corresponding to the updated ray point in 

the next driving axis cell. There is therefore a new decision vector

AxS = ( Yz-Zy, ZX-Xz, Xy-Yx )

This is found incrementally from the previous value with an appropriate update vector y.

Since each step traverses a cell width along the driving axis,

Yx = Yx 
ZX = Zx

Moreover,

y =

if Y stay: y-W —
A.

if Y step: y -W ~ + W

and so

if Y stay: Xy-WY 
if Y step: Xy-WY+WX Zy =

if Y stay: Zy-ZW—
A

if Y step: Zy-ZW-^+WZ

Similarly

Xz =— * if Z stay: Xz-WZ 
if Z step: Xz-WZ+WX

if Z stay: Yz-YW-— 

if Z step: Yz-YW ~+W Y
A ,

Fig S3a 3



Therefore

Ax£ = ’

Y stay, Z stay: ( Yz-Zy, Zx-Xz+ZW, Xy-Yx-YW )
Y step, Z stay: ( Yz-Zy-ZW, Zx-Xz+ZW, Xy-Yx-YW+XW )
Y stay, Z step: ( Yz-Zy+YW, Zx-Xz+ZW-XW, Xy-Yx-YW )
Y step, Z step: ( Yz-Zy+YW-ZW, Zx-Xz+ZW-XW, Xy-Yx-YW+XW )

Conveniently, the X divided terms in the first component cancel to avoid undesirable division. 

Therefore

where

U =

Ax§ = Ax8 + u

Y stay, Z stay: ( 0, ZW, -YW )
Y step, Z stay: ( -ZW, ZW, XW-YW )
Y stay, Z step: ( YW, ZW-XW, -YW  )
Y step, Z step: ( YW-ZW, ZW-XW, XW-YW )

This update vector is constant in all cases, and need only be calculated once before navigation. 

The appropriate update vector is applied after the traversal of the navigation’s decision tree.

Fixed Point Quantisation to Optimise Navigation

All steps are navigated according to the decision vector A x 8 and the update vector u. The 

navigation may proceed in fixed point arithmetic if the components of both vectors fit in the 

appropriate format. Consider a 32-bit signed format as an example, storing integers in the interval 

[-231,231). All vectors will fit into this format provided their infinity norms are below a critical 

bound, 231 in this example. A vector’s infinity norm is the maximum of its components’ moduli, 

denoted IK Since § lies within a cube voxel of width W, then I8 L  < W. Moreover, 

I A x § L <  I A I « x l§ l -^  IAI.W and lu l„ < IALW. All components will therefore fit as 

required provided IAl„ W < 231.

The available resolution is to be split between the ray direction and voxel width. There is no 

obvious reason for apportioning more resolution to one mere than the other, so fourteen bits are 

assigned to each. Then I A L , W < 215-> IAI„W <231. This quantisation is easy when
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representing real numbers in a mantissa/exponent floating point format such as the IEEE standard. 

The direction vector is normalised to unit infinity norm and cell size to unit width by appropriate 

scalings. The fourteen most significant bits are extracted from each relevant variable’s mantissa 

with efficient bit shifts and masks. Their exponents are of no consequence. This quantisation 

allows navigation to proceed through the voxelation under only additive fixed point arithmetic. It 

is incorporated into floating point calculations querying the scene box for ray intersection at the 

start of the scene model’s solution.
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5.4.2. Assigning a Heterogeneous Object List to a Voxel

Once the decomposition’s resolution is determined, each voxel cell in the grid must be 

assigned its heterogeneous object list. There are two obvious ways of considering the 

scene to achieve this. On one hand, the scene may be considered object by object. A 

given object is then added to the heterogeneous list of every voxel its surface passes 

through. On the other hand, the scene may be considered voxel by voxel. A given voxel 

then has its heterogeneous list augmented with every object whose surface passes through 

it.

5.4.3. The Object by Object Generation of a Grid Partition

The object by object method may appear superficially attractive [Marsh;1987j. A 

generalisation of a 2D paint system’s region fill [Foley,Van Dam;1984] could perhaps 

reduce the number of voxels to be considered for a connected object’s surface. Instead of 

filling in colour over a pixel region starting from a given pixel seed, an object surface could 

be filled over a voxel region from a given voxel seed. A recursive fill of this type would 

spread in a twenty-six connected manner. However, on closer examination this approach 

has several drawbacks.

A fill from a single seed point can only cover the connected surface containing that point. 

Whilst each primitive modelled has a single connected surface, more complex CSG objects 

may have several separated by boolean union or symmetric difference. Whilst a single 

seed is easily found for a primitive surface, several seeds are needed for such CSG 

geometries. The general location of these can be difficult.

Ideally each voxel’s heterogeneous list should be stored in contiguous memory for ease of 

future reference. When working object by object a voxel’s total heterogeneous list length is 

not known before the objects are added to it. This complicates storage allocation.

The lazy construction of grid partitions by dynamic generation during image synthesis may 

reduce construction times. Only those cells navigated by a ray need actually be assigned 

their heterogeneous object list. The others are never reached and can be ignored. For
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example, voxels containing only surfaces on opaque objects which are back-facing with 

respect to all rays are never reached. In lazy construction each voxel is only assigned its 

heterogeneous list when first navigated by a ray. Fewer voxels are assigned their 

heterogeneous lists than in exhaustive preprocessing. Lazy construction requires the 

heterogeneous object list to be assigned to a known voxel. This is orthogonal to the object 

by object approach, which augments a known object to voxels’ heterogeneous lists. Lazy 

construction could be attempted with an exhaustive search around the connected surfaces 

of each object, but this is clearly counter productive.

5.4.4. The Voxel by Voxel Generation of a Grid Partition

The voxel by voxel method suffers none of these drawbacks. A judicious implementation 

can avoid both an exhaustive object search for each grid cell and the need to consider 

every cell. The reader may have remarked that a grid partition is not thought of as a 

hierarchy during traversal above the trivial single level constituted by a scene voxel parent 

and the many voxel children. However grid partitions are efficiently generated by octtree 

hierarchies [Section 3.4.3].

An octtree generates a partition recursively by the simultaneous bisection of a voxel in each 

dimension to spawn eight children. Clearly an object can only be heterogeneous to any 

child if previously heterogeneous to the parent voxel. Heterogeneous object lists therefore 

form a chain of strict subsets down successive octtree generations of monotonically non

increasing length. The current voxel’s heterogeneous object list is remembered throughout 

the recursion. Only these objects need be reconsidered for each child, reducing the total 

number of object considerations during generation.

For any non-trivial resolution many grid cells have empty heterogeneous lists, with every 

object rather in a homogeneous state. The octtree decomposition simultaneously identifies 

large groups of such cells when they constitute a current voxel with an empty 

heterogeneous list. By monotonicity all successive voxel generations down to the leaf cells 

must also have empty lists. Further recursive decomposition is unnecessary. All 

descendant cells are simultaneously assigned empty lists. This reduces greatly the number
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of voxels considered. The generalisation of the quadtree complexity theory 

[Samet,Webber;1988: Hunter,Steiglitz;1980] to the octtree shows that this number will be 

bounded by a function proportional to the sum of the maximum decomposition depth and 

the number of cells at this depth with non-empty heterogeneous lists.

5.5. Data Structures for the Representation of a Grid Partition

Each voxel cell is stored as a single integer index to a global array which itself consists of 

integers. The integer indexed by any cell holds the length of that cell’s heterogeneous 

object list. These objects are listed in the adjacent block of this length with further indices 

to a global object array. The storage required at each cell is then constant even though the 

heterogeneous list length may vary. Any variation is ironed out by indirection to the global 

array which may store lists of arbitrary length. For readers familiar with the ‘C’ 

programming language, this double indirection may be compared to the ‘argv* argument of 

a ‘main’ function. The grid partition is stored as a 3D array of these cells. Since each cell 

occupies uniform storage the array is indexed directly by Cartesian coordinates. The global 

heterogeneous list is constructed during the octtree decomposition.

A bit may be allocated in each cell integer as a flag to lazy construction [Section 5.4.3]. 

This is initially unset and becomes set only when first navigated by a ray. Any ray 

navigating the cell checks the bit before considering the heterogeneous object list. If still 

unset the list must be dynamically assigned since this has not yet been done. The bit is 

then set as a flag to any subsequent navigation. The heterogeneous list is then known to 

be assigned and is considered for this cell.

5.6. Storage Considerations

Many cells may reference identical heterogeneous lists in the global array. All cells with no 

heterogeneous objects reference an empty list constituting a single integer. This indicates 

a list length of zero. In general many cells will have no heterogeneous objects. If the 

grid’s resolution is sufficient to make the cells significantly smaller than most objects, all the 

cells in the voxelation of an isolated object’s surface will reference an identical list. This
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constitutes an integer indicating a list length of one followed by this object’s index in the 

global object list. Other cells may reference identical lists comprising several objects.

Such heterogeneous list duplications are all made to reference a single entry in the global 

array rather than separate copies. This keeps down memory requirements. Before storing 

a cell’s heterogeneous list in the global array, a check is made against the previous entries. 

If a duplication is found, the cell is made to reference this previous entry and the global 

array is unchanged. Otherwise this distinct list is added to the global array at a position 

then referenced by the cell. The global array is therefore maintained without list 

duplications.

5.6.1. Checking for Duplications with the Empty List

The empty heterogeneous list is particularly common, occurring for any cell entirely inside 

or outside every object. An empty list is allocated at a known position at the start of the 

global array before generating the grid partition. This entry comprises a single integer 

Indicating a list length of zero. Any cell with an empty list Is made to reference this entry. A 

reference to an empty list may then be recognised without indirection during any 

subsequent navigation of the grid. The majority of cells navigated by a ray to solve the 

scene model should be empty, since navigation usually terminates immediately on finding a 

surface intersection within the significant interval. The list duplication check starts with this 

special case candidate.

5.6.2. Checking for Duplications with a Previous Non-Empty Entry

Most scene objects are spatially coherent. List duplications are therefore common over 

neighbouring cells. The construction of an octtree recurses over the siblings spawned from 

a decomposed voxel in some order. This is commonly the absolute Morton digit order [Fig 

5.6.2a] [Morton;1966j. This order is spatially coherent in that cells which are close in the 

recursive 1D order of visitation tend to be spatially close in the 3D scene partition [Fig 

5.6.2b]. Any list failing the empty list duplication test is non-empty and by dint of this 

coherency may well be a duplication of the previously allocated non-empty entry. This
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Fig 5.6.2a: The Morton Code System

Consider the eight siblings spawned by the simultaneous bisection of a voxel in each dimension. 

Each octant child is conveniently indexed by its absolute Morton digit from the parent 

[Morton;1966]. This comprises three bits, one for each dimension conventionally in the order 

ZYX. The parent is split into eight children with three bisection planes, one in each dimension. 

The absolute Morton digit of each child is defined bitwise. Each bit is set if the child lies above 

the corresponding bisection plane and unset otherwise. The result absolute Morton digit is denoted 

abs_Morton_digit(child). A relative Morton digit may also be defined for each child with respect 

to one of its siblings, denoted rel_Morton_digit(child,sibling). Each dimension bit is set if the 

child lies on the opposite side of the bisection plane to this sibling and unset otherwise. Let XOR 

denote bitwise exclusive or. Then by these definitions

rel_Morton_digit(child,sibling) = abs_Morton_digit(child) XOR abs_Morton_digit(sibling) 

Bitwise exclusive or is commutative, which infers the intuitively obvious symmetric relationship 

rel_Morton_digit(child,sibling) = abs_Morton_digit(child) XOR abs_Morton_digit(sibling)

= abs_Morton_digit(sibling) XOR abs_Morton_digit(child) = rel_Morton_digit(sibling,child) 

Moreover, bitwise exclusive or with a given value is its own inverse. This provides a means of 

recovering a child’s absolute Morton digit from its relative digit

rel_Morton_digit(child,sibling) = abs_Morton_digit(child) XOR abs_Morton_digit(sibling)

—> rel_Morton_digit(child,sibling) XOR abs_Morton_digit(sibling) = abs_Morton_digit(child)

A Morton digit locates a child voxel down one octtree generation. A similar Morton digit will 

locate that child’s own offspring down another generation. These two digits may be concatenated 

to locate a grandchild over two generations. Further Morton digits may be concatenated to locate 

descendants over any number of generations in a string of that number of Morton digits. The digit 

string identifying any octtree voxel from the root is called that voxel’s Morton code. Let the 

vertex in a voxel’s octant of absolute Morton digit zero be called the zero vertex. Consider a 

Cartesian coordinate frame with origin at the root voxel’s zero vertex. Each successive digit of a 

voxel’s Morton code may be taken as the absolute Morton digit. The resultant code is called the 

absolute Morton code. This is easily shown to be the three Cartesian coordinates of the voxel’s
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zero vertex interleaved together. This interleave is an efficient mapping between 3D Cartesian 

coordinates and ID Morton code. Alternatively, each digit may be taken relative to a variable 

sibling and its bits concatenated in a variable order defined by the previous digit. An appropriate 

definition will produce a Peano Morton code. This has the characteristic property that any two 

voxels with subsequent Peano codes share a common face rather than merely tending to be close 

as in the Morton scheme [Spackman;1987].
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Fig 5.6.2b: The Morton Order of Visitation for

an Octtree Decomposition

Fig 5.6.2b



observation is exploited by maintaining a record of the previously referenced non-empty 

entry throughout the decomposition. Any non-empty list is checked for duplication against 

this record. This provides savings in much the same manner as the record assigned to 

each light source of the previous opaque object found to cast a full shadow in image 

synthesis [Section 3.2.7]. The spatial coherency of the octtree’s construction may be 

enhanced by recursing in Peano digit order [Fig 5.6.2c]. The Peano ordering is easily 

followed with bitwise operations such as masks and shifts [Spackman;1987].

5.6.3. Checking for Duplications In the General Case

If a given list is neither empty nor a duplication of the previously allocated non-empty list, 

all other distinct entries remain candidates for duplication. A linear search for any such 

duplication would be inefficient. A binary tree search is preferable.

An ordering is imposed on heterogeneous object lists by defining a concept of difference. If 

the difference of two lists is negative the first is taken to be the smaller; if positive the 

second is taken to be the smaller; otherwise, the lists are taken to be equal. List length 

provides the first ordering key. The difference In two lists' length is easily calculated and is 

taken as the lists' difference if non-zero. Otherwise, the lists are of equal lengths and the 

difference in the subsequent pairs of object indices provides the second ordering key. The 

difference in object indices is calculated pairwise along the lists until either a non-zero value 

arises or the lists become exhausted. The resulting index difference is taken as the lists' 

difference, and will be zero only for identical lists.

A binary tree representing all distinct non-empty entries is maintained throughout the 

construction. A duplication search for a given list is achieved by filtering down the tree 

according to the ordering. If the difference between the given list and current tree entry is 

zero, a duplication has been found and the task is complete. Otherwise the search 

recurses down the left or right branch of the tree depending on whether the difference is 

negative or positive. The given list can only be distinct from all previous entries if the tree 

is exhausted without finding a duplication. Such a distinct list is grafted onto the tree after 

the leaf where the tree became exhausted. The tree is initially empty and is thereby
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Fig 5.6.2c: The Peano Order of Visitation for

an Octtree Decomposition

Fig 5.6.2c 1



guaranteed to be maintained without list duplications.

The efficiency of this search depends on the tree’s structure which is determined by the 

order of the presented data. In the worst case, degenerate presentations such as a 

monotone ordering result in a linear tree in which one of each pair of sibling branches is 

empty. Such extreme presentations are rare in practice however, and a random 

presentation may be expected to produce a reasonably balanced tree. Search times are 

then logarithmic in distinct list count. Moreover, the earliest distinct lists in the presentation 

are grafted closest to the tree root. The more frequently occurring lists are therefore most 

likely to be grafted close to the root, allowing subsequent duplications to be found quickly.

The efficiency of the duplication search could be optimised by dynamic tree balancing to 

enforce a balanced structure throughout decomposition. Search times would then be 

logarithmic in distinct list count even for trees built from degenerate presentations, once 

rectified in this manner. However the tree search generally proves adequate without such 

balancing, which would of course incur further overhead.

5.7. Testing for Heterogeneity with the Intermediate Value Theorem

The recursive octtree decomposition has been shown to be an attractive means of 

constructing a grid partition. The construction must allocate a heterogeneous object list to 

a given voxel. This requires a test for a given object’s surface passing through that voxel, 

which is characterised by the existence of roots to the object’s 3D height function within the 

voxel. A test for the existence of roots to an object’s trivariate height polynomial in 3D 

space is a somewhat different task to the location of roots to the derived univariate 

polynomial along a 1D ray in path length. On one hand, the former task is more difficult 

due to the extra degrees of freedom in 3D space. On the other, this task is easier due to 

the weaker requirement of existence rather than location.

Any voxel may be considered as a 3D interval. A 1D interval comprises all points lying 

between two extremes. These are a lower infimum and an upper supremum which model 

the spread of a single variable within these limits. An N-D interval is defined as the
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Cartesian product of ‘N’ such 1D intervals. This models the spread of ‘N’ independent 

variables. A voxel is a 3D interval modelling the spread of each independent coordinate 

within a specified 1D interval.

Any object’s height function is a continuous map from 3D world space to 1D height. By the 

intermediate value theorem a sign inversion root of such a function will occur within a 3D 

voxel interval when the function assumes both a negative and a positive value within that 

interval. A check for such values is sufficient for a heterogeneity test. In layman’s terms a 

voxel contains part of an object’s surface when it contains both points inside and points 

outside the object. This check need not undertake the more difficult task of actual root 

location.

5.7.1. Testing with State Codes

An object may be classified as being in one of three possible states with respect to a voxel. 

If the object’s height function is uniformly negative over the voxel, then this voxel is 

homogeneously inside the object. The object is said to be in HOMOJN state. Otherwise if 

the object’s height function assumes both negative and positive values over the voxel, then 

the voxel contains both points inside and outside the object and therefore a section of its 

surface by the intermediate value theorem. The object is said to be in HETERO state. 

Otherwise the object’s height function is uniformly positive over the voxel which is therefore 

homogeneously outside the object. The object is said to be in HOMOjOUT state. Any 

object to be included in a voxel’s list is characterised by a HETERO state code, and is 

tested for heterogeneity via this code.

5.7.2. Attempts at Exact State Code Classification

An object’s state may be exactly classified in some special cases. Since any voxel is 

convex, its intersection with any convex object must also be convex. Suppose a convex 

object contains all of a voxel’s vertices. Then by convexity the object contains all other 

points within the voxel. Equivalently if no vertex is outside the object then no other voxel 

points are outside. The convex object is then in HOMOJN state. Conversely, if some
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vertices are outside the object then some voxel points are outside - specifically these 

vertices. The convex object is then not in HOMOJN state but rather HETERO or 

HOMOjOUT state. The existence of voxel points outside a convex object may therefore 

be deduced from a test restricted to the vertices. There are only finitely many vertices as 

opposed to the infinite number of voxel points. Each vertex may therefore be tested for 

being outside the object by evaluating the height function at that point.

The local plane, sphere, cube and cylinder are all convex and the double cone is the union 

of two convex single cones. Any convex primitive remains convex as a world instance by 

linear transforms. The intersection of any two convex objects also remains convex. Such 

convex objects may be exactly classified in the HOMOJN state.

The local plane also has a convex complement. The existence of voxel points outside this 

complement and hence inside the plane may be deduced by a similar vertex test. This 

provides an exact classification of all states for the plane.

However, none of the other primitives has a convex complement. The existence of voxel 

points inside these primitives cannot be deduced by merely testing each voxel vertex. For 

example, a cylinder may pass through a voxel yet only intersect the outer faces rather than 

covering the vertices.

It may be remarked that a voxel contains points inside the world instance of an infinite 

cylinder or cone when either the object’s axis pierces the voxel or a voxel edge is at least 

partially inside the object. The axis and edges may be considered as rays in 3D world 

space and the voxel as a cube. The axial ray may be tested for voxel intersection and the 

edge rays for object intersection as in ray tracing [APPENDIX C].

A voxel has points inside any object when the height function assumes a negative value 

over the voxel, characterised by a negative minimum. Similarly it has points outside an 

object when height function assumes a positive value over the voxel, characterised by a 

positive maximum. The minimum value of an undeformed sphere’s height function will 

occur at the voxel point of minimal displacement in each dimension from the sphere centre. 

A voxel may be tested for points inside a sphere by testing the height function’s sign at this
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point.

This piecemeal approach yields exact state classifications in some cases, but is not 

applicable to a general object. Some primitives are not addressed. For example neither 

the existence of points inside nor the existence of points outside a torus can be deduced. 

Some deformations are not addressed for certain primitives. For example the sphere may 

only be classified in HOMOjOUT state if undeformed. General CSG objects may be only 

be classified in HOMOJN state if convex or in HOMOjOUT state if of convex complement. 

Each test relies on characteristics peculiar to each object and is not readily extensible to 

other geometries. A more unified framework is desirable within which any object state may 

be classified.

5.7.3. Approximate State Code Classification

An arbitrary CSG object’s state must be classified within a voxel to test for heterogeneity. 

An exact classification proves difficult when allowing for the many local primitives, deformed 

world instances and boolean constructions in the CSG scene model. However state codes 

may be classified by more tractable approximations whose inaccuracies are not 

catastrophic. These are called conservative approximations.

The HETERO state is the most general state, indicating the existence of both voxel points 

inside and outside an object. Such objects are retained in the voxel’s heterogeneous list. 

The HOMO states are more restrictive, indicating the absence of any voxel points inside or 

outside the object. Such objects are rejected from the voxel list.

A general state code approximation may be prone to two types of error. A HOMO object 

may not be recognised as such but rather classified in the more general HETERO state. 

Whilst this object would be wrongly included in the voxel list, this is a conservative or 

cautious error. It is not catastrophic since the scene model’s solution is not affected. 

Moreover, if the approximation is ‘close’ in that the object is truly in HETERO state with 

respect to some neighbouring voxel this need not adversely effect the efficiency of scene 

model solution. Any ray navigating the voxel may well find that the object has just been
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queried or is about to be queried at such a neighbour. No extra cost is incurred in this 

case since query repetition is avoided [Section 5.1.1]. Alternatively a HETERO object may 

be wrongly classified as HOMO and rejected from the voxel list. This is a rash error which 

can have a catastrophic effect on image synthesis. Voxel holes may appear in the surface 

of a HETERO object incorrectly classified as HOMO due to errors in the solution of the 

scene model.

Provided state codes are approximated conservatively the scene model will be solved 

correctly. The solution is still efficient if the approximation is close rather than say naively 

classifying every object in HETERO state whatever.

Conservative approximations can be found whose inaccuracies decrease with voxel size. 

This generates advantageous feedback into the recursive octtree decomposition. Suppose 

a conservative error results in a HOMO object being classified as HETERO for a given 

voxel and being included in its list. The voxel is decomposed into eight children and the 

object’s state is reclassified over each. The approximation is more accurate over this voxel 

generation since each child is smaller. The object may well be correctly classified in its 

true HOMO state over each child and rejected from their lists. The decomposition should 

recognise its earlier mistake and backtrack to delete the object from the parent list. This 

situation is easily recognised by a post recursion check that the object survives in at least 

one of the children’s lists. If not, that object should be deleted from the parent’s list. Such 

a deletion may well render the parent’s list empty. The children are then no longer 

significant and may be deleted to reclaim storage.

5.7.4. Approximation Techniques

A general state code classification may resort to conservative approximation to render the 

associated mathematics more tractable. For example, each object could be approximated 

with a pair of geometrically simple inner and outer bounds [Waij,Heckbert,Glassner;1988: 

Beacon et al;1989j. The existence of voxel points inside or outside an object could then be 

conservatively inferred from that of points inside the outer bound or outside the inner bound 

respectively. However, the inaccuracy of this rather naive approximation would be
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determined by these bounds rather than voxel size. Ideally any inaccuracy should decrease 

with voxel size to disappear in the decomposition limit [Section 5.7.3].

An efficient and generally applicable approximation with this property is provided by interval 

analysis. This analysis conservatively estimates the extremes of an object’s height function 

within a voxel.

5.8. Conservative Heterogeneity Tests with Interval Analysis

Interval analysis defines algebra on intervals rather than points [Rall;1981: Moo re;1979], 

This analysis provides the interval of values assumed by a multivariate continuous function 

when each argument varies independently within a given interval. The algebra addresses 

the spread rather than simple point beat ion of variables and was developed to track worst- 

case rounding errors during digital computatbn [Moore;1965]. Interval analysis is exact for 

polynomial functions of independent terms. Such functbns can only assume values within 

the derived interval over their argument intervals, and will assume each value therein. 

Interval analysis is conservative for functions of dependent terms. Such functbns can still 

only assume values within the derived interval over their argument intervals but may not 

assume the extreme values.

5.8.1. Interval Analysis of Univariate and Blvariate Arithmetic

Appropriate interval arithmetb is easily derived for the common univariate and bivariate 

continuous functions [Rall;1981: Fig 5.8.1a]. The interval of an object’s height functbn over 

a voxel may be evaluated in this arithmetic by recursing over the object’s CSG descriptbn 

tree. The height interval determines whether the voxel lies inside, outside or possibly 

across the surface of the object in the same manner as the functbn’s evaluation in real 

arithmetb for a scene point. The X, Y & Z coordinates of a point may be substituted into 

the functbn which is then evaluated in real arithmetb to a real height. The point is inside, 

outside or on the surface of the object if this height is negative, positive or zero 

respectively. The X, Y & Z intervals of a voxel may be formally substituted into this 

functbn which is then evaluated in interval arithmetb to a height interval. The voxel is
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Fig 5.8.1a: Interval Analysis

Notation

Symbol

0  = [Uj.Us]

0 > 0

O e O

o < t ?

centre(0)

Meaning

ID interval comprising all points between the lower infimum Uj 
and upper supremum Us

t) is uniformly negative : Us < 0

0  contains zero : Uj < 0 < Us

0  is uniformly positive : 0 < Ui

Ur+Us
Interval centre at — -—

Derivation

The algebra derived by interval analysis is illustrated graphically - interval exponentiation by a 

Cartesian graph, interval product by an enlargement graph, and interval addition and extrema by 

vector graphs.
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Interval exponentiation : 0"

Fig 5.8.1a

Visualised as a Cartesian graph 

n odd -> 0" = [U,,US]” = [U,”,US")



Interval exponentiation : 0"

Visualised as a Cartesian graph

n even 0 " =

0 > 0 - > 0 "  = [Ul5Us]n = [UsMJf]

0 > centre(0) -> 0" = [UIfUs]n = [O.Uf] 

0 < centre(0) —» 0" = [Ui,Usf  = [0,Usn]
Oe U -

0 < 0  -> 0" = [U,,Us]n = [U f,Usn]
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Interval product: OxV

Visualised as an enlargement map

0 > V -> OxV = [U,.Us]x[V,,Vs] = [UsV,,UiVs] 

0 < 0  ^  -I 0 e V -> OxV = [UfcUsMVj.Vs] = [UjVlUsVs] 

0 < V -> OxV = [Ui,Us]x[V,,Vs] = [UiV,,UsVs]
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Interval product: OxV

Visualised as an enlargement map

O e 0
0 > V -> OxV = [Uj.UslxtVj.Vsl = [UsV i .UjV,]

0 6  V ->  OxV = [Uj.UsIx IV lVs] = [min(UsV,,UIVs),max(UsVs,U1Vi)] 

o < v  -> OxV = [Uj.UsIxCVlVs] = [UjVs.UsVsl

maxCUsVsMVi)

minCUsVjMV:)
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Interval product: OxV

0 > 0 - >

Visualised as an enlargement map

'O > V -> OxV = [Uj.UsJxtVj.Vj] = 

< 0 e V -> OxV = [UIfUsM Vi,Vs] = 

0 < V -> OxV = [Uj.UsM V j.Vs] =

[UsVsUjVd
[UiVsA V i]
[UjVs.UsVi]



Interval addition : 0+V

Visualised as a vector graph 

0+V = [Uj.Usl+tVi.Vs] = [Ui+Vj.Us+Vs]
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Interval extrema : min(0,V), m ax(0$)

Visualised as a vector graph

min(0,V) = min([UI,Us],[VI,Vs]) = [min(UI,VI),min(Us,Vs)] 

max(tf,V) = maxClIJj.Usl.rVi.Vs]) = [max(UI,VI),max(Us,Vs)]

"J max(tf,V)
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Scalar operations

Any scalar X may be considered as the degenerate interval [X,X] of width 

on intervals may then be defined in terms of the previous interval analysis.

Scalar interval multiplication : XO

X >0 ->[XUI?XUS] 
X <0 -*[XUs,XUi]XO = [XA]x[Ui,Us] = '

Interval negation : -0

-0  = -1.0 = -l.tUj.Us] = [-Us -U J

Scalar interval addition X+0

X+0 = [XA]+[U!.Us] = [X+UItX+Us]

zero. Scalar operations 

In particular,
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inside, outside or conservatively taken to contain part of the surface of the object if this 

height is uniformly negative, uniformly positive or contains zero respectively.

The evaluation of a height interval under univariate exponentiation and bivariate addition, 

multiplication, minimum and maximum necessitates a specification of height functions 

involving only these operations. When expressed in world coordinates, height functions 

generally include many dependent terms. The formal substitution of intervals 

corresponding to a world voxel into such an expansion can lead to catastrophic over

approximation of interval arithmetic in world space. The classification of a HOMO 

primitive’s state often degenerates to the conservative HETERO case for voxels distant 

from the primitive’s centre due to the high degree of term dependency [Fig 5.8.1b].

When expressed in local coordinates however, height functbns generally consist of 

independent terms. Interval analysis is far more accurate when performed in local space, 

but cannot be directly applied to the local image of a given world voxel. Whilst the local 

image of a world point under linear transformation remains a point, world voxels become 

not bcal voxels but more general parallelepipeds. The local image of a voxel no longer 

constitutes independent intervals in each dimensbn. This is the domain over whbh interval 

arithmetb is defined. The bcal parallelepiped is conservatively approximated with a local 

voxel bound to allow interval arithmetb in this space.

The local parallelepiped image of a world voxel is easily determined for any linear 

transformation. It is simply the convex hull taken over the pointwise images of the world 

voxel’s vertbes. Such point images may be found with the vector and matrix arithmetb of 

usual linear algebra. Voxels may be taken as 3D vectors over intervals rather than points. 

Linear algebra may be defined for such vectors analogously to that for point vectors. Real 

linear algebra Is generalised to interval linear algebra by simply replacing all real arithmetb 

with the equivalent interval arithmetb. Many of the usual associative and distributive laws 

carry over to this definition. The bcal voxel bound of a world voxel’s parallelepiped image 

is then found by applying the transformation in this linear interval algebra [Fig 5.8.1c]. The 

formal substitutbn of the derived bcal voxel’s intervals into a primitive’s local height
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Fig 5.8.1b: The Accuracy of Interval Analysis 

in World and Local space

Each diagram shows the cross-section of an octtree decomposition down to the surface of a 

cylinder by interval analysis. The shaded regions remain candidates to contain a section of the 

surface. The upper diagram illustrates the over-approximation caused by dependent terms in world 

space. The lower diagram shows the accuracy of decomposition in local space, avoiding such 

dependent terms.
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Fig 5.8.1c: Interval Analysis of 

Linear Algebra

Notation

Symbol

R = [ r i , r s ]

E =  t Px, Py» Pz ]

v = [ V„ %, % ]
L = [ i 1, i j . y

£

Meaning

Real interval between specified infimum Rx and supremum Rs 

Real vector

Voxel or interval vector.

World to local deformation matrix described as column vectors 

World shift component of world to local transform

Derivation

The image of a world voxel under linear transformation to local space is a parallelepiped. A 

voxel bound is calculated for this image to allow interval analysis in local space. Clearly, the 

appropriate local voxel giving the tightest possible fit may clearly be found by generalising the 

transformation’s linear algebra from real to interval arithmetic. A definition is easily derived in 

terms of the previously given interval arithmetic [Fig 5.8.1a].

Fig 5.8.1c 1



The Interval Scaling of a Real Vector to a Voxel

Let V = Kg be the tightest voxel bound of the line segment resulting from the interval scaling of a 

vector. Then clearly

v = [ Rp,, KPy, KPl ]
where the scaling of an interval by a real is defined as before [Fig 5.8.1a].

The Addition of Two Voxels to a Voxel

Let W = U + V be the voxel of values assumed by the addition of two vectors where each ranges 

over a given voxel. Then clearly

W = [ 0,+V„ 0,+Vy, t^Vj
where the addition of intervals is defined as before [Fig 5.8.1a].

The Multiplication of a Voxel by a Real Matrix to a Voxel

Let U = LV be the tightest voxel bound of the parallelepiped resulting from the multiplication of a 

voxel by a real matrix. Then clearly

U = t U  + 0 yl2 + 0 Z[3

where the interval scaling of a real vector to a voxel and the addition of voxels is defined as 

above.

The Vector Shift of a Voxel to a Voxel

Any vector may be taken as a degenerate voxel with no spread. The vector may then be taken to 

shift a voxel according to the addition of voxels given above.
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The Linear Transformation of a Voxel from World to Local Space

Let the linear transformation consist of a vector shift and matrix deformation giving the point wise 

mapping p -> L(p-c). Let U be the tightest local voxel bound of a world voxel’s parallelepiped 

image under this transformation. Then clearly

U = L(V -  c) = LV -  Lc 

where the vector shift and real matrix multiplication of a voxel are defined as above.
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function provides a closer state approximation than over a world voxel. Interval arithmetic 

is easily derived for the state classification of any primitive or construct [Fig 5.8.1dJ.

Over-approximation may still occur however. Transformations to a local space where a 

voxel is a poor approximation of the world voxel’s true parallelepiped image are particularly 

vulnerable. A typical case is a transformation comprising a stretch along a world axis 

followed by rotation through a non-right angle. Excessive approximation results from 

dependencies within the local parallelepiped being ignored over the local voxel bound. 

Customised trivariate interval arithmetic may be defined on voxels to recognise these 

dependencies in specific cases. This can provide a closer approximation of a primitive’s 

height interval over a world voxel.

5.8.2. Interval Analysis of Trivariate Arithmetic

The reader may have noticed that the square of a local point’s modulus is a particularly 

common term in the local height functions of the modelled primitives [APPENDIX B]. 

Whilst the interval assumed by this term over a local parallelepiped may be conservatively 

approximated from that of a local voxel bound, a voxel of poor fit can result in a poor 

approximation. Trivariate analysis provides a closer approximation of this term’s interval. 

Consider the interval of the square of local modulus taken over the parallelepiped image of 

a world voxel under a given linear transform. This interval is clearly non-negative, and will 

always attain a maximum at a parallelepiped vertex. For the special case of a 

parallelepiped containing the local origin it will assume a minimum of zero.

This observation may be exploited by considering world voxels which transform to local 

parallelepipeds centred at the local origin. A voxel may be specified by two vectors. A 

centre vector specifies its location in each dimension, and a radius vector specifies its 

spread. The voxel is then defined as the sum of its centre vector and a world origin 

centred residue voxel of equal radius.

Consider the transformation of a world voxel to local space. This constitutes a vector shift 

followed by a matrix deformation. The shift may be restricted to the voxel centre without
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Fig 5.8.1d: Interval Analysis for 

Conservative State Code Approximation

Notation

Symbol Meaning

L = [ \ M j ]  World to local deformation matrix described as column vectors

£ World centre of primitive instance

P World point

1=  L(p-c) Local image of world point

V World voxel

U = L(V-c) Local voxel bound of world voxel’s parallelepiped image under
linear transformation

A, B Boolean constructs

hA Real height above construct A

Ha Conservative approximation of height interval above construct A

Derivation

Interval analysis is applied to conservatively approximate the interval of each primitive’s local 

height function over the local voxel bound of a world voxel’s parallelepiped image. If this height 

interval is uniformly positive, the world voxel is known to be entirely outside the primitive 

instance. If it is uniformly negative, the world voxel is known to be entirely inside the primitive 

instance. Otherwise the interval contains zero and the world voxel is conservatively taken to 

contain a section of the primitive instance’s surface.

This analysis is generalised from primitives to boolean constructs. The interval arithmetic is 

defined as before [Fig 5.8.1a]. In each case it is a direct analogy of the real arithmetic to test 

whether a point is within an object [APPENDIX B].
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The Plane

Real Arithmetic [APPENDIX B]:

hpune =  ly

Interval analogy:

P̂Une =

The Cube of X extent maxl» Y extent

Real Arithmetic [APPENDIX B]:

hcubc = max
max [lx Xjmj, Xujjn lx}, 
max {ly—Ynuj, Yjnin- ly}, 
max [k-Zmw Zmin-h}

Interval Analogy:

max [0 X Xm, ,̂ Xnun t?x},
Hcube = max «| max [ t l - Y ^ ,  Y ^-O y}, 

max {tjE-Z ^„, Z ^ - O j

The Sphere of Radius R

Real Arithmetic [APPENDIX B]:

ŝphere = I* + ly + lz2 “  R2 
Interval Analogy:

Hspho. = 0 , + 0y2 + 0Z2 -  r j

Fig 5.8.1d

], Z extent [Z . ,Z ]. 1 m in ’ m»xJ

2



The Cylinder of Radius R, Y extent [ Y ^ Y J

Real Arithmetic [APPENDIX B]:

^Cylinder ~  max "

Interval Analogy:

12+12-R2,
m a x  { ly - Y n u n , Y min "’ ly )

^Cylinder =  max -
0 2+02- r2,

max {0y-Y max, Ymin- 0 y}

The Double Cone of Axial Angle a , Y extent lYInIll,Yintt] 

Real Arithmetic [APPENDIX B]:

hCone = max 

Interval Analogy:

(l2+l2)cos2(a )- l2sin2(a)> 
max { ly — Ymax, Yjnjn ly}

n /  (0 2+ 02)cos2(a )-0 2sin2(a),
Hc"' = maXln1ax{0>-Ynl„.Ymi, - 0 >) J

The Torus of Major Axis R, Minor Axis r  

Real Arithmetic [APPENDIX B]:

hT<™= [ l .H H ^ + r 2) ]2 + 4R2(l2-r2)

Interval Analogy:

Rr«™= [ O ^ + O ^ V r 2) ]2 + 4R2(t)2-r2)
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Cut-Aways of Decompositions to the 

Surfaces of Various Primitives 

Using Interval Analysis

Fig 5.8.1d
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Boolean Operations

Real Arithmetic [APPENDIX B]:

union b  min( hA, hg )

Interval Analogy:

union B m in (  B a > B B )

In a heterogeneity test, B A  < 0 -» min( B A , B b  )  =  B A  B < 0 with no need to actually 

calculate B b

Real Arithmetic [APPENDIX B]:

^A  intersect B m a x ( h A , h B )

Interval Analogy:

B a  intersect B =  m a x (  B a . B b  )

In a heterogeneity test, B A  > 0 -» max( B A , B b  )  =  B A  B > 0 with no need to actually 

calculate B b

Real Arithmetic [APPENDIX B]:

^a subtract b  max( hA, ~hB )
Interval Analogy:

B a  subtract B max( B A , B B )

In a heterogeneity test, B A  >  0  —> max( B A , - B b  )  =  B a  subtract b  > 0 with no need to actually

calculate B b

Real Arithmetic [APPENDIX B]:

hA difference b  = max( min( hA, hB ), -max( hA, hB ) )

Interval Analogy:

B a  difference b  = ™ax( min( B A , B b  ), -max( flA, B b  )  )

Fig 5.8.1d



Cut-Aways of Decompositions to the 

Surfaces of Various Sphere CSG Constructs 

Using Interval Analysis

Top Left: Union Top Right: Intersection

Bottom Left: Subtraction Bottom Right: Symmetric Difference

Fig 5.8.1d 6



translating its residue. By linearity, the matrix deformation may then be applied to the 

shifted centre separately from the voxel residue. The former is transformed to a local 

centre in the usual pointwise fashion. However, the world residue voxel is transformed to a 

local parallelepiped centred at the local origin.

The square of local modulus may be expressed as the auto dot product of the local vector 

centre and parallelepiped’s sum. This expands to the sum of three terms: the real auto dot 

product of the local centre; twice the interval over the parallelepiped of the dot product with 

the local centre ; and the interval over the parallelepiped of local modulus squared . The 

first can be evaluated exactly with real linear algebra, whilst the others can be found with 

trivariate interval analysis directly from the parallelepiped vertices without resorting to a 

local voxel approximation.

Whilst this arithmetic is well defined it incurs the calculation of candidate maxima at each of 

eight vertices. The appropriate vertex may sometimes be identified without an exhaustive 

search, but dot product arithmetic is still required to calculate the extreme assumed there. 

Fortunately however the octtree decomposition deals not with arbitrary voxels but a regular 

voxel hierarchy. A simple recurrence relation holds for the maximum of the square of local 

modulus over the origin centred parallelepipeds corresponding to successive octtree 

generations. This relation is division by four, generalising to a recurrence relation over ‘n’ 

generations of division by 4n. The minimum remains zero throughout. The relatively costly 

trivariate arithmetic need only be performed once per primitive for the scene’s root voxel. 

Appropriate intervals are then found at any level of decomposition through division by the 

relevant factor. This factor is propagated down recursion through multiplication by four. 

Where applicable, the state of an object classified as HOMO by univariate and bivariate 

analysis over a local parallelepiped’s voxel approximation may be reclassified with this 

trivariate analysis directly over the parallelepiped.

5.8.3. The Increasing Accuracy of Interval Analysis During Octtree Decomposition

The error of conservative approximation by interval arithmetic in local space decreases with 

voxel size. Each coordinate in a local voxel bound where a height function’s term assumes
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an extreme may be expressed as the sum of the parallelepiped coordinate where the entire 

function assumes that extreme and an error term. Such expressions may be substituted 

back into the height function, yielding a polynomial which may be expanded by the binomial 

theorem. This may be rearranged to express the approximation as the sum of the true 

extreme and a polynomial error expression. Every term of the error expression contains at 

least one coordinate error factor, each of which is bounded by local voxel width. The 

degree of approximation therefore decreases with voxel size, with exact classification in the 

decomposition limit.

5.9. Drawbacks of the Grid Partition

A scene grid partition into uniform voxel cells is the immediate 3D generalisation of a 2D 

raster pixel array. This is a conceptually simple structure and efficient navigation 

algorithms are easily generalised from other well understood applications.

However, the grid partition does not adapt to local scene complexity. A typical scene will 

comprise large coherent regions in which every object is homogeneous. Such regions 

cannot be made any simpler. Their decomposition provides no gain but rather produces an 

excessive number of grid cells. This increases both storage requirements and the average 

number of voxels navigated by a ray and is therefore undesirable. Homogeneous regions 

should ideally be left unpartitioned, motivating a grid of low resolution. The simplification of 

heterogeneous regions to an acceptable level however motivates a grid of high resolution. 

The goal of an efficient decomposition over a homogeneous region is clearly at odds with 

that over a heterogeneous region. The uniform grid partition is too rigid to meet these twin 

needs.

The octtree decomposition has been shown to be an efficient means of generating grid 

partitions. This quickly identifies large homogeneous regions. The octtree decomposition 

ignores such regions to focus attention solely on heterogeneous regions. This adaptive 

decomposition is well suited to the simplification of any scene region. Several researchers 

have proposed the acceleration of ray tracing by the direct navigation of the octtree itself 

[Fujimoto et al;1986: Glassner;1984,1988: Haines;1988]. Several octtree navigation
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algorithms have been proposed, but have tended to be inefficient when compared to the 

navigation of grid partitions [Fujimoto et al;1986: Glassner;1984,1988]. As the 3D 

generalisation of the quadtree, the octtree is perhaps a less familiar structure than the grid 

partition. Many researchers have favoured the grid partition whose navigation and 

construction have been better understood. They do not exploit the advantages of the 

octtree due to the inefficiency of navigation algorithms to date. Chapter six of this thesis 

derives an efficient ray navigation algorithm for octtrees, overcoming this obstacle to allow 

their full exploitation.
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Chapter 6: Octtree Decompositions

Synopsis:

Chapter six addresses the decomposition of a scene by an octtree. Both the use and 

generation of this decomposition are considered. A particularly efficient ray navigation 

algorithm is derived which allows the full expbitation of the octtree.

6.1 The Simplification of the Scene Model with Octtree Scene Decompositions  75

6.2 Previous Octtree Representations and Associated Ray Navigation Algorithms

....................................................................................................................................  75

6.3 The SMART Navigation of an Octtree ...............................................................  79

6.4 The Automatic Generation of an Octtree Scene Decomposition..........................  80

6.5 Data Structures for the Representation of an Octtree........................................  81

6.6 Storage Considerations.....................................................................................  81
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6.1. The Simplification of the Scene Model with Octtree Scene Decompositions

The octtree decomposition facilitates the scene model’s solution in a similar manner to the 

grid partition [Section 5.1]. A box enclosing the scene is decomposed into simpler voxels 

[Fig 6.1a]. A given ray’s solution to the scene model first queries this box for ray 

intersection, if missed none of the scene is significant and the model is solved trivially. 

Otherwise, the ray entrance point is found and transformed from the world to a local 

coordinate system in which the box is a unit cube. The ray is navigated through the leaf 

voxels of the octtree decomposition in path length order [Fig 6.1b; 6.1c]. The objects from 

each leaf voxel’s heterogeneous list are queried in turn for the scene model’s solution. 

Repeated object query is avoided as before [Section 5.1.1]. Each voxel’s heterogeneous 

list is reduced from the total scene count so that costs in object queries are traded for the 

ray’s navigation between leaf voxels. This navigation should be as efficient as possible to 

maximise any computational savings.

6.2. Previous Octtree Representations and Associated Ray Navigation Algorithms

Various algorithms for ray navigation through an octtree have been published 

[Glassner;1984: Fujimoto et al;1986: Haines;1988]. However, these have tended to be 

rather inefficient.

6.2.1. Direct Navigation Between Leaf Voxels under Floating Point Arithmetic

Glassner [1984] published an early paper on simplifying the solution of the scene model 

with octtree scene decompositions. This proposed using Gargantini’s leaf code 

[Gargantini;1982] to store only an octtree’s leaf voxels without the internal node structure. 

Rays were navigated in direct leaps between these leaves. Each leap comprised several 

steps within the associated tree diagram. The ray’s exit point from the current leaf voxel 

was found by intersection with all six clipping planes in multiplicative floating point 

arithmetic. Glassner claimed that only four of these intersections were significant but the 

effort to identify which four outweighed the advantages of eliminating two intersections. 

This claim is rather surprising since only three intersections need actually be considered.
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Fig 6.1a: Non-Empty Voxels in Cut-Aways 

of Alternative Octtree Decompositions for a Given Scene
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Fig 6.1b: The 2D Ray Navigation

of a Quadtree

Fig 6.1b 1



Fig 6.1c: The 3D Ray Navigation

of an Octtree
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These are always those planes in the same octant relative to the voxel centre as the ray 

direction. Moreover, since direction is constant for any given ray the set of significant 

planes may be encoded once per ray in a single octant digit without recalculation over 

every step. The Morton coding scheme is particularly convenient and requires little 

overhead [Figure 5.6.2a]. Each step between leaf nodes was navigated to the 

neighbouring voxel which shared this exit point. The post-step voxel was located via an 

internal point at a given offset from the shared face point. The leaf voxel containing this 

point was located through a hash table with an implicit return to the octtree root. Whilst 

Glassner’s navigation achieved a faster image synthesis than naive ray tracing, the twin 

overheads of multiplicative floating point arithmetic for navigation and hash table look up to 

locate the post-step voxel are clearly counter productive.

6.2.2. Navigation by Single Octtree Steps under Incremental Fixed Point Arithmetic

An incremental algorithm employing a 3D DDA would require only additive arithmetic to 

navigate each step. An enhancement similar to Bresenham’s algorithm could multiply out 

all division from the increment expressions. This would avoid degenerate exceptions. It 

would also uniformly bound all decision variables to minimise numerical inaccuracies in their 

quantisation for maintenance under fixed point arithmetic. The DDA relies on taking 

constant steps of unit cell width along the driving axis within a grid partition. Movement by 

one cell along the driving axis is guaranteed since each is of uniform width. This would be 

a reckless step to attempt between the leaf voxels of an octtree however, since these may 

differ in size. A constant width step along the driving axis would produce a movement over 

several neighbouring leaves of smaller width yet may not escape a leaf of greater width.

The Accelerated Ray Tracing System ARTS [Fujimoto et al;l986] overcame this obstacle 

by dividing each step between leaf voxels into a sequence of single steps within the octtree 

diagram. Two types of step were distinguished. These were a vertical step between 

voxels of different generations sharing the same ray point and a horizontal step between 

sibling voxels to a new ray point [Fig 6.2.2a]. Any post-step voxel was located directly from 

the pre-step voxel. There was no need to return to and search down from the root.
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Fig 6.2.2a: The Navigation of a Tree Decomposition 

by a Sequence of Vertical and Horizontal Steps 

in the Tree Diagram
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Each horizontal step is between siblings voxels of the same size. ARTS exploited this to 

navigate horizontal steps with a 3D DDA. Whilst vertical steps are between voxels of 

different generations, their size differs by a linear factor of two. ARTS exploited this to 

navigate vertical steps with an algorithm which scaled by-products of the 3D DDA by a 

factor of two. This is a particularly simple operation in binary computation. However, the 

details of ARTS’ vertical navigation algorithm have not been published at the time of writing 

this thesis.

ARTS stored octtrees in a format which has been more fully described as Autumnal for the 

2D quadtree [Fabbrinni,Montani;1986]. With the exception of a degenerate single node 

tree, the Autumnal format stores only internal nodes. This compact format occupies just 

under one eighth the space of the regular octtree representation. Moreover, sibling location 

is more efficient in Autumnal format. This facilitates the location of the next voxel after a 

horizontal step. An efficient location is most important in ray tracing where horizontal steps 

occur in ray dependent order between at most half the siblings, skipping over other entire 

sibling branches. Each internal octtree node is represented by an array of eight pairs, one 

per child node in Morton order [Figure 5.6.2a]. Each pair comprises a status code and 

pointer. Fabbrinni [1986] distinguished between three cases of status code for his 2D 

Autumnal quadtrees. The status code was conveniently combined with the paired pointer 

in a signed single field record. ARTS distinguished between four status codes however and 

represented each pair as an explicit two field record. These codes defined the status of the 

scene objects with respect to the associated voxel and differentiated between internal and 

leaf nodes. The codes were HOMOjOUT for a leaf child homogeneously outside every 

object, HOMOJN for a leaf child homogeneously inside an object, HETERO_LEAF for a 

leaf child heterogeneous with respect to an object and HETERO_BRANCH for a similarly 

heterogeneous internal child. The status code defined the list indexed by the paired pointer 

to recursively identify the child’s heterogeneous object list. HETERO_LEAF nodes 

referenced a global heterogeneous object list similar to that described for grid partitions 

[Section 5.5]. HETERO.BRANCH nodes referenced another internal node in the Autumnal
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list. The list indexed by a child in either HOMO state was undefined since such children 

have no heterogeneous objects.

ARTS chose to order these internal nodes breadth first through memory. However, the 

Autumnal representation may be listed in any order convenient to octtree generation. An 

octtree is particularly easy to preprocess in depth first order before image synthesis, whilst 

dynamic generation during ray tracing may lead to an arbitrary fragmentation.

6.2.3. The Efficiency of Previous Octtree Navigation

Horizontal octtree steps were navigated in ARTS with the same 3D DDA as for a unit 

driving axis step in a partition grid [Section 5.2.3]. This did not exploit Bresenham’s 

enhancement so neither avoided exceptions nor bounded decision variables uniformly. 

Experiments have been conducted on ARTS to compare the speed of image synthesis 

when navigating the octtree to that with the grid partition. It was " expected that the octtree 

encoding would have an advantage for cases [of] high scene coherency. This will result in 

a smaller number of cells .... This means tha t... a ray can reach the surface of an object 

by traversing fewer cell?. However, image synthesis was actually found to be slower when 

navigating an octtree than a grid partition. Since horizontal steps were navigated identically 

in each case, the conclusion was that whilst the average step count of navigation may have 

been lower for an octtree," this was outpaced by the cost of [their] vertical traversing of the 

octtreer. It was remarked that a costly vertical navigation could have a significant impact 

on rendering times since " vertical traversing must be performed after at most four cells are 

identified... during horizontal traversing [and] it may be needed as soon as one horizontal 

step is performed. Depending on the depth of the octtree, it may quite often be necessary 

to perform several steps of ascending and descending the octtreeT. Any inefficiencies in 

ARTS’ vertical step navigation cannot be pinpointed in the absence of a detailed description 

of the algorithm. Since this was omitted from the paper mdue to space limitations, the 

algorithm would appear to be somewhat complicated. The complication presumably arises 

from the horizontal navigation of octtrees in sibling-width steps along the driving axis. If the 

post-step sibling were not a leaf, the current ray point would have to be backtracked along
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the ray path to first descendent visited. This would be difficult to achieve in sibling-width 

steps or binary fractions thereof along the driving axis.

Whilst ARTS' navigation of an octtree was less efficient than that of a grid partition, it still 

proved more than thirteen times faster than Glassner*s octtree navigation. This indicates 

the impact of navigation under fixed rather than floating-point arithmetic and simpler 

schemes for locating the post step voxel.

ARTS' navigated vertical steps iteratively. During descent, pointers were recorded in a 

short working array to be recalled during subsequent ascent. The navigation of both 

ascending and descending vertical steps required some arithmetic. Octtrees may be 

recursively navigated top down. Ascending vertical steps then always return to the known 

parent. The completion of a descending vertical step’s recursion automatically takes a 

corresponding ascending vertical step back up the octtree with no need for navigational 

arithmetic. ARTS’ navigation was implemented in non-recursive FORTRAN 77 and did not 

exploit this opportunity to reduce the vertical navigation count.

6.3. The SMART Navigation of an Octtree

The above motivates research for an octtree navigation which is more efficient over vertical 

steps, preferably still maintained in fixed point arithmetic. All decision variables should be 

uniformly bounded to minimise numerical errors in quantisation. This section of the thesis 

derives such an algorithm.

The octtree is navigated by a sequence of single vertical and horizontal steps within the 

octtree diagram as in ARTS. Any post-step voxel is located directly from the pre-step voxel 

without returning to the octtree root. Each step is navigated with a decision vector called a 

Spatial Measure for Accelerated Ray Tracing or SMART. A pair of SMARTs is maintained, 

one navigating vertical steps and the other horizontal steps. As in ARTS, the SMART 

navigation is maintained with integer logic and predetermined increments. Unlike ARTS 

however, these increments are not constant but adapt dynamically to each visited voxel. 

The mathematics of the navigation ensure that the appropriate increments are always
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available in the current recursive environment, and so need not be recalculated over every 

step. Horizontal steps are not navigated in unit increments along a driving axis. Each 

horizontal step only goes as far as the ray exit point from the current sibling, much as in 

Glassner’s navigation [Glassner;1984]. Rash steps which would overshoot several 

descendant leaves in a post-step sibling are avoided. Navigation within the sibling is 

straightforward since backtracking is no longer required. In layman's terms, the SMART 

navigation pays heed to the adage "look before you leajf. Problems in overshooting 

render the driving axis concept rather artificial when applied to an octtree. The SMART 

octtree navigation finally abandons this somewhat anachronistic hangover from the 

navigation of grid partitions.

The SMART navigation theory is somewhat detailed [Fig 6.3a] but leads to a remarkably 

simple implementation. Whilst a textual English description of the algorithm’s derivation is 

somewhat verbose, the program code is concise [Fig 6.3b].

The ray is only navigated between internal nodes. On reaching a leaf node, the associated 

heterogeneous objects are queried in turn for the ray’s scene model solution. Repeated 

object query over leaf voxels is avoided as before [Section 5.1.1].

6.4. The Automatic Generation of an Octtree Scene Decomposition

6.4.1. Specifying the Octtree to be Generated

The essential structure of an octtree is predetermined much as for a grid partition. An 

octtree recursively decomposes a voxel into eight children until one of two termination 

criteria are met. The simplicity criterion checks that the length of the voxel’s heterogeneous 

object list does not exceed some upper bound. Such voxels are considered sufficiently 

simple. Further decomposition is not only unnecessary but would be counter-productive, 

creating many smaller voxels to be stored and navigated. The depth criterion checks for a 

voxel at some maximum depth within the decomposition. Such voxels have not yet 

satisfied the simplicity criterion despite extensive decomposition. Further attempts at 

simplifying this voxel are given up as a bad job to avoid runaway.
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Fig 6.3a: Ray Navigation of an Octtree:

The SMART Algorithm

The Navigation Method

A ray is to be navigated in path length order through the leaf voxels in an octtree decomposition 

of a unit cube, from a known point in a known direction. This is achieved in a recursive sequence 

of vertical and horizontal steps within the octtree diagram. Each type of step is navigated 

according to the components of a vector known as a SMART or Spatial Measure for Accelerated 

Ray Tracing. Each vertical step locates the child octant of the current voxel containing the current 

ray point The current voxel is initially the octtree root. Each subsequent horizontal step locates 

the next sibling navigated by the ray. The entry point into this sibling becomes the new ray point 

The navigation of each sibling recurses down to the appropriate leaf descendants. The navigation 

is maintained incrementally with efficient recurrence relations using values already present in the 

current environment. It is optimised by quantisation to fixed point integer arithmetic.

Notation

The vertical and horizontal SMART navigators are denoted V and H respectively.

Consider the octant in which the ray’s direction falls. In any internal voxel navigated by the ray, 

this octant contains the vertex intersection of the ray’s exit planes from the voxel. This vertex is 

called the exit vertex and the octant is called the exit octant. Let the exit octant have absolute 

Morton digit ‘exit’ [Fig 5.6.2a]. The diagonally opposite octant contains the vertex intersection of 

the ray’s entry planes into the voxel. This vertex is called the entry vertex and the octant is called 

the entry octant. Let the entry octant have absolute Mortpn digit ‘entry’ [Fig 5.6.2a].

Let the ray have a distance vector § = ( x, y, z ) of distances to traverse from its current point to 

the exit planes of the current voxel. All distances are strictly positive. This is simply the current 

ray point vector taken relative to the ray’s exit vertex. Each horizontal step navigates the ray’s 

current point to the first exit plane(s) struck of the current child. Let the ray have direction vector 

A = ( X, Y, Z ) of relative traversal rates across each dimension. All rates are non-negative, and
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the maximum is unitary.

The child of the current internal voxel containing the current ray point is indexed by its relative 

Morton digit with respect to the entry octant [Fig 5.6.2a]. Its absolute Moiton digit is easily 

recovered from this [Fig 5.6.2a]. The bits of the relative digit are concatenated in the order ZYX. 

Let this relative Morton digit be ‘relative_child\ This is initially found by the vertical SMART 

navigator V and is then updated by the horizontal SMART navigator H.

Let each child of the current internal voxel have width ‘w*. Let S € { 1, X, Y, Z }\{ 0 } be a 

context-dependent positive scaling factor. The three vectors V = S6, H = Ax§, wA and the 

comparison variable Sw are forwarded to each stage of the navigation. New values after any step 

are denoted by a tilde superscript, e.g. V represents the updated vertical navigator V. All values 

are maintained with an incremental recurrence relation.

Vertical Step Navigation

If the current voxel proves to be a leaf, the objects in its heterogeneous list are checked for the 

scene model’s solution. Otherwise the current voxel is internal and the SMART navigation 

continues down to the appropriate leaves.

The relative Morton digit of the child containing the current ray point is found according to the 

vertical SMART navigator V. Clearly

relative child = "

<w-> 1 
>w —> 0

<w—» 2 
>w —> 0

<w—> 4 
>w-» 0

’ BIT_OR 

"BIT OR
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Now V = S£ and since S is positive and scaling by a positive factor has no effect on ordering,

relative child = "

<Sw—» 1
Vx = Sx ' >Sw—» 0 b i t o r

<Sw—» 2
Vy = Sy ' >Sw—> 0 ' BIT_OR

*  ̂
<Sw—» 4

Vz = Sz ’ >Sw-» 0
►

Since V and Sw are forwarded directly by the recursive navigation, no multiplication is required 

for their calculation.

Navigation Maintenance down a Vertical Step

After each vertical step the new distance vector £ is taken relative to the child’s exit vertex. The 

new vectors V, H, wA and comparison variable Sw are found by a recurrence from their previous 

values. The scaling factor S and direction vector A remain unchanged.

The vertical step has been navigated by comparing each component of V = S8 with Sw. Consider 

the X dimension. If Sx < Sw the child octant lies on the opposite side of the current voxel’s X 

bisection plane to the entry octant Then X = x so Vx = Sx = Sx = Vx. Similarly, there is no 

change in the contribution of x to H compared with that of x to H. If however Sx > Sw the child 

octant lies on the same side of the X bisection plane as the entry octant Then x = x-w so

Vx = S x = S[x-w] = Sx-Sw = Vx-Sw 

A difference arises between the contribution of x to H compared to that of x to H such that

H = Ax§ = ( X, Y, Z )x( x-w, y, z ) = ( Yz-Zy, Zx-Xz-Zw, Xy-Yx+Yw ) = H + ( 0, -wAz, wAy ) 

The same workings hold for any cyclic permutation of dimensions. The effect on each SMART

navigator may be summed independently across dimensions to give the appropriate new values.

Since the width of each child octant is simply half that of the internal voxel, the new values of wA 

and SW are found by halving the previous values. This may be achieved with a bit shift in integer 

format, which is a particularly simple operation in binary computation.
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Horizontal Step Navigation

Horizontal steps are navigated with the SMARTs maintained after the vertical step so that V := V 

and H := H. The relative Morton digit of the next child navigated by the ray is found by setting 

the bits corresponding to the bisection planes traversed in the horizontal step navigated by the ray. 

These planes are found according to the horizontal navigator H. The horizontal navigation is 

iterated between siblings and a recursive vertical step is navigated down each. This iteration 

continues until some of the bits to be set in the relative child digit are found to be already set. 

The corresponding bisection planes of the current internal node have then already been crossed, 

and so the recursion is complete within this voxel. This branch of the recursive navigation then 

terminates, causing an automatic ascending vertical step to the parent internal node.

The bisection planes traversed by each horizontal step are the first planes simultaneously struck by 

the ray is it leaves the current child. These are found by considering the order in which the three 

bisection planes are struck.

Consider the order in which the Y and Z exit planes are struck (if at all) as the ray leaves the 

current child. Let *Y before Z’, *Y with Z’ and *Y after Z’ denote the Y plane being struck 

before the Z plane, simultaneously with the Z plane, and after the Z plane respectively. Suppose

2
that the Y plane is struck. Let rz = z-y— be the distance remaining to traverse across the Z

dimension to the Z plane at the intersection with the Y plane. Clearly, the Y plane is struck 

before the Z plane when this distance is positive, so that

2
z-y— = rz > 0 <-> Y before Z 

Now Y is known to be positive, being non-negative and moreover non-zero since the Y plane is 

struck. Since scaling by a positive factor has no effect on sign,

Yz-yZ = Yrz > 0 <-> Y before Z 

Suppose instead that the Z plane is struck. Then a similar equivalence may be derived

Zy-zY = Zry > 0 <-> Y after Z

Now

H = A x § = ( X, Y, Z ) x ( x, y, z ) = ( Yz-yZ, Zx-zX, Xy-xY )
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and so Hx = Yz-yZ *r - M Therefore

Hx <

* Yrz> 0 '
> 0 - >  < Zrv< 0 > -4 Y before Z

Yr*= 0
— 0 —4 Zry= 0 * - 4  Y with Z

" Yrz< 0 '
< 0 - »  '

b
Zry> 0 * —> Y after Z

If the ray is parallel to the X axis, neither Y nor Z plane is struck. In this case Hx = 0 indicating 

that they are struck simultaneously, at infinity.

The same workings hold for any cyclic permutation of dimensions. The sign of each component 

in H therefore indicates which of the planes in the other two dimensions is struck first The 

plane(s) traversed by the ray on leaving the current child are found by examining appropriate 

components of H. Superficially there appear to be 33 = 27 possible component sign states. 

However, many of these infer cyclic inconsistencies such as ‘X before Y* yet ‘Y before Z’ and ‘Z 

before Y*. Such inconsistent states never actually arise. There are only thirteen consistent sign 

configurations, each balanced in the sense that either all components are zero or both a positive 

and negative component exist.

The relative Morton digit of the next sibling navigated is determined through a decision tree 

requiring only two component sign examinations:

H*

> 0-» Y before Z iHj

= 0—> Y with Z ^

< 0—> Y after Z ;HV

> 0-> X before Y: X first; relative_child BIT_OR-ED 0012 
= 0-4 X with Y: X, Y first; relative.child BIT_OR-ED 0112 
< 0—> X after Y: Y first; relative_child BIT_OR-ED 0 ^

> 0-4 X before Y: X first; relative_child BIT_OR-ED 0012
= 0-> X with Y: X, Y, Z first; relative_child BIT_OR-ED 1112
< 0-» X after Y: Y, Z first; relative_child BIT_OR-ED IIO2

> 0-> Z before X: Z first; relative_child BIT_OR-ED 1002 
= 0—> Z with X: X, Z first; relative_child BIT_OR-ED 1012
< 0—> Z after X: X first; relative_child BIT_OR-ED 0012

The relative Morton digit is updated by setting the bits corresponding to the planes traversed in the 

horizontal step. If any of these bits are already set, the navigation has exhausted the current
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internal voxel and this branch of the recursion is terminated. Otherwise the current ray point is 

updated to the intersection with the traversed planes within this next sibling.

Navigation Maintenance across Horizontal Steps

After a horizontal step the new distance vector § is the updated current ray point relative to the 

new sibling’s exit vertex. The new vectors V, H and the comparison variable Sw are found by 

recurrence relations from their previous values. The sibling width w and direction vector A 

remain unchanged, as does the vector wA. The scaling factor § is updated after a horizontal step 

to correspond to one of the bisection planes traversed.

There are three cases of maintenance to consider after a horizontal step. Each corresponds to a 

different number of planes traversed.

•  Suppose that exactly one plane is traversed in the horizontal step.

Let this be the X plane. Clearly

x r Y z \§ = ( w, y - * y . )

By selecting S = X all undesirable division is removed from the new vertical SMART

navigator, so that

V = S$ = ( wX, Xy-xY, Xz-xZ ) = (wAXt -H y)

This is to be compared with the new comparison variable

Sw = Xw = wA*

The new horizontal SMART navigator is given by

H = Ax$ = ( X, Y, Z )x( w. y -x .-£ , )

= ( [Yz-Yx.*—]-[Zy-Zx.*^], Zw-[Xz-xZ], [Xy-xY]-Yw )

= ( Yz-Zy, Zx-zX+Zw, Xy-xY-Yw )

= H + ( 0, wAz, -wAy )

Conveniently, the X divided terms in the first component cancel to avoid undesirable

division once more.
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This maintenance employs values already in the current environment. Negation is the only 

arithmetic required. The same workings hold for any cyclic permutation of dimensions.

• Suppose instead that exactly two planes are traversed in the horizontal step.

Let these be the Y and Z planes. The ray then exits through an edge of the child. Clearly,

= ( X_ZY ’ w’ w )

, x   ̂= ( w, w )

By selecting S = Z all undesirable division is removed from the updated vertical SMART 

navigator, so that

V = SB = ( Zx-zX, wZ, wZ ) = ( Hy wA^ wAz )

This is to be compared with the new comparison variable

Sw = Zw = wA*

The new horizontal SMART navigator is given by

H = Ax£”
= ( X, Y, Z )x( x-y.— , w, w ) 

= ( X, Y, Z )x( x—z.-~ , w, w )

= ( Yw-Zw, [ Z x - Z y ] - X w ,  Xw-[Yx-yX] ) 

= ( Yw-Zw, [Zx-zX]-Xw, Xw-[Yx-Yz.— ] )

= ( Yw-Zw, [Zx-zX]-Xw, [Xy-xY]+Xw )

= ( wAy-wAz, Hy-wAj, H^+wAx )

The same workings hold for any cyclic permutation of dimensions.

• Suppose finally that exactly all three planes are traversed in the horizontal step. 

The ray then exits through the child node’s exit vertex. Clearly

$ = (  w, w, w )

Arbitrarily selecting S = X, the updated vertical SMART navigator becomes

V = SB = ( Xw, Xw, Xw ) = ( wA^ wAx> wAx )

This is to be compared with the new comparison variable

Sw = Xw = wA,
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The new horizontal SMART navigator is given by

H = Ax§ = ( X, Y, Z )x( w, w, w )

= ( Yw-Zw, Zw-Xw, Xw-Yw )

= ( wAy-wA*, wAz-wAx, wAz-wAy )

So no matter whether one, two or all three planes are traversed in the horizontal step, the SMART 

navigation is maintained across a horizontal step by the simple addition or subtraction of values 

already in the current environment. Moreover, if the navigation is initially quantised over the 

integers then no subsequent rounding errors can be incurred since there is no division. The 

navigation may therefore be maintained in efficient integer arithmetic.

Fixed Point Quantisation to Optimise Navigation

All steps are navigated according to V = Ax§, H = S§, wA and Sw where S e { 1, X, Y, Z } \  { 0 

}. The navigation may be maintained with efficient fixed point arithmetic if these always fit in 

the appropriate fixed point format Consider a 32 bit signed format as an example, storing 

integers from the range [-231,231). All vectors will fit into this format provided their infinity 

norms lie below a critical bound, 231 in this example.

The direction vector A is fixed, whilst § and w assume their maximum values at the root level. 

Since S e { 1, X, Y, Z } \  { 0 } then IS I < IA I... For any child within an octtree of root voxel 

width R, both l§ L  < R and I wl < R. So for any octtree voxel,

I V L =  ISSL = ISI lf>L < lAIJ*

I H L  = IAx5L < IAI J § L  < IAI^R

lwAI„= IwI I Al„ < IAI.J*

ISwl = ISI IwI < IAI_R 

Therefore all of IV L  , IHIM , IwAL and ISwl are bounded above by IA l«R. This bound is

uniform across all rays. All values will fit as required if both IAl„ and R < 215. This is easily 

ensured when representing real numbers in a mantissa/exponent floating point format such as the 

IEEE standard. The root voxel and ray direction are scaled with a single floating point
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initialisation per ray to make both the root voxel's width and the ray direction's infinity norm 

become rational unity. The fourteen most significant bits are extracted from the relevant 

variable's mantissa with efficient bit masks and shifts. This provides a resolution of 214 = 16384 

graduations. The navigation may proceed after this quantisation under incremental fixed point 

arithmetic.

Invoking the SMART Navigation

The SMART navigation is invoked by an initial vertical step down the root voxel with scaling 

factor S = 1. The vertical SMART V is then the unsealed distance vector §, and the comparison 

variable is the unsealed child width w. This is the canonical choice and avoids the introduction of 

any degenerate zero scaling factor. The unit scaling factor is used until a horizontal step is 

navigated. Horizontal steps identify new siblings for vertical navigation. The scaling factor used 

in any such vertical navigation depends on the bisection planes traversed horizontally in a manner 

avoiding degenerate zero scaling factors once more.
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Fig 6.3b: A ‘C’ Code Implementation of the SMART Algorithm
DEFINITIONS

extern int oct.tree.node(]; 
extern unsigned char entry.octant;

struct discrete_vector { int x, y, z ; )

P  Autumnal Octtree lis t • /
P  Morton d ig it o f  entry octant • /

fdefine BISECT(bit,a,b,c) \
if (V.smart.a <- V_compare) \
{ V.smart.a —  V_corapare; H.smart.b -- wid.dir.c; H_smart.c +- wid_dir.b; ) \
else \

relative_child I- bit

fdefine ONE.PLANE.STRUCK(bit, a, b, c) \
if (relative_child 4 bit) break; else relative_child |- bit; \
V_compare - child_wid_dir.a; \
V_sraart.a - wid.dir.a ; V_smart.b - H_smart.c; V.smart.c - -H_smart.b; \
H_smart.b +- wid.dir.c; H_smart.c —  wid.dir.b;

fdefine X_PLANE_STROCK ONE_PLANE_STRUCK(1,X,y, z) 
fdefine Y.PLANE.STRUCK ONE.PLANE.STRUCK(2,y,Z,X) 
fdefine Z_PLANE_STRUCK ONE_PLANE_STRUCK(4,z,x,y)

fdefine TWO.PLANE.STRUCK (bits, a, b,c) \
if (relative.child 4 bits) break; else relative_child I- bits; \
V_compare - child_wid_dir.c; \
V.smart.a - H_smart.b; V_smart.b - wid_dir.c; V_smart.c - wid_dir.c; \
H_smart.a - wid_dir.b - wid.dir.c; H.smart.b —  wid_dir.a; H_sraart.c +- wid.dir.a;

fdefine Y_Z_PLANE_STRUCK TWO_PLANE_STRUCK(6,x,y,z) 
fdefine Z.X.PLANE.STRUCK TWO.PLANE.STRUCK(5,y, z,x) 
fdefine X.Y.PLANE.STRUCK TWO.PLANE.STRUCK ( 3 , z , X , y)

fdefine THREE.PLANE.STRUCK \
if (relative_child 4 7) break; else relative_child I- 7; \
V.compare - child_wid_dir.x; \
V_smart.x - wid_dir.x; V_smart.y - wid_dir.x; V.smart.z - wid.dir.x; \
H_smart.x - wid_dir.y - wid_dir.z; H_sraart.y - wid.dir.z - wid.dir.x; H_smart.z - wid_dir.x - wid.dir.y; 

fdefine X_Y_Z_PLANE_STRUCK THREE.PLANE.STRUCK

THE PROGRAM P R O P E R --------------------------------------------------  »/

void traverse! index, V_sraart, V.compare, H_sraart, wid_dir ) 
int index;
struct discrete_vector V.smart; 
unsigned int V.compare; 
struct discrete_vector H.sraart; 
struct discrete_vector wid.dir;
{ struct discrete_vector child.wid.dir; 

unsigned char relative_child - 0;

i f (LEAF (index)) { P  Node is a le a f .. query heterogeneous object lis t */ ) 
else
{ BISECT(l,x,y,z) ; BISECT ( 2 ,  y, Z, x) ; BISECT (4,z , X, y) ;

P  Navigates a ray through an oct-tree • /  
P  Parent index • /
P  Vertical navigator • /
P  Vertical navigator comparison * /
P  Horizontal navigator * /
P  Ray direction scaled by child width * /  
P  Vertically propagated • /
P  Relative Morton d ig it * /

P  Node is internal * /
P  F irs t perform vertical step * /

P  H a lf  values fo r  vertical propagation * /V_compare » -  1;
child_wid_dir.x - vid_dir.x»l; child_wid_dir.y - wid_dir.y»l; child_wid_dir.z - vid_dir.z»l; 

traverse
( oct_tree_node[index+(relative_child*entry_octant)),

V_sraart, V_compare, H_sraart, child_wid_dir
) ;

while (relative_child !-7 )
{ if (H_sraart.x < 0)

{ if (H_smart.y < 0) { X_PLANE_STRUCK ) else
if (H_smart.y > 0) { Z_PLANE_STRUCK } else
P  (H_smart.y == 0) • / { Z_X_PLANE_STRUCK }

)
else
if (H_smart.x > 0)
{ if (H_smart.z < 0) { Y_PLANE_STRUCK ) else

if (H_smart.z > 0) ( X_PLANE_STR(JCK } else
p  (H _sm artj »  0) •/ { X_Y_PLANE.STRUCK }

)
else
P  (H jo n a r tj t  —  0) • /
{ if (H.smart.y < 0) { X_PLANE_STRUCK } else

if (H.sraart.y > 0) { Y_Z_PLANE.STRUCK ) else 
p  (H_smart.y == 0) V  { X.Y.Z.PLANE.STRUCK }

)
traverse
( oct.tree.node(indext(relative.child'entry.octant)),

V.sraart, V.compare, H.smart, child.wid.dir
) ;

PThen horizontal steps * /
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These twin termination criteria may be predetermined by subjective choice or refined during 

image synthesis. They will effect both the efficiency of a ray’s solution to the scene model 

and the octtree’s storage requirements.

6.4.2. Assigning the Heterogeneous Object List to a Voxel

A heterogeneous object list is assigned to each leaf voxel in an octtree with the recursive 

method described for each cell in a grid partition [Section 5.4.4]. Heterogeneous objects 

from the parent’s list are once more checked for being heterogeneous to each child with 

interval analysis [Section 5.8]. Octtrees may be dynamically generated by lazy construction 

during image synthesis.

6.5. Data Structures for the Representation of an Octtree

The octtree is stored in Autumnal format [Fabbrinni,Montani;1986] as for ARTS. Internal 

nodes are represented by an array of eight records, one per child in Morton order. Each 

record comprises a pair of fields. These are a status field and pointer field. The status 

defines the list indexed by the pointer. Only two cases of status are distinguished for the 

SMART implementation, as opposed to four by ARTS. These are LEAF status for leaf 

children and INTERNAL for internal children. Each pair of fields is encoded in a single 

integer. The status field occupies the top bit whilst the pointer occupies the remainder. 

Internal children reference back into the Autumnal tree list whilst leaf children reference 

heterogeneous object lists within a global array by the double indirection previously 

described for grid partition cells [Section 5.5]. Leaf children in either homogeneous state 

reference an empty list in this array. Their precise homogeneous state is immaterial to a 

ray’s scene model solution and is not stored.

6.6. Storage Considerations

Heterogeneous list duplications between leaves are all made to reference the same entry 

within the global array rather than separate copies. This minimises the global array’s size 

and is accomplished as before [Section 5.6].
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Intuitively the octtree seems a more compact decomposition than the grid partition. 

However the ARTS paper suggested the grid partition’s relative inefficiency in space 

requirements was insignificant when compared to the greater efficiency of navigation 

schemes proposed therein. It was claimed that "whilst octtree representations can be 

expected to take advantage of the spatial coherence found in most objects... even if this is 

generally the case it will be difficult to predict the resolution at which the octtree encoded 

structure becomes superior. They asserted that "this observation is most important 

because in general it is more time consuming to retrieve information from and traverse the 

octtreeT and that "even at high resolutions it is possible to envisage a scene with many 

objects and tow homogeneity for which the octtree structure will not necessarily be 

justified*. Reference was made to the quadtree complexity theorem [Hunter,Steiglitz;1980] 

but its consequences were not fully elaborated.

The quadtree complexity theorem may be generalised for 3D octtree decompositions with a 

simplicity criterion for termination of zero objects. A voxel is then decomposed if believed 

to contain even a single object surface. The theory essentially provides a bounding 

function for the total octtree node count in terms of the maximum decomposition depth and 

the scene model. This function is a constant multiple of the sum of this depth and the 

number of voxels at this depth containing an object surface. The constant is in the order of 

tens. For all but the most pathologically sparse scenes, any non-trlvial decomposition 

depth is dwarfed by this voxel count and so the latter summand is dominant. An octtree 

decomposition of a sparse scene is clearly more compact than a grid partition anyway. 

The surfaces of smooth objects without fractal effects appear locally planar within any voxel 

whose depth is sufficient to make its size insignificant compared to these objects. An extra 

level of decomposition therefore tends to quadruple this leaf voxel count and hence the 

total node count by the complexity theory. The size of an octtree generated with a less 

demanding simplicity termination criterion will be smaller still and will eventually become 

constant if no objects overlap.
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This compares favourably to the size of grid partition which increases by a constant factor 

of eight for every extra level of decomposition. The size of each scene partition rises 

exponentially with decomposition depth, but the grid partition’s size multiplies at a rate of 8 

-  2s whilst the octtree tends to multiply at a rate of 4 -  23'1. This one dimensional 

decrease in the complexity of the octtree compared to the grid partition is the fundamental 

result of the octtree complexity theory.

Even in the worst case the storage requirement of an octtree decomposition is less than a 

seventh or 14% more than that for a grid partition of the same scene [Fig 6.6a]. Such 

scenes exhibit no spatial coherency at any level above the maximum decomposition depth 

since the simplicity termination criterion is never satisfied before reaching this depth. It is a 

strange scene indeed in which every voxel one level above a non-trivial maximum depth 

contains a single object surface, let alone several. Any such scene would be full of object 

surfaces. If the maximum depth were sufficient to make the size of leaf voxels insignificant 

compared to that of most objects, these objects would form a nearly contiguous mass 

which is hardly a usual scene model. A typical scene will contain extensive spatially 

coherent regions for any non-trivial decomposition depth.

6.6.1. The Lazy Construction of Octtrees

The above comparison in storage requirements only considers decompositions which are 

fully constructed before ray tracing. As previously remarked however, dynamic generation 

by lazy construction is an attractive alternative [Section 5.4.3]. Octtrees are particularly 

amenable to lazy construction. As for grid partitions, lazy construction offers opportunities 

for computational savings. Unlike grid partitions however, the lazy construction of octtrees 

also offers opportunities for storage savings. Whereas the cells of a grid partition are listed 

in given raster order, the internal nodes of an octtree may be listed in any convenient order 

[Section 6.2.2]. Octtree storage need only be allocated as each internal node is generated, 

maintaining a contiguous block of used memory without wasted holes. Since a grid 

partition is held in given raster order however, the entire storage between any two 

navigated cells must be allocated including those which have not yet been navigated. The
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Fig 6.6a: Relative Storage Requirements of

the Octtree and Grid Decomposition

The octtree decomposition ignores homogeneous regions of a scene to focus onto object surfaces.

It therefore adapts to local scene complexity and may often require less storage than an

indiscriminate grid partition over all scene regions.

An equation is derived to indicate when such situations arise. This also shows that even in the 

worst case of a totally degenerate scene, the octtree requires just under one seventh more storage 

than the grid partition.

Consider the decomposition of a given scene’s bounding voxel to maximum depth ‘D’. The 

storage requirement for an octtree will depend on the distribution of leaf voxels through the levels 

down to this depth.

Let (LiJiS) be the set of leaf voxel counts at each level. The root is at level *D\ the root’s 

children at ‘D - l\  the grandchildren at *D-2’, and so on down to level ‘O' of maximum resolution.

The voxel leaves partition the grid of 8° cells over the scene’s bounding voxel. The leaf counts

d  . D
are therefore constrained by the relation 8° = Let the total leaf count be L = ]£Li and the

i=0 i=0

total internal node count be I.

Let Octtree(D) and Grid(D) be the storage requirements of an octtree and grid partition 

respectively. Storage is measured by total pointer count.

In Autumnal format, Octtree(D) = 81. Consider constructing the octtree bottom-up from a pool of 

nodes initialised with the leaves. A group of eight siblings is removed and merged to an internal 

node which is returned. This decrements the pool count by seven, and is repeated until only the

octtree root remains. Then L-7I = 1 —» I = Therefore
7

Octtree(D) = -52^11 =
• '  i=0

which varies with the leaf distribution.

Clearly however, Grid(D) = 8° is constant for a given maximum decomposition depth.
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These requirements may be compared by finding the extra storage of the octtree as a fraction of 

the grid’s storage. Then

8(£L r l)-7.8D £ L r O + ? 8D>
Octtree(D) -  Grid(D) _ t=o____________ i=o______8

Grid(D) "  7.8° "  7 fiD
8 8

The octtree is the more compact decomposition if this is negative. The leaf count distribution will 

then be such that

i L i  < 8°
i=0 8

Consider the worst case for an octtree of maximal extra storage requirement relative to a grid 

partition. This clearly arises when leaf voxels are only present at level zero. Then

J _ 8 °  _  i
oD. t t T ^ . Octtree(D) -  Grid(D) 8 1 1 ^ 1

Lo -  O ,  U r  ■ j m v ----------------    n --- -  T -----n -----  <  TGnd(D) _7 gD 7 _7 gD 7
8 8

The octtree’s storage requirement is then just under a seventh greater that of a grid. Such a scene 

would have extremely low spatial coherency.

Consider instead the general case. From the leaf distribution constraint,

8° = 2^ i8 ‘ = Lo+2^8‘ a L0+8XL,
i=0 i= l i= l

7Lfft8D D

8 i=0

So from the above condition, the octtree will be the more compact decomposition if

The octtree is therefore the more compact decomposition if the leaf count at level zero is below a

guaranteed break even point such that

8+6 8°L0 < — j —  = guaranteed_break_even(D)

This guaranteed break even point increases at a constant exponential rate of eight with maximum 

decomposition depth.
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All voxels at level zero are leaves. None of their predecessors are believed to contain fewer 

object surfaces than demanded by the simplicity criterion. Consider how this leaf count behaves 

with increasing maximum decomposition depth. At first, all eight children spawned from a voxel 

may still fail the simplicity criterion. The count may then well grow at an exponential rate of 

eight in parallel with the guaranteed break even point However, a stage will eventually be 

reached where voxels of high resolutions are significantly smaller than the scene objects. Provided 

the object surfaces are smooth and without fractal characteristics they will appear locally planar 

within these voxels. Several of the children spawned from such a voxel will finally satisfy the 

simplicity criterion. The growth of the leaf count at level zero will then tail off, and may indeed 

stop for an undemanding simplicity criterion. At some critical depth this leaf count will fall below 

the guaranteed break even point, since the latter keeps growing at an exponential rate of eight. 

The octtree will therefore always be a more compact decomposition beyond some critical 

maximum depth for a scene containing such objects.
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storage array for a grid partition would usually be allocated before tracing the first ray. 

Extensive sections of this array corresponding to cells never actually navigated would 

remain unused and constitute a waste of storage. The dynamic generation of a grid 

partition would have to hold the octtree decomposition throughout ray tracing to dynamically 

assign voxel lists. Since the octtree may be discarded after preprocessing a grid partition, 

the lazy construction of a grid partition would actually require more storage than 

preprocessing.

The octtree’s greater flexibility offers not only the opportunity of dynamic generation but 

also dynamic refinement. The computational costs of ray tracing leaf voxels may prove 

unacceptably high if these regions have not been made sufficiently simple. If so, the 

termination criteria can be made more demanding during ray tracing to increase local scene 

simplification and decrease future costs. This is easy for the arbitrarily ordered octtree 

which may be supplemented with the refined internal nodes as generated. Some 

researchers commence ray tracing with a single leaf voxel containing the entire scene 

which is progressively decomposed during ray tracing [Lathrop;1988]. Dynamic refinement 

is difficult for the grid partition however since this must be maintained in given raster order. 

An entire cell array would have to be reallocated for any refined resolution.

6.6.2. Efficient Use of Memory

Technological developments are providing an on-going increase in available memory. This 

extra storage allows scene models to be decomposed to ever more extensive depths. The 

octtree decomposition makes better use of storage than the grid partition at these greater 

depths. The octtree is efficiently navigated by the new SMART algorithm and therefore 

seems the more attractive decomposition in such circumstances.
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Chapter 7: The Success of Implementations

Synopsis:

Chapter seven describes the success of the proposed acceleration techniques when 

implemented. Experimentally measured data are presented for the synthesis of four 

case studies, together with predictions of performance for more general scenes. The 

question of which acceleration technique is preferable is addressed in the light of 

these findings.
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7.1. A Test Bed for Acceleration Techniques

A classical naive ray tracer [Whitted;1980] was implemented from scratch as a test-bed for 

the proposed acceleration techniques. It was written in the programming language ‘C, a 

considerable undertaking which resulted in over 170k of source code. The host machine 

was a High Level Hardware Orion mini-computer running under the UNIX 4.2 BSD 

operating system. This machine was upgraded from an Orion-1 to an Orion-1/05 with a 

CLIPPER 32-bit microprocessor during this research. As a rough guide, the former is 

comparable in power to a VAX 11/750 and the latter to a VAX 8600. All experimental 

results given in this chapter are for the Orion-1/05. The source code should easily transfer 

to other machines since it does not rely on any graphics kernal such as GKS. Textual 

scene and view model specifications [Fig 2.1a;2.1b] are accepted as input to synthesise a 

raster image in a simple 24-bit pixel array with a standard header as output.

7.2. The Implementation of Acceleration Techniques

Three upgraded versions of this ray tracer have been fully implemented to test the 

proposed acceleration techniques. These exploit the Huffman derived bounding volume 

hierarchy [Chapter 4], grid partition [Chapter 5] and octtree decomposition [Chapter 6] in 

turn. This software has also been used extensively by other researchers at Bath with a 

requirement for realistic image synthesis. For example, 420 frames have been synthesised 

for an animated film of several hundred objects [John;1989], as have many images of a 

digitised face model containing several hundred polygons [Patel;1989].

These implementations work in two stages. The first stage converts the scene and view 

models from textual to a machine format and automatically generates an appropriate scene 

decomposition. The second stage synthesises an image by navigating this decomposition 

for accelerated ray tracing. Lazy construction has not yet been implemented due to 

limitations in time, but where applicable this should not present any problems.

This division of tasks separates the costs of constructing a decomposition from those of 

navigation, allowing an independent evaluation of each. It also proves convenient for the
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synthesis of several views of a static scene. For example, in the synthesis of several 

frames for an animated lly-by’ of a static scene only the view model need be reprocessed, 

avoiding the costs of repeated scene decomposition.

7.3. Criteria tor Assessing the Success of the Proposed Acceleration Techniques

Any acceleration technique is successful if the savings gained exceed any extra overheads 

incurred. Scene decompositions provide savings in synthesis times by reducing the 

average number of objects queried by each ray and hence scene model solution time per 

ray. Ail three proposed decompositions proved to reduce synthesis times by orders of 

magnitude. Overheads are incurred both in computation for the construction and navigation 

of a decomposition and in memory for storage. The relative importance of these costs will 

depend on the local environment.

Differences in synthesis times between an accelerated technique and naive ray tracing can 

arise from many factors outside the scope of a scene decomposition. The scene model is 

locally simplified by a decomposition to reduce the number of objects queried by each ray. 

However, the degree of simplification also depends on the number of objects in the entire 

scene and their size. Moreover, scene model solution times per ray depend not only on 

the number of object queries, but also the objects’ geometric complexity, the cost of 

navigating any scene decomposition and of course the rate of computation on the host 

machine. Total synthesis times also depend heavily on the number of rays traced which is 

outside the scope of these scene decompositions. Primary view ray count increases with 

an image’s pixel count and the number of samples taken per pixel. The number of view 

rays spawned over successive generations increases with primary view ray count, the 

coverage of reflective and refractive objects in the scene, and the shading tree’s cut-off 

depth, illumination ray count varies with view ray count, the coverage of object surfaces, 

the number of light sources and the degree of culling by fine tuning techniques.

Before assessing the degree of acceleration obtained by navigating a scene decomposition 

over naive ray tracing by difference in synthesis times, any disparity must be known to 

arise from the use of the scene decomposition rather than any of these other factors. This
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may be ensured by comparing synthesis times for the same images on the same hardware, 

so that all other factors remain constant. The degree of acceleration gained with a given 

scene decomposition may then be measured by expressing the synthesis time with the 

decomposition as a percentage of that for naive ray tracing. This is called the image’s 

relative synthesis time under the decomposition.

7.4. Experimental Measurements for Four Case Studies

Experimental measurements are presented for four case studies [Fig 7.4a-d]. In each case 

the test image is synthesised at 512x512 pixels by navigating the three proposed scene 

decompositions. The acceleration of image synthesis proved so great that control times for 

naive ray tracing were impractical to measure at this resolution. Whilst accelerated 

synthesis never took more than a few hours, attempts at naive ray tracing often remained 

incomplete even after running for several days as a background job. Other research 

applications on the Orion often caused a crash or necessitated a reboot before this naive 

synthesis could finish. However, average synthesis time per traced ray may be expected to 

be independent of image size. Reliable estimates of naive ray tracing times at 512x512 

pixel resolution are therefore presented as times measured for smaller 32x32 pixel images 

and scaled in proportion to image size. Experimental verification for accelerated image 

synthesis indicates that such estimates are accurate to within a few percent.

The four scenes are of varying object count and hence scope for local scene simplification. 

The most complex scene contains 7832 objects [Fig 7.4a] and is chosen from a proposed 

data base of test pieces [Haines;1987]. The next two scenes contain 5555 objects [Fig 

7.4b] and 320 objects [Fig 7.4c] respectively, and were constructed to test the ray tracer 

implementations. The least complex scene contains 106 objects [Fig 7.4d] and is from a 

real application [John;1989].

Whilst only one Huffman-derived bounding volume hierarchy may be automatically 

generated from a given scene, many different grid partitions and octtree decompositions 

may be generated offering different degrees of local scene simplification. There is a 1-D 

spectrum of possible grid partitions, parameterised by cell depth in the decomposition, and
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Fig 7.4a: Case Study 1

Experimental Results for Image Synthesis

Case Study 1 7832 Objects 1012542 Rays Traced

Cost

Acceleration (days:hours:minutes:seconds) Storage
Technique Time (Kbytes)

(% Column Maximum) (% Col. Max)

Construction Image Construction Disk
Synthesis + Synthesis Space

Naive 66:00:00:00 66:00:00:00
nja n/a

CEstimate) 100 100

Bounding 1:39:14 2:34:09 4:13:23 354
Volume

Hierarchy 100 0.16 0.27 14

Grid 4:02 3:16:16 3:20:18 1143
Partition
Depth 6 4.1 0.21 0.21 44

Octtree 20:45 1:50:19 2:11:04 2596
Simplicity i f

Depth 9 21 0.12 0.14 100

t  A voxel is decomposed only if its heterogenous list length exceeds 1 

Fig 7.4a 1



Case Study 1: The 7382 Object Scene

Fig 7.4a 2



Case Study 1: A Perspective View of the 

Bounding Volume Hierarchy



Case Study 1: A Parallel Projection of 

Non Empty Cells in the Grid Partition

Fig 7.4a



Case Study 1: A Parallel Projection of 

Non Empty Voxels in the Octtree Decomposition

Fig 7.4a 5



Fig 7.4b: Case Study 2

Experimental Results for Image Synthesis

Case Study 2 5555 Objects 433169 Rays Traced

Cost

Acceleration (days: hours: minutes:seconds) Storage
Technique Time (Kbytes)

(% Column Maximum) (% Col. Max.)

Construction Image Construction Disk
Synthesis + Synthesis Space

Naive 22:09:00:00 22:09:00:00
nla nla

(iEstimate) 100 100

Bounding 40:19 1:05:34 1:45:53 245
Volume

Hierarchy 100 0.2 0.33 22

Grid 10:18 59:29 1:09:47 1096
Partition
Depth 6 26 0.18 0.22 100

Octtree 10:10 56:55 1:07:05 250
Simplicity 0 t

Depth 6 25 0.18 0.21 23

t  A voxel is decomposed only if its heterogenous list length exceeds 0 

Fig 7.4b 1



Case Study 2: The 5555 Object Scene

Fig 7.4b 2



Case Study 2: A Perspective View of the 

Bounding Volume Hierarchy



m

Case Study 2: A Parallel Projection of 

Non Empty Cells in the Grid Partition or 

Non Empty Voxels in the Octtree Decomposition

Fig 7.4b 4



Fig 7.4c: Case Study 3

Experimental Results for Image Synthesis

Case Study 3 320 Objects 376995 Rays Traced

Cost

Acceleration
Technique Time

(days:hours:minutes:seconds) 

(% Column Maximum)

Storage
(Kbytes)

(% Col. M ax)

Construction Image
Synthesis

Construction 
+ Synthesis

Disk
Space

Naive 

(iEstimate)
n/a

1:23:00:00

100

1:23:00:00

100
nla

Bounding
Volume

Hierarchy

9

65

51:01

1.8

51:10

1.8

14

13

Grid 
Partition 
Depth 6

2:19

100

24:31

0.87

26:50

0.95

1061

100

Octtree 
Simplicity Of 

Depth 6

2:19

100

27:48

099

30:07

1.1

172

16

t  A voxel is decomposed only if its heterogenous list length exceeds 0 

Fig 7.4c 1



Case Study 3: The 320 Object Scene

Fig 7.4c



Case Study 3: A Perspective View of the 

Bounding Volume Hierarchy



Case Study 3: A Parallel Projection of 

Non Empty Cells in the Grid Partition or 

Non Empty Voxels in the Octtree Decomposition

Fig 7.4c 4



Fig 7.4d: Case Study 4

Experimental Results for Image Synthesis

Case Study 4 106 Objects 676894 Rays Traced

Cost

Acceleration (days:hours:minutes:seconds) Storage
Technique Time (Kbytes)

(% Column Maximum) (% Col. Max.)

Construction Image Construction Disk
Synthesis + Synthesis Space

Naive 1:22:00:00 1:22:00:00
nja nla

(Estimate) 100 100

Bounding 1 2:06:18 2:06:19 9
Volume

Hierarchy 0.18 4.6 4.6 0.64

Grid 2:18 1:26:28 1:28:46 1053
Partition
Depth 6 25 3.1 3.2 75

Octtree 9:13 1:35:13 1:44:26 1410
Simplicity Of

Depth 7 100 3.4 3.8 100

t  A voxel is decomposed only if its heterogenous list length exceeds 0

Fig 7.4d 1



Case Study 4: The 106 Object Scene

Fig 7.4d 2



Case Study 4: A Perspective View of the 

Bounding Volume Hierarchy



Case Study 4: A Parallel Projection of 

Non Empty Cells in the Grid Partition

Fig 7.4d 4



Case Study 4: A Parallel Projection of 

Non Empty Voxels in the Octtree Decomposition

Fig 7.4d 5



a 2-D spectrum of possible octtrees, parameterised by the twin termination criteria of a 

voxel’s maximum permitted depth and ‘simplicity’ or maximum permitted heterogeneous list 

length. The grid partition is constructed to a depth of six for each test piece, requiring a 

one Mega-byte cell array. This provides a reasonable degree of decomposition. Each 

further depth of decomposition would require eight times more memory. This could not be 

feasibly allocated on the Orion as exclusive primary storage to the extended image 

synthesis. However, the octtree decomposition is more flexible in its demands on memory. 

A suitable octtree is tailored for each test piece to provide an adequate degree of local 

scene simplification within reasonable storage space. The termination criteria are given for 

each test piece.

7.5. An Analysis of the Experimental Results

Various significant observations may be drawn from the experimental results [Fig 7.4a-d].

7.5.1. The Acceleration of Image Synthesis

The most fundamental observation is that each scene decomposition succeeds in a 

dramatic acceleration over naive synthesis for every test scene. Estimated total times for 

naive ray tracing range from just under two days to over two months. Times for the scene 

decompositions range from about half an hour to four hours, and from 0.14% to 4.6% of 

their estimated naive counterparts.

7.5.2. The Influence of Object Count on Acceleration

The degree of acceleration achieved clearly increases with object count. Relative times for 

the scene decompositions are between 3.2-4.6% of estimates under naive synthesis for the 

106 object scene [Fig 7.4d], 0.95-1.8% for the 320 object scene [Fig 7.4c], 0.21-0.33% for 

the 5555 object scene [Fig 7.4b] and 0.14-0.27% for the 7832 object scene [Fig 7.4a]. This 

is to be expected due to the increased opportunity of avoiding expensive object 

intersections when solving the scene model. A comparison of the experimental results 

between acceleration techniques reveals further interesting observations.
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7.5.3. A Comparison of Total Times

Consider the total construction and synthesis times. Total times for the bounding volume 

hierarchy always exceed those for the grid partition and octtree. The grid partition achieves 

the fastest times for scenes of low object count, but is progressively superseded by the 

octtree for more complex scenes. Considering the test scenes by increasing object count 

again, total times for the grid partition decrease in the sequence 3.2%, 0.95%, 0.22%, 

0.21% of estimates for naive synthesis, and for the octtree in the sequence 3.8%, 1.1%, 

0.21%, 0.12%. The superiority of the octtree is to be expected at high object count since 

more local scene simplification is achieved within a decomposition of bounded size.

7.5.4. A Comparison of Construction Times

Consider the time spent in the construction of these decompositions. Construction times 

for the bounding volume hierarchy grow rapidly with object count, from one second to over 

an hour and a half. This is to be expected due to the complexity of allowing for 

dependencies between many bounds in the construction of an efficient hierarchy. 

Construction times for the grid partition and octtree are more stable, with the former varying 

between about two and ten minutes, and the latter between two and twenty minutes. 

These times are clearly influenced by factors other than object count. The construction of 

the grid partition takes over ten minutes for the 5555 object scene [Fig 7.4b] but less than 

five minutes for the 7832 object scene [Fig 7.4a]. Similarly, octtree construction takes over 

nine minutes for the 106 object scene [Fig 7.4d] compared to under three minutes for the 

320 object scene [Fig 7.4c].

7.5.5. A Comparison of Synthesis Times

Consider the image synthesis times when tracing rays through these decompositions. 

Suitable choices of octtree decomposition consistently provide superior synthesis times to 

the bounding volume hierarchy. The less flexible grid partition achieves the same for all but 

the scene of highest object count [Fig 7.4a]. This is not surprising since the degree of local 

scene simplification within the fixed depth grid partition may be expected to decrease with
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object count. The depth of a memory-intensive grid partition is severly limited by the 

amount of available storage, unlike the more memory-efficient octtree. The synthesis of an 

animated fly-by of this scene would be more efficient with the bounding volume hierarchy 

than the grid partition beyond a critical number of frames, but would always be most 

efficient with the octtree. The grid partition provides the fastest synthesis for scenes with 

low object count, but is progressively superseded by the octtree for more complex scenes 

once more.

7.5.6. A Comparison of Storage Requirements

Finally, consider the storage requirements for these decompositions. The bounding volume 

hierarchy has the lowest requirement for each test piece, despite taking the greatest 

construction times for the two scenes of greatest object count. The requirement increases 

approximately linearly with object count, but exceeds this trend for the scene of lowest 

object count [Fig 7.4d] where bounds are extensively used within objects. The grid 

partition’s requirement constitutes a one Mega-byte or 1024K cell array and a variable 

amount of storage for the distinct heterogeneous lists. The former is consistently dominant 

and the total requirement increases marginally with object count from 1053K to 1143K. 

The octtree requires a variable amount of storage both for the Autumnal representation of 

its structure and the distinct heterogeneous lists. The requirement is less than a quarter of 

the grid partition’s when constructed under identical termination criteria whilst construction 

and synthesis times are roughly equal [Fig 7.4b,cj. Moreover, the octtree’s requirement is 

far less than the grid partition’s would be for deep decompositions [Fig 7.4a,d].

7.6. Predictions for the General Performance of Acceleration Techniques

Many factors outside the scope of a scene decomposition can influence synthesis times for 

a given scene, as previously remarked [Section 7.3]. This complicates any attempt to 

extrapolate data measured from case studies to a general scene. To be at all reliable, this 

would require the synthesis of more ‘bench mark’ case studies than feasible.
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The number of rays traced and the computational rate of the host machine have a 

particularly significant influence on synthesis times. Traditionally, researchers have 

presented experimental data for their own case study images on their own hardware. 

These case studies vary greatly in nature, and a wide range of machines of disparate 

power are present throughout the computer graphics research community. Some 

researchers have synthesised images with a 4096 processor array [Williams et al;1986]. 

Any attempt to draw meaningful conclusions from comparisons in synthesis times is 

complicated when many such factors vary. A data base of test scenes has been proposed 

[Haines;1987]. However, this has not yet entered into wide use and is hence of limited 

application in comparing the acceleration techniques proposed by different researchers. 

Moreover, the data base addresses only simple scene and view models without CSG, 

stretch and shear deformations, or texturing. Whilst the synthesis of such images may be 

accelerated by abandoning support for such sophistication, such restriction is clearly 

undesirable.

However, simple models may be constructed to predict the behaviour of the proposed 

acceleration techniques in response to a variation in just one factor of interest. These 

predictions may be verified experimentally to indicate which decomposition is preferable in 

the general case.

7.7. The Influence of Object Count on Performance

A realistic model of a scene may include thousands of objects to provide detail. The 

influence of object count on the performance of image synthesis is of major importance to 

many applications. A table of predictions is given for the influence of object count under 

the assumption that all other determining factors remain constant [Fig 7.7a]. The derivation 

of this table and other associated assumptions are given below, with some experimental 

verification of the predictions.
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Fig 7.7a: Predictions of the Influence of Object Count 

on the Performance of Image Synthesis

General Case ‘N’ Objects Other Factors Constant

Acceleration

Technique

Cost

Time Storage

Construction Image
Synthesis

Disk
Space

Naive n/a 0(N) n/a

Bounding
Volume

Hierarchy
0(N2) 0(log(N)) 0(N)

Grid
Partition 0(N) 0 (1) 0 ( l) t

Octtree 0(N) 0 (1) o m

t  Constant but large

$ But no more than — greater than for the grid partition, and generally less.

Fig 7.7a 1



7.7.1. Construction Times

The construction of the Huffman derived bounding volume hierarchy repeatedly identifies 

the optimal pair of bounds to merge until just one bound remains. The identification of 

each successive pair avoids an exhaustive search where possible but may be expected to 

consider some fraction of the active bounds. Moreover, the exhaustive search remains the 

catch-all last resort for several tasks. The identification of each pair may be expected to 

incur costs which are linear in bound count, giving a total construction cost which is 

quadratic in object count. This complexity arises from allowing for dependencies between 

bounds.

Graphs are given for construction times measured experimentally from scenes containing a 

tree built from progressively more objects with fractal techniques [Fig 7.7.1a]. The plot of 

the logarithm of construction time against the logarithm of object count indicates a linear 

relationship of slope = 2. Construction times are thereby verified to be in proportion to 

object count raised to this power. Tests for other scenes yield similar results.

Whilst this rapid growth is undesirable, construction times were always dominated by the 

savings gained during the synthesis of all the case studies [Fig 7.4a-dj.

The grid partition is generated with an octtree decomposition whose simplicity criterion for 

termination demands that a voxel has an empty heterogeneous list. Assuming that the 

octtree is generated under similar termination criteria, their construction times may be 

expected to be approximately equal.

Each object is considered independently during the construction of an octtree 

decomposition. There is no dependency on any other object. The time required to allow 

for an object will depend on the number of leaf voxels containing a section of its surface. 

This depends on the object’s surface area which is assumed to be constant. Construction 

times are therefore predicted to increase linearly with object count.

A graph is given for construction times measured experimentally from scenes containing 

progressively more spheres of equal size, randomly dispersed within a given box [Fig 

7.7.1b]. For each scene an octtree is constructed recursively until the current voxel is at
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Fig 7.7.1a: Hierarchy Construction Time

is found to be Quadratic in Object Count

Y = Hierarchy Construction Time (seconds)
400

~  Fitted 
K Actual

0 3000
X = Object Count

Y = log (Hierarchy Construction Time (seconds))
6

— Fitted 
13 Actual

-4

0 8
X = log (Object Count)

Fig 7.7.1a 1



Fig 7.7.1b: Octtree Construction Time

is found to be Linear in Object Count

Y = Octtree Construction Time (seconds)
70 _

-Fitted 
13 Actual

2000
X = Object Count

Fig 7.7.1b 1



depth six or has no heterogeneous objects. The plot of construction time against object 

count verifies the predicted linear relationship.

7.7.2. Image Synthesis Times

Naive ray tracing solves the scene model for a given ray with an exhaustive object search. 

This is known to result in synthesis times which are linear in object count [Kay,Kajiya;1986]. 

This high tariff is the very motivation for scene decomposition.

Each node query within a bounding volume hierarchy provides the opportunity to reject an 

entire branch of objects from the scene model’s solution for a given ray. Since the depth of 

such a hierarchy increases only logarithmically with object count, synthesis times may be 

expected to behave in the same manner.

Graphs are given for synthesis times measured experimentally from the sequence of 

scenes described previously containing a tree built from progressively more objects [Fig 

7.7.2a]. Each image is synthesised at 512x512 pixels. The plot of synthesis time against 

the logarithm of object count indicates an approximately linear relationship [Fig 7.7.2a]. 

Synthesis times are thereby verified to be linear in the logarithm of object count.

This stow growth in synthesis times is preferable by far to the linear growth of naive ray 

tracing, but will never level out. Many insignificant objects may be rejected from the scene 

model’s solution by a single bound query, but only after this query has been made. Since 

insignificant objects are considered before being rejected, synthesis times may be expected 

to keep increasing with object count in general. Moreover, the time taken for the Huffman- 

derived construction of such a hierarchy has been shown to grow rapidly with object count.

Insignificant objects need never even be considered in the navigation of a grid partition or 

octtree. Only heterogeneous objects within a local region of the scene come under scrutiny 

at any stage. The solution of the scene model for a given ray generally constitutes an 

efficient navigation through empty local regions until a region with some heterogeneous 

objects is reached. Assuming the degree of local scene simplification is sufficient, the 

number of heterogeneous objects in this region will not only be tow but also independent of
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Fig 7.7.2a: Image Synthesis Time with the Hierarchy

is found to be Logarithmic in Object Count

Y = Synthesis Time (seconds)
3000

— Fitted 

53 Actual

0 3000
X = Object Count

Y = Synthesis Time (seconds)
3000_
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S3 Actual

0 8
X = log (Object Count)

Fig 7.7.2a 1



the total object count in the scene. Moreover, the scene model solution will often be solved 

within this region, and the task is then complete. The number of heterogeneous objects in 

other regions of the scene is of no importance. Synthesis times may therefore be expected 

to be independent of object count. Indeed, experimental results for ARTS [Fujimoto et 

al;1986] indicate that in exploiting the grid partition "when the number of objects is very 

large, ray tracing - despite its reputation for inefficiency - actually becomes faster than other 

[incremental scan line] method

Synthesis times have been measured experimentally for two scenes with equivalent octtree 

decompositions. One contains a single torus whilst eighty tori are distributed around a 

spline path in the other. The pixel coverage of the single torus is made approximately 

equal to that of the eighty tori to prevent any difference in costs incurred through the 

spawning of illumination rays, shading calculations and so on during synthesis. Each scene 

is decomposed with an octtree until the current voxel is at depth seven or has an empty 

heterogeneous list, and an image is synthesised at 512 x 512 pixels. The synthesis of the 

single torus image [Fig 7.7.2b] took just over 33 minutes and traced just over 470 thousand 

rays, whilst the synthesis of the eighty tori image [Fig 7.7.2c] took just over 31 minutes and 

traced just under 470 thousand rays. Synthesis times are thereby verified to be 

independent of object count in this case.

Grid partitions of these scenes to depth six proved insufficient to make synthesis times 

independent of object count. The synthesis of the single torus image took several minutes 

less than that of the eighty tori image. Synthesis times may be expected to become 

independent of object count for grid partitions of greater depth, but experimental verification 

of this has been precluded by limitations in memory. However, experimental results for 

ARTS [Fujimoto et al;1986] have verified that given sufficient depth, grid partitions do make 

synthesis times independent of object count.

The prediction of synthesis times being independent of object count is most encouraging. 

Absolute synthesis times then depend on factors which may be addressed separately, such 

as the computational power of the host machine. The on-going increase in hardware
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Fig 7.7.2b: A Single Torus Scene 

Synthesis took 33 minutes with an 

Octtree Decomposition to Depth 7, Simplicity 0

Fig 7.7.2b 1



Fig 7.7.2c: An Eighty Tori Scene 

Synthesis took 31 minutes with an 

Octtree Decomposition to Depth 7, Simplicity 0

:

Fig 7.7.2c



technology presents the possibility of real time image synthesis. The advent of parallel 

processing systems has made this prospect particularly feasible since ray tracing is highly 

parallelisable [Section 3.4].

7.7.3. Storage Requirement

The Huffman-derived bounding volume hierarchy is built from given leaf bounds as a binary 

tree. Each bound requires uniform storage, and the total count is one less than twice the 

leaf count. The storage requirement of the bounding volume hierarchy therefore increases 

linearly with object count.

The storage requirement of a grid partition constitutes a cell array of fixed size for given 

decomposition depth and a variable amount of storage for the cells’ heterogeneous object 

lists. The former generally dominates so the storage requirement of the grid partition is 

approximately independent of object count [Section 7.5.6].

The storage requirement of the octtree constitutes variable amounts of storage both for the 

Autumnal representation of its structure and the leaf voxels’ heterogeneous object lists. 

The former dominates in general and is proportional to the octtree’s internal node count. 

When decomposing any voxel with a non empty heterogeneous object list, the octtree 

complexity theory predicts that the storage requirement will increase linearly with the 

surface area of the scene objects [Section 6.6]. Assuming objects to be of approximately 

equal surface area, the storage requirement of the octtree will increase linearly with object 

count.

A graph is given for the storage requirement of an octtree measured experimentally from 

the sequence of scenes described earlier containing progressively more spheres of equal 

size, randomly dispersed within a given box [Fig 7.7.3a]. Each scene is decomposed until 

the current voxel is at depth six or has an empty heterogeneous object list. The plot of 

storage requirement against object count verifies the predicted linear relationship.

The storage requirement of an octtree constructed under a less demanding simplicity 

criterion would be smaller than under this strict criterion [Section 6.6]. In general, the
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Fig 7.7.3a: The Octtree’s Storage Requirement

is found to be Linear in Object Count

Y = Octtree Size (bytes)

—Fitted 

83 Actual
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X = Object Count

Fig 7.7.3a 1



octtree’s requirement will never be more than a seventh greater than that of a grid partition 

constructed to the same depth [Section 6.6].

7.8. The Influence of Decomposition Depth on Performance

Whilst most welcome, the prediction of synthesis times being independent of object count 

for the grid partition and octtree are made under the assumption of adequate local 

simplification within the scene. This requires a degree of decomposition sufficient to ensure 

that the number of heterogeneous objects in each local region is both low and independent 

of the global object count. The influence of the depth of decomposition on storage 

requirements is of major importance in assessing how realistic this assumption can be.

7.8.1. Storage Requirement

The size of the grid partition’s cell array increases at an exponential rate of eight with 

decomposition depth. This rapid growth severely restricts the viable depth of 

decomposition. The assumption of adequate local scene simplification therefore becomes 

less realistic for scenes of high object count.

The storage requirement of the octtree however depends not only on the maximum depth 

of the decomposition but also the nature of the scene and the simplicity criterion for 

termination. Growth for highly demanding simplicity criteria may still be expected to be 

exponential in object count but at a lower rate [Section 6.6]. For less demanding simplicity 

criteria, the storage requirement may be expected to become constant provided objects do 

not overlap [Section 6.6].

Graphs are given of storage requirements measured experimentally for octtrees constructed 

to progressively greater depths [Fig 7.8.1 .a] for one of the case studies [Fig 7.4d] . Each 

construction is terminated by simplicity criterion of zero. The plot of the logarithm of 

storage requirement against decomposition depth indicates a linear relationship of slope 

= 1.335. Storage requirements therefore grow at exponential rate of e1335 = 3.8 with 

respect to object count in this case.
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Fig 7.8.1a: The Octtree’s Storage Requirement

is found to be Exponential in Depth at Rate 3.8-4
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7.8.2. Navigation Costs

The local simplification of a scene to a degree ensuring that image synthesis times are 

independent of object count has been shown to be more easily achieved by an octtree than 

a grid partition within bounded space. Even if this space restriction is lifted, the smaller 

octtree may still be expected to incur lower navigation costs for deep decompositions than 

the grid partition. The significance of navigation costs increases with decomposition depth, 

since a progressively higher fraction of scene model solution time is spent in navigation 

rather than calculating object intersections.

Each driving axis step in a ray’s navigation of a grid partition traverses up to three grid 

cells. The total number of cells in a partition increases exponentially with decomposition 

depth. Navigation costs may therefore be expected to increase in the same manner.

Each voxel traversed in a horizontal step of an octtree contains a number of maximum 

depth cells equal to eight to the power of the difference between that voxel’s depth and the 

maximum depth. The opportunities for savings in navigational costs over the grid partition 

clearly increase with decomposition depth. Assuming that the scene model is usually 

solved inside the first leaf voxel reached with a non-empty heterogeneous list, the number 

of voxels navigated by each ray may be expected to increase linearly with decomposition 

depth. Navigation costs may therefore be expected to increase in the same manner.

7.9. Conclusions from the Case Studies and Predictions of Performance

Whilst the bounding volume hierarchy provides a significantly faster image synthesis than 

naive ray-tracing for the case studies, the other decompositions do better still. Moreover, 

the hierarchy’s construction costs grow rapidly with object count and may be expected to 

become excessive for more complex scenes than those tested.

The grid partition provides the fastest synthesis for the case studies of lower object count. 

The limited depth of the grid partition may be expected to provide adequate local 

simplification in such scenes. Navigation costs are limited at such depths. Up to three 

cells are traversed in the navigation of each driving axis step, and the whole grid partition
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may be traversed in a maximum of sixty four steps when constructed to a depth of six. 

The octtree fares reasonably well for such scenes, but cannot really be expected to incur 

significantly lower navigation costs than the grid partition for decompositions of such 

shallow depth. Each horizontal step traverses just one voxel, and the number of maximum 

depth cells contained in each voxel is limited by this depth.

The octtree provides the fastest synthesis for the scenes of highest object count. Such 

scenes require a higher level of decomposition for adequate local simplification. This 

cannot be achieved by the memory-intensive grid partition. Moreover, the navigation of 

such deep decompositions may be expected to be more efficient with the octtree than the 

grid partition, since far more than three cells of maximum depth may then be traversed in 

each horizontal step.

In summary, the octtree has a competitive performance for each case study and the best 

performance for the most complex test pieces. The octtree is predicted to have the best 

performance for scenes of high object count. Image synthesis times are shown to be 

independent of object count given an octtree of adequate local scene simplification.
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Chapter 8: Conclusion

Synopsis:

Chapter eight summarises the research presented in this thesis. Future 

developments are proposed for the exploitation of various benefits of the octtree in 

the acceleration of ray tracing and other applications. The chapter ends with the 

conclusions reached as a result of this thesis.
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8.1. Summary of Research Presented in this Thesis

Scene decompositions have been shown to accelerate ray tracing by avoiding an 

exhaustive object search in the scene model’s solution for a given ray [Section 3.4.3]. A 

ray is considered over successive local regions within such a decomposition rather than 

simultaneously over the entire scene. The set of objects which are candidates for surface 

intersection within each such region is greatly reduced from over the global scene. Only 

the local regions actually navigated by a ray are considered, in path length order. The 

solution of the scene model need only be considered whilst the current local region is within 

the significant path length interval [Section 3.2.1].

Three forms of scene decompositions are proposed for the acceleration of ray traced image 

synthesis. These are the bounding volume hierarchy [Chapter 4], the grid partition [Chapter 

5] and the octtree [Chapter 6]. Algorithms are presented for their navigation by a given ray 

and their automatic generation.

8.2. The Bounding Volume Hierarchy

The bounding volume hierarchy [Chapter 4] has been the subject of much research 

[Kay,Kajiya;1986: Goldsmith,Salmon;1987; Rubin,Whitted;1980]. The box or other slab- 

intersection bound is shown to be particularly suited to hierarchy construction since each 

clipping plane of such a bound is inherited by one of its descendants [Section 4.2].

8.2.1. Navigation of the Bounding Volume Hierarchy

A novel algorithm is presented which exploits inheritance to avoid unnecessary repetition 

over clipping pianes in storage and navigation [Section 4.5]. A binary hierarchy exploits 

such inheritance best [Section 4.2]. The navigation avoids much of the floating point 

computation of previous schemes. Many of the bounds missed by a ray are rejected 

without any floating point multiplication [Section 4.1.2]. Clipping plane intersections with 

struck bounds are forwarded to descendants to avoid recalculation.
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82.2. Automatic Generation of the Bounding Volume Hierarchy

An optimal hierarchy should minimise the average number of bounds queried per ray 

[Section 4.7]. Attention is drawn to the similar behaviour of Huffman’s data compression 

tree which minimises the average number of encryption symbols per encoded datum. 

Huffman’s tree construction is generalised for a bounding volume hierarchy under the 

assumption that a bound’s probability of being navigated by an arbitrary ray is proportional 

to its surface area [Section 4.6]. A probability inheritance law is established and exploited 

to avoid an exhaustive search in various tasks.

8.3. The Grid Partition

The grid partition [Chapter 5] has a particularly regular structure which may be navigated 

with efficient incremental techniques [Section 5.3]. This decomposition has the potential of 

achieving a greater degree of decomposition than the bounding volume hierarchy [Section 

3.5.2].

8.3.1. Navigation of the Grid Partition

Bresenham’s incremental line generator for a 2D raster screen is generalised for the 

navigation of a ray through a grid partition [Section 5.3]. This novel algorithm navigates 

with three uniformly bounded decision variables in a decision vector. The navigation is 

maintained incrementally under integer addition and there is no need for exception 

handling.

8.3.2. Automatic Generation of the Grid Partition

The grid partition is shown to be efficiently generated from an octtree decomposition 

[Section 5.4]. This exploits scene coherency to avoid the decomposition of scene regions 

which do not contain any object surfaces. Interval analysis is proposed as a unified 

framework for the conservative test of a complex CSG object’s surface passing through a 

voxel [Section 5.8]. The grid partition is shown to have potential for lazy construction 

[Section 5.5].
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8.4. The Octtree

The octtree [Chapter 6] is proposed as a suitable decomposition for the acceleration of ray 

tracing in its own right. Unlike the grid partition, the octtree decomposition adapts to local 

scene complexity [Section 5.9] and is generally less demanding in memory for a given 

degree of local scene simplification [Section 6.6].

8.4.1. Navigation of the Octtree

A novel octtree navigation is presented [Section 6.3]. This is based on ‘SMARTS’ or Spatial 

Measures for Accelerated Ray Tracing. The octtree is navigated recursively by a series of 

vertical and horizontal steps in the octtree diagram with two uniformly bounded SMART 

vectors, an update vector and a comparison variable. The navigation proceeds in efficient 

integer arithmetic using recurrence relations. Appropriate values are maintained by halving 

down vertical steps and with increments already in the current environment across 

horizontal steps. The navigation of horizontal steps is similar to Bresenham’s 

generalisation for the 3D ray navigation of a grid partition [Section 5.3], but abandons the 

concept of a driving axis and does not take constant width steps.

8.4.2. Automatic Generation of an Octtree

A recursive octtree generation is given with two termination criteria [Section 6.4]. The 

current voxel is decomposed until the maximum permitted depth is reached or the length of 

its heterogeneous object list no longer exceeds some simplicity threshold. These twin 

criteria offer a wider range of decompositions than the simple grid partition. Interval analysis 

once more provides a conservative test for the surface of a complex CSG object passing 

through a voxel [Section 5.8]. The octtree is shown to be particularly suited to lazy 

construction [Section 6.6].

8.5. The Success of the Scene Decompositions

Accelerated ray tracers exploiting all three scene decompositions have been implemented 

[Section 7]. Numerous images have been synthesised with these, including four case
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studies for which experimental results are presented [Section 7.4]. The data are analysed 

to assess the performance of these scene decompositions [Section 7.5]. Predictions of the 

influence of object count are also given, and verified with further experimental data [Section 

7.7].

8.5.1. The Four Case Studies

Whilst each decomposition dramatically accelerated image synthesis, the Huffman-derived 

bounding volume hierarchy consistently fared worst. The grid partition provided the fastest 

image synthesis from the test scenes of low object count, where only a low level of 

decomposition can provide adequate scene simplification. The octtree had marginally 

inferior synthesis times for these scenes, but at far lower memory requirement. The octtree 

came into its own for the test scene of highest object count, where a high level of 

decomposition was required for adequate simplification. This was infeasible for the 

memory-intensive grid partition, but proved no problem for the octtree.

8.5.2. Predictions for General Scenes

In the experimentally verified predictions of performance [Section 7.7], construction times 

for the bounding volume hierarchy are shown to be quadratic in object count. Those for the 

octtree and grid partition are only linear.

Synthesis times for the bounding volume hierarchy are shown to be logarithmic in object 

count. Those for the octtree and grid partition are predicted to be independent of object 

count, given adequate scene simplification. This is verified for the octtree, but proved 

impractical for the memory-intensive grid partition.

Storage requirement is shown to be linear in object count for the bounding volume 

hierarchy and octtree. The grid partition’s storage requirement is generally independent of 

object count but greatly exceeds that of the octtree for deep decompositions.

Chapter 8: Conclusion 104



8.5.3. The Success off the Octtree

The octtree appears to offer particularly high performance in the general acceleration of ray 

traced image synthesis, and provides a flexible degree of scene decomposition. 

Construction times are linear in object count and memory requirements are generally far 

less than for the grid partition. Moreover, the octtree is particularly well suited to lazy- 

construction [Section 6.6]. Image synthesis times are not only greatly reduced by the 

octtree but may be feasibly made independent of object count [Section 7.7.2].

8.6. Future Developments In the Use of the Octtree

The octtree decomposition has been proposed for the acceleration of ray tracing [Section 6] 

and has proved particularly successful [Section 7]. However, this is just one example of 

the many problems to which the octtree is well suited [Samet,Webber;1988: Meagher;1982: 

Jackins,Tanimoto;1980]. The octtree has great potential for future developments in the 

acceleration of ray traced image synthesis and other applications.

8.7. Benefits to Image Synthesis

8.7.1. Further Methods off Accelerating Ray Tracing

Image synthesis times may be made independent of object count by the octtree, but are 

still influenced by the complexity of CSG objects. However the octtree decomposition may 

be developed to simplify objects as well as scenes.

A bounding volume hierarchy may decompose a CSG object into component constructs of 

local significance [Section 3.2.3]. In the current octtree implementation, the entire 

specification of any heterogeneous object is significant within a voxel. However the object 

may be decomposed within the voxel by CSG tree pruning [Wyvill et al;1986: 

Woodwark,Bowyer;1986]. This simplifies the consideration of the object in any further 

decomposition of the voxel or query by a ray navigating the voxel. An octtree 

decomposition of a CSG dice model is shown [Fig 8.7.1a]. The body is modelled as the 

intersection of a sphere and cube, and the holes by the subtraction of several smaller
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Fig 8.7.1a: Non-Empty Voxels in an 

Octtree Decomposition of a 

CSG Dice Model

Fig 8.7.1a 1



spheres. The complete object is modelled with twenty three primitives. However, in a 

majority of leaf voxels only one primitive is heterogeneous and never more than two. The 

complex CSG tree description of the dice may be pruned within each voxel to a simpler 

form involving only the heterogeneous primitives. An object’s state code is classified within 

a voxel by recursion over the object’s CSG tree [Section 5.8.1]. Interval analysis is applied 

at each node. If the height interval does not contain zero, then the construct modelled by 

this node is known to be homogeneous with respect to the voxel and may be pruned. 

Some care must be taken when pruning a branch of a subtraction or symmetric difference 

node. If the branch is homogeneously inside the voxel, its sibling must be complemented 

to ensure the construct maintains the same sense. The local CSG description of an object 

within a voxel may be greatly simplified in this manner. However the pruned description is 

only relevant within the local voxel. Any ray navigating this voxel must therefore ignore any 

intersection beyond the voxel. The previous method for avoiding repeated queries of global 

object specifications [Section 5.1.1] is no longer applicable, and so the same object may be 

queried several times by the same ray [Wyvill et al;1986j.

8.7.2. The Unification of Lazy Construction with Image Synthesis

Octtrees are particularly suitable for lazy construction during image synthesis [Section 6.6]. 

Only regions navigated by a ray need actually be decomposed, thus avoiding the time and 

storage requirement of unnecessary decomposition. A greater degree of decomposition 

can be achieved within given time and storage space. Voxels may be progressively 

decomposed to ever greater depths as navigated by rays. Eventually, the sizes of the 

current voxel and the height interval estimates for the associated heterogeneous objects 

will become negligible within some given precision. The voxel centre is then known to be in 

close proximity of a height function root, due to the precision of the height interval. Any ray 

navigating such a small voxel is known to come close to the voxel centre. The ray is 

therefore known to come into close approach of a height function root, being within the 

given precision in both the voxel domain and height interval codomain. Any attempt at the 

numerical isolation of a root within the voxel to that given precision would immediately
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succeed without a single iteration, due to this proximity. Lazy construction may therefore 

be used as a numerical method for root isolation to given precision. Roots are directly 

isolated in 3D, as opposed to other numerical methods restricted to the single dimension of 

a given ray’s path [Section 3.2.4]. This root location does not require solution by radicals 

and becomes unified with scene decomposition to “kill two birds with one stone’. Such 

extended decomposition would effectively convert the CSG model to a direct octtree 

encoding during image synthesis.

Root isolation may be expected to be less efficient in 3D than 1D for any given ray. 

However, many coherent rays are traced during image synthesis. Whilst 1D root isolation 

considers different rays independently, the 3D method shares much computation between 

coherent rays. Such rays pass through similar voxels, and the decomposition generated for 

the first need not be repeated for any of the others. Root isolation by extended lazy 

decomposition would therefore exploit ray as well as object coherency.

8.7.3. The Application of Octtrees In Generalised Scene Models

Some CAD/CAM researchers have introduced extra primitives as 'blends’ in CSG solid 

models [Zhang,Bowyer;1986]. These blends are automatically generated between the 

constructs in a CSG object. Blends with height functions of up to degree sixteen have been 

used. The roots of such height functions may be found numerically with Sturm’s method 

[Section 3.2.4] for independent rays. However, the interval analysis of 3D root isolation by 

lazy decomposition is of general application and could also exploit ray coherency in the 

isolation of roots to these higher degree polynomials.

The CSG model is suitable for the design of objects from a given set of primitives. 

However, some applications require the synthesis of an image from an existing object 

which is not easily specified with this model. In medical applications, bone structure data 

may be obtained from the body scan of a patient with complicated fractures [Frenkel;1989]. 

The surgeon may wish to visualise the extent of injury before operating. Such data may be 

directly modelled with an octtree encoding from which an image may be synthesised. The 

octtree may therefore model scenes directly [Samet,Webber;1988: Meagher;1982:
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Jackins,Tanimoto;1980] as well as locally simplifying the CSG scene model. The 

intersection of a ray with an object modelled in this manner is easily found. The ray is 

simply navigated through the octtree until reaching a voxel within the object’s specification.

8.8. Benefits to CAD/CAM

The synthesis of an image is but one of the many problems in CAD/CAM to be solved from 

an object model. The object’s volume may be required for casting from a mould. An 

object’s mass may also be needed and can be found from its volume and density. The 

centre of gravity or moment of inertia may also have to be checked before manufacture. 

The octtree model provides particularly simple solutions to such problems even for complex 

objects.

A CSG object may be approximated by an octtree decomposition constructed by interval 

analysis. A deep decomposition under a simplicity criterion of zero will produce a close 

approximation. Whereas a CSG object may be specified in terms of various primitives, only 

the simple voxel is used in the octtree approximation. Objects may also be modelled 

directly by an octtree encoding. Many problems are easily solved for the octtree model 

with finite element analysis which need only address the simple voxel.

A lower bound on an object’s volume is easily calculated as the summed volume of all leaf 

octtree voxels homogeneously inside the object. A maximum error term is calculated as 

the summed volume of all leaf voxels over which the object is heterogeneous. This error 

term decreases with octtree refinement to disappear in the limit. An estimate of volume for 

a given decomposition may be taken as the lower bound plus half the maximum error term.

The object’s mass may be estimated by multiplying this volume by the object’s density. 

Centre of gravity may be estimated as the vector sum of the centres of leaf voxels 

homogeneously inside the object, weighted by their volume. Moment of inertia may be 

estimated similarly.
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8.9. Benefits to Animation

Octtree decompositions provide solutions to various problems in animated image synthesis.

8.9.1. Collision Detection at the Frame Level

Collision detection is a difficult problem when addressing a complex CSG scene model 

directly. Whilst possible collisions are easily specified as object intersections, determining 

whether such intersections are non-empty remains complicated. Once more, an 

approximation by octtree decomposition provides a simple solution by addressing only the 

simple voxel rather than a range of primitives.

Any voxel in a scene’s octtree decomposition which is found to be homogeneously inside 

both of two objects is known to be within their intersection, and thereby indicates a 

collision. Any voxel which is not homogeneously outside either of two objects may possibly 

be part of their intersection and indicates a possible collision. Further decomposition of the 

voxel may prove for certain whether a collision actually occurs.

8.9.2. Hex-tree Decompositions for Collision Detection over Time

The previous scheme detects collisions at given ‘snap-shot’ frames but not between these 

frames. The duration of a collision between two objects travelling quickly in opposite 

directions may not include such a frame. The objects in an animated synthesis of the 

scene will appear to pass through each other without a collision being detected at any 

frame. The temporal sub-sampling of such a scene is clearly subject to aliasing.

Temporal aliasing may be overcome by decomposing an animated scene not only in the 

three spatial dimensions but also in time as a fourth dimension [Giassner;1988j. This 

results in a hex-tree since each decomposed voxel is bisected in four dimensions to spawn 

sixteen children. The animated scene is divided into time-voxels of specified temporal as 

well as spatial extent. Any time-voxel found to be homogeneously inside both of two 

objects indicates that the spatial voxel is contained within their intersection over the 

associated time interval. A definite collision is then detected over this time interval. Any 

time-voxel not homogeneously outside either of two dynamic objects indicates a possible
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such collision.

Glassner [1988] has implemented a hex-tree decomposition scheme, but resorted to a 

hybrid of octtree decomposition and bounding volume techniques. This scheme is 

inappropriate for collision detection since time-space bounds are prone to over

approximation, particularly for fast moving objects. Such bounds may have to allow for 

dynamic changes in size and shear as well as orientation and position. Glassneris scheme 

was limited to a means of computational savings in the synthesis of dynamic images, 

including motion blur.

Interval analysis [Section 5.8] could be generalised to provide a hex-tree construction less 

prone to such over-approximation and well suited to dynamic collision detection. The 

dynamic change of a CSG object may be modelled by assigning dynamic instancing 

transformations to the primitives from which it is constructed. The deformation matrix and 

shift vector associated with a primitive instance are then no longer constant, but vary with 

time. The shift vector may typically follow a spline path, each component being a cubic in 

time. The elements of the deformation matrix may be specified by similar cubics and/or 

trigonometric functions in time. These transformations may then be considered over time 

intervals rather than being constant. The linear algebra of world to local transformations 

may be generalised to allow for dynamic transformations. The spatial voxel bound of a 

time-voxel’s local image may be found over the associated time interval. All dynamic 

changes may be modelled by this transformation. The remaining interval analysis for the 

hex-tree decomposition need only address spatial intervals as before [Section 5.8].

8.9.3. Hex-trees for Reduced Animation Costs

Hex-trees need only be constructed once for an entire animated scene rather than 

repeatedly for each frame. Construction costs may be expected to be significantly reduced 

in the same manner as Glassner’s scheme [Glassner;1988]. Lazy decomposition may be 

exploited as before [Section 8.7.2]
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8.9.4. Hex-trees for Motion Blur

Ray tracing is a sampling technique and is therefore prone to aliasing [Amanatides;1987]. 

Anti-aliasing is often achieved by super-sampling. Octtrees are suitable for spatial super- 

sampling. Several rays may be efficiently traced through different points of a pixel which is 

then assigned the average visible colour. Hex-trees are suitable for not only spatial but 

also temporal super-sampling, allowing the synthesis of motion blur. Several rays may be 

efficiently traced through a pixel at different times within some exposure interval. The pixel 

is assigned the average colour once more. The same hex-tree may be navigated for rays 

at any time within the decomposed continuum. Assuming objects move at speeds which 

are insignificant compared to that of light, each ray need only traverse the spatial 

dimensions within the hex-tree. Hex-trees may therefore be navigated with the SMART 

algorithm described for the octtree [Section 6.3].

8.10. Benefits to Parallel Processing

Various researchers have ray traced synthetic images on parallel processing systems 

[Section 3.4]. Ray tracing synthesises realism by considering each ray independently, and 

is therefore highly parallelisable.

The synthesis of an image may be divided amongst processors in various ways. The 2D 

image may be divided into several sub-images, and each synthesised independently by a 

different processor. However, this requires each processor to hold the entire scene model, 

which may be large for complex scenes. This is not always feasible if each processor has 

only a limited amount of memory. The 3D scene may be divided instead into the voxel 

regions of an octtree decomposition, each of which is dealt with by an independent 

processor. This would reduce the amount of memory required for the local scene 

description at each processor. Rays could be navigated between these voxels by other 

processors. This scheme needs development to address problems of processor 

communication, load balancing and so on but seems worthy of such research.
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8.11. Conclusions from this Thesis

The major conclusions to be drawn from this thesis address the suitability of the various 

scene decompositions for accelerating ray traced image synthesis.

Bounding volume hierarchies have been the subject of much recent research [Section 4]. 

These do indeed offer substantial savings over naive ray tracing, but generally prove 

inferior to scene partitions such as the regular grid and octtree decomposition.

The grid partition can greatly accelerate image synthesis [Section 5]. Efficient navigation 

and construction algorithms have been presented in this thesis. However, the grid partition 

proves too demanding in memory for the adequate simplification of particularly complex 

scenes.

The octtree decomposition performs particularly well in the acceleration of image synthesis, 

being efficient in construction, navigation and storage requirement [Section 6]. Many 

potential benefits may be developed in the future. The octtree seems worthy of further 

research in the acceleration of ray traced image synthesis and other applications.
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APPENDIX A: Linear Algebra for Transforms 

between Local and World Space

Synopsis:

Each primitive instance in world space has an associated linear transform from local space. 

The user provides this transform for position vectors. Appendix A derives various other 

vector transforms between local and world space required for ray tracing. These are the 

inverse position transform from world to local space, the direction transform from world to 

local space and the surface normal transform from local to world space.

Derivation

Any linear transform can be split into two components. On one hand, a concentric deformation 

component gives the net effect of rotations, scalings, reflections and shears all about the origin. 

This is modelled by a 3x3 matrix with respect to Cartesian bases. On the other, a translation 

component allows for a net shift in origin. This is modelled with the appropriate 3D shift vector. 

These components must be applied in the correct order to produce the transform as their product is 

not necessarily commutative. Each primitive instance in the scene model is attributed an 

appropriate deformation matrix and translation vector to world space. Related transformations are 

derived as necessary.
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Notation

Symbol Meaning

W = [W1 .W2 .W3 ] Local to world deformation matrix for points, described as column 
vectors

£ Local to world translation vector for points

L World to local deformation matrix for points

D World to local deformation matrix for direction vectors

S Local to world deformation matrix for surface normals

Pw World point

El Local point

dw World direction vector

di Local direction vector

Hw World surface normal vector

nl Local surface normal vector

Local to World Point Transform

Each primitive instance is attributed transform components such that

Pw = £ + Wgi = £ +  PfcWi + P!yW2 + P!zW3

by definition of matrix multiplication.
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Local to World Surface Normal Transform

Surface normal vectors are subject only to a deformation during transformation, not translation. 

They do not necessarily undergo the same deformation as position vectors. Consider a cube 

sheared sideways about its centre. Whilst the vertical position vectors from the centre to the upper 

and lower faces are sheared over, the vertical surface normal vectors along these faces are not 

However, surface normals undergo a deformation related to that for position vectors.

Consider the local surface normal nj at local surface position Let a, b be two linearly

independent direction vectors in the surface tangent plane at gi with axfe in the same direction as 

ni. The local tangent plane

2 i+  £  W p b
a,̂ eR

transforms position-wise to a world tangent plane

c + W [pi + £  oa+Pbl = gw + £  aWa+pWb
L a,PeR J a,PeR

This world tangent plane at p*, has normal n^ such that

nw is in the same direction as 

Wa x Wfc

= (a»wi + ayW2  + a ^ )  x (bxwi + byW2  + bzW3 >

= (aybj^byXw^xw^) +  (a A -a A X w ^ x w i) +  (axby-aybJCwiXwj)

= (axb)xSi + (axb)yS2  + (a><h) ^ 3  where st = w2 x w3 ; S2  = w3 x wt ; S3  = wt x w2 

is in the same direction as 

n^Si + n ^  + n ^

-> iv  is in the same direction as

Sni

where S = [sj.s^sj is the matrix of cofactors of W, cofactor(W).

A unit world surface normal vector is found by an appropriate scaling of nw.
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World to Local Point Transform

From the primitive instance,

£w = c + Wgi

-> Pw -  £ = Wpi

-*  pi = L(jv-£) 
where L = W 1 and by standard matrix theory,

F 1 = ■ L  cofactorT(W) = — ST 
det(W) det(W)

where det(W) = Wi . [w2xw3], the scalar triple product of its column vectors.

World to Local Direction Transform

Direction vectors are subject only to a deformation during transformation, not translation. They 

undergo the same deformation as position vectors. Therefore

dL = Wdi 

—» di = D(dw)

where D = W"1 = L

where

LOCAL

Transform Summary

Pw = £ + Wpi
—> nw = S —> 
<- Pi = L (p * -c )  «- 
<- dj = Dd* <-

WORLD

W, £ are defined by primitive instance 
S = cofactor(W)

L = W-1 =

D = L

1
det(W)
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APPENDIX B: Height Functions

Synopsis:

Appendix B derives height functions defined over local space for a range of primitives. 

These are generalised to a definition over world space for boolean constructs

Derivation

Each local primitive is specified as the intersection of simple geometries. Each geometry is 

described by a characteristic polynomial in local coordinates specifying a notion of height above 

surface. The polynomial is negative inside the geometry, positive outside and zero on the surface. 

Each local primitive's height function is taken as the maximum of those over the intersected 

geometries.

Local height functions are derived for the plane, cube, sphere, cylinder, cone and torus. By 

convention each local primitive is centred at the local origin and is aligned with the local axes. 

The coordinate system is in a left-handed sense with increasing X going from left to right, Y from 

down to up and Z from behind to infront All diagrams are shown in a local plane containing the 

origin and Y axis. These height functions are generalised to a definition over boolean union and 

complement and thereby to a range of boolean operations.

Notation

Symbol Meaning

1 Local point

9 e  [Ojc] Angle between local point and primitive axis.

A, B Boolean constructs

X' Complement of boolean construct X

Heightx World height above boolean construct X

w World point
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LOCAL_PLANE

Local_Plane(l)

U : l y < 0
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The Cube of X extent Y extent [Y ^ Y ^ J , Z extent [Zj

LOCAL CUBE = I :  1*g [X ^ X max

Xjn»x«)> X ^ - lx ^  
I : ly -Y m.x<0,Ymin- ly<0 

lz- Zm*x<0. ^ - ^ < 0

Local_CubeQ) = max
max {lx X,,,,*, X ,^  lx}, 
max {ly-Y max, Y ^ -ly ), 
max Zrnax, lz}
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The Sphere of Radius R

LOCAL_SPHERE = « 1 : 111 < R * = < 1 : U - R 2 < 0  [

Local_SphereRQ) = 11 - R 2

J
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The Cylinder of Radius R, Y extent [Ym|n,YinM]

LOCAL CYLINDER = jl_: IHsiI sin(0) < R, ly 6 [Yjnin.Ymaxi

=  \ \ :  (U)sin2(0) -  R2 < 0, ly -  YM I < 0, Y ^  -  ly <

= -j 1: LL-  I 2 -  R2 < 0, ly -  Y ^  < 0, -  ly < 0

U - l 2 - R 2,
Local_CylinderR(l) = max < (|y_ _ ,?)

= max 1 l*+lz~R2. 1
max {ly-Y mix, Y ^ -ly } j
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The Double Cone of Axial Angle a, Y extent [Ylnin,Ymja

Y1 max

LOCAL.CONE = U  : 0«x or 0>7t-a, ly g  [YminiYm.J

= i  I :  I I I 2cos2(0 )> III2cos2(a), l y g  [ Y ^ . Y ^ J

= 1 1 : l^>Ucos2(a), ly g [Y ^ .Y ^ J

=  \ i :  Ucos2(a) -  ly2 < 0, ly -  YM I < 0, Y ^  -  L < 0

, ^ J (U)cos2(a)-ly.Local_ConeaQ) = max i  , ,  y  _ ,  ,

J (lx2+lz2)cos2(a )- l2sin2(a),
- max Imax Y ^ - U
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The Torus of Major Axis R, Minor Axis r

By the cosine rule

t2 = R2 + III2 -  2R IIIcos(-j-G) = R2 + U -  2R \ \ \ sin(0)

LOCAL TORUS = 1 : t < r | =  j i :  t2 < r 2 | =  j l :  R2 + U -  2RIJ.Isin(0) < i2 

I : [(R2-!2) + U ] 2 < 4R2 III 2sin2(0)

I : (R2-!-2)2 + 2(R2-r2)UL + U2 < 4R2U.-4R2ly
}

= j l : (R2-*2)2 -  2(R2+r2)U  + U 2 + 4R212 < 0 |

= j l : [ i H R M  ] 2 -  (R V )2 + (R2-!2)2 + 4R212 < 0 

Local_T<xusRjr(l) = [lL-CRW)]2 + 4R2(ly2-r2)
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Boolean Operations

Union:

w e A union B <-> w e A or w e  B 

so HeightA union b (w ) < 0 <r> HeightA(w) < 0 or HeightB(w) < 0 

Therefore HeightA union b  = min( HeightA, Heights)

Complementation:

w e  A '«-» w 4 A 

so HeightA<w) < 0 HeightA(w) > 0 

Therefore Height^ = -HeightA

Intersection: By DeMorgan’s Rules,

A intersect B = ( A' union B' )'

Therefore HeightA B = Height* A' ̂  B' Y =  -Heights ̂  B'

= -min(HeightA',Heights') = -min(-HeightA -Heights) = max(HeightA,Heights)

Subtraction:

A subtract B = A intersect B'

Therefore HeightA B = HeightAintcscct B '

= max(HeightA,Heights') = max(HeightA,-Heights)

Symmetric Difference:

A difference B = ( A union B ) subtract ( A intersect B )

Therefore HeightA difference B = Height* A u n i o n  s  ) fubtnct ( A intexscct B )

= max(HeightA Vl6m B ,-HeightA in * ^  B) = max(min(HeightA,HeightB) ,-max(HeightA,HeightB))
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APPENDIX C: Algebra for Ray Intersection

Synopsis:

Appendix C derives univariate polynomials in ray path length for height above a range of 

primitive surfaces in local space. These are generalised to univariate height functions in 

ray path length for boolean constructs. The intersection of a world space ray with a 

primitive instance is found by transforming to its local space [APPENDIX A]. The ray is 

outside the primitive when the height is positive, inside when negative, and intersects the 

surface at the appropriate polynomial roots. These roots may be found analytically for 

polynomials up to degree four or with iterative numerical techniques for any order.

Derivation

Each local primitive has an associated height function defined in local space [APPENDIX B], This 

is the maximum taken over a number of polynomials for the simple geometries intersecting to 

form the primitive. The height above the primitive along a local space ray is found by 

substituting the local ray equation into these polynomials, rearranging to a univariate polynomial 

in the ray’s path length, and taking the maximum. A linear polynomial results for the plane, three 

pairs of linear polynomials for the cube, a quadratic for the sphere, a quadratic and a pair of linear 

polynomials for the cylinder and cone and a quartic for the torus. Each quadratic has a constant 

factor of two in the linear term which divides out all constant terms from the root equation. Some 

terms in the polynomial’s coefficients are constant so need only be calculated once per object 

rather than repeatedly for each ray. If a height function proves to have no real positive root the 

surface in question is not intersected by the ray.

The intersection of a ray with a boolean construct is found by selecting the appropriate roots from 

the intersections with the combined arguments.
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Notation

Symbol Meaning

1 Local point

1  Local ray source

d Local ray direction

A, B Boolean constructs

Heightx World height above boolean construct X

Rx Set of path length roots for surface intersections with construct X

The ray is modelled in local space by Local_Ray = { s+Xd : A>0 }. The local image of a world 

ray is found with the appropriate linear algebra [APPENDIX A]. Whilst the view model generates 

each world ray with a unit direction vector, the direction vector of the local image is not 

necessarily of unit length.

Each path length root to a local primitive height function corresponds to a local surface 

intersection. This local point may be found by substituting the root into the local ray equation. 

The corresponding world surface point could be found by transforming the local point to world 

space. However the linearity of transformations between local and world space allows the world 

surface point to be found by direct substitution of the path length root into the world ray equation.
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The Plane

Local_Plane(J) = ly 

Local_Plane(s+Xd) = (i+Xd)y

=  X  [dy] +  [Sy]

linear form : XA + B

* i  Broo t: A, = —— 
A

The Cube of X extent [Xmin̂ mu], Y extent [YM!ii,Ym„], Z extent Jmiir max-1 minima*

Local_CubeQ) = max

max {lx Xum, lx}, 
max { ly-Y ^, Y ^-ly}, 
max (Iz-Z juj,

Local_Cube(s+Xd) = max

= max -

max {(s+X4)x-Xm.x̂ Cmin-(s+X4)x}, 
max {(s+Xd) y-Y.n.x.Ynun-Cs+X^y}, 
max ((s+Xd)z-Z mlx̂ min-(s+Xd)z}

max {XtdJ+tSj-Xm.J, X t-d J+ tX ^ -sJ , 
max {Xtdyl+tSy-Y^J, Xt-dyl+tY^-Sy], 
max {X tdJ+ l^-Z^J, Xt-dJ+tZ^n-^]

linear forms : XA + B

Broo t: X = —-  
A

The Sphere of Radius R

Local_SphereR(l) = U. -  R2 

Local_SphereR(s+Xd) = ( s + Xd ).( s + Xd ) -  R2

= X2d.d + X 2 [ s.d ] + [ s.s -  R2 ] ( R 2 constant) 

quadratic form : X2A + X2B + C

D + ^t)2 _ A f
roots : X = ------— ----------( linear form when A = 0 )

A
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The Cylinder of Radius R, Y extent [ Y ^ Y J

Local_CylinderR(l) = max *
U - l y2 - R 2,

max {ly Y ^ , YjjjJu- ly}

,  , ^ V A  J ( S + X d ) . ( £ + X d ) - ( i + X ! i ) y2 - R 2 '
Local_CylinderR(s+Xd) = j  max ((&+Xd) _Ym>jii Ynill-fefXd)y}

= max '
X2[d.d-d^l + X2[s.d-Sydy] + [s.s-s2-R 2] 1

max {X[dy] + [Sy-Y^J, X[-dy] + [Y^-Sy]} J

quadratic form : X2A + X2B + C

roots : X = ** + ■ ^ ( linear form when A = 0 )

linear forms : XA + B

♦ i  Broot : X = —— 
A

The Double Cone of Axial Angle a , Y extent [Ymln,YinM]

Local_ConeRQ) = max 

Local_ConeR(s+Xd) = max

Ucos2(a) - 1 2,
max ( l y - Y n m ,  Y n j j j j - l y }

( s  + X d ) . ( i+ X d )  cos2(a) -  ( s  + Xd )2, 
max {(s+Xd)y-Ymtx> Y^-Cs+XcDy}

= max ,
X2[d.dcos2(a)-d2] + X2[s.dcos2(a)-Sydy] + [s.scos2(a)-s2] 

max {X[dy] + [Sy-Y^J, X[-dy] + [Y^-Sy]}

quadratic form : X2A + X2B + C

roots : X = ^  + ^ ( linear form when A = 0 )

linear forms : XA + B

* i  Broot : X = —— 
A
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The Torus of Major Axis R, Minor Axis r 

Torus^Q) = [ i l - ( R V ) ] 2 + 4R2[l2-r2]

TorusRtr(i+Xd) = [(s+Xd).(i+Xd) -  (R^i2)] + 4R2[(§+X4)2-r2]

= [x2dsl + X2s.d + s.s -  (R^r2) j  + 4R2[X2d  ̂+ X2sydy + -  r2]

X4 m 2] +

X3 4[{<j.sD(£.d)] +
X2 2[d.dT+2(s.d2+R2d2)] +

X 4&dT+2R2sydy] +

[T ^ R ^ s ^ -r2)] ( R2, r2 constant)

where

T = £ .1  -  [RVr2] ( R2, r2 constant ) 

quartic form : X4A + X3B + X ^  + XD + E 

roots : X found by Ferrari’s solution [KomJCom;1968a].
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Boolean Operations

Union:

R a  union b  = { oie RA:HeightB(s+ad)^*) } { pe RB:HeightA(s+pd)>0 }

Intersection:

R a  intersect B { a e R A:HeightB(s+ad)<0 } { pe RB:HeightA(s+pd)<0 }

Subtraction:

R a  subtract b  = { a eR A:HeightB(s+ctd)>0 } { peRB:HeightA(s+pd)<0 }

Symmetric Difference:

R a  difference B =  R a  R b
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APPENDIX D: Linear Algebra for Primitive Surface Normals

Synopsis:

Appendix D  derives surface normals functions of position for a range of primitives. 

Derivation

An expression for the surface normal direction at any point on a primitive is derived. This is 

achieved by applying the gradient operator V in local space to the height polynomial of the 

geometry on which the local point lies. The world normal direction at a world surface point is 

found by a position transformation to the local surface point, evaluation of the local normal 

direction and a surface normal transformation back to a world surface normal [APPENDIX A]. 

The transformations are constant linear operations. The gradient operator V acts as a linear 

operator on each local geometry. This is constant for all but the torus. A single compound 

transformation may be precalculated from world position directly to world surface normal for each 

geometry except the torus, for which all three transforms are applied explicitly. A unit world 

surface normal vector is found by appropriate scaling.
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Notation

Symbol Meaning

£ World shift in world to local position transform

L Deformation matrix for world to local position transform

w World point

1 =  L (w-£ )  Local point

ni Local surface normal

S = [Si,S2 ,S3 l Deformation matrix for local to world surface normal transform

nw World surface normal

I Deformation matrix for identity transform

0 0 0 Deformation matrix for projection onto local Y axis
Y= 0 1 0 

0 0 0 .

N Deformation matrix for world position to world surface normal
transform
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The Plane

Local_Plane( 1 ) = ly

% = VLocal_PlaneQ) = (0,1,0) 

nw = Srij = S (0,1,0) = ^

Clipping Planes for the Cube, Cylinder and Cone

CUpping_PlaneXmax(D = K ~  X«n«

ni = VClipping_PlaneXniBjiQ) = (1,0,0) 

n* = Sni = S( 1,0,0) = Si 

Clipping_PlaneXmin(l) = -  1*

ni = VClipping_PlaneXminG) = (-1,0,0) 

n*, = Sni = S (-1,0,0) = -Sj 

Clipping_PlaneYmixG) = ly -  Ym#x

n> = VClipping_PlaneY (D = (0 ,1 ,0 )
—  mux

nw = Sn  ̂= S (0,1,0) = S2  

Clipping_PlaneYjnjn(l) = -  ly

ni = VClipping_PlaneYmin(l) = (0,-l,0) 

nw = Sn{ = S(0,-1,0) = -S2  

Clipping_PlaneZmM0) = lz -

ni = VClipping_PlaneZtoM(l) = (0,0,1) 

n*, = Sni = S(0,0,1) = S3  

Clipping_PlaneZmin(D = -  1*

ni = VClipping_PlaneZmin(D = (0,0,-1 ) 

nw = Snt = S(0,0,-1) = -S3
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The Sphere of Radius R

Local_Sphere(!) = 1? + 12 + 12 -  R2

ni = VLocaLSphereQ) = (21x,21ŷ lz) = (21)1 

= Sni = S(2I)L(p-c)

—> is in the same direction as N(p-c) where N = SL

The Infinite Cylinder of Radius R

Local_CylinderQ) = l2 + I2 + 12 -  I2 -  R2

ni = VLocal_Cylinder(I) = (21x, 21y-21y, 2*) = 2(1-Y)I 

nw = Sni = S2(I-Y)L(p-c)

—> nw is in the same direction as N(p-c) where N = S(I-Y)L

The Infinite Cone of Axial Angle a

Local_Cone(l) = cos2(a)l2 + cos2(a)l2 + cos2(a)l2 -  12

ni = VLocal_Cone(l) = (2cos2(a)lx, 2cos2(a)ly-21y, 2cos2(a)lz) = 2(cos2(a)I-Y)L 

nw = Sni = S2(cos2(a)I-Y)L(p-£)

-» nw is in the same direction as N(p-c) where N = S(cos2(a)I-Y)L

The Torus of Major Radius R, Minor Radius r

Local_Toras(l) = [11+\*+\} -  (R ^r2)]2 + 4R2Q2-i2]

ni = VLocal_Torus(l) = (4[U-(R2+r2)]lx> 4([U-(R2+r2)]+2R2)ly, 4[U-(R2+r2)]lz)

= 4([U-(R2+r2)]I+2R2Y)l_

The 1.1 term makes this matrix non-constant.
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APPENDIX E: Algebra for Surface Colour Texture

Synopsis:

Appendix E derives 2D mappings from a local primitive surface point to the unit square for 

a range of primitives. These are texture maps for local surface colour. The texturing on 

each primitive is shown. Texture of the background colour is provided by a similar 2D map 

from an infinite sphere around the scene.

Derivation

The colour of each primitive surface is textured by local surface position according to a 2D texture 

map to a longitude breadth and latitude height within a unit square. Colour may be assigned 

procedurally as an analytic function of latitude and longitude, or by table look up according to 

some image scaled into the unit square. The latter provides a means of wrapping an image around 

a primitive surface. Procedural textures could easily be implemented to provide other texturing 

schemes such as Fourier texture synthesis if required. Texturing could also be generalised to a 

function of 3D local primitive volume rather than 2D local surface position or applied to other 

primitive properties such as surface normal - ‘bump mapping* - or optical density rather than 

surface colour. However, surface colour texture by 2D table look up has proved adequate to date.

Various texture maps could be defined on each primitive. Readily visualised maps defined as 

continuous suijections involving minimal deformation of the unit square are preferable. They 

facilitate the design of a texture for a desired effect with a paint box pixel editor.

The plane primitive extends infinitely along the local X and Z axes. Continuous injective texture 

maps could be defined in this case. However, a necessarily high degree of stretch deformation 

would be involved, and as such these maps are a poor choice for general applications. A non- 

injective periodic function is preferable. This tiles a texture over the plane’s surface. A map of 

low deformation with infinite range may be adapted to such a periodic function by taking the 

fractional part The width or height of the tiles produced may be conveniently set through 

division by the appropriate length before taking this fractional part
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Notation

Symbol

long g  [0 ,1 ]  

latG [0 ,1 ]

I

v

w

h

acos(x) g  [0,tc]

Meaning

Local surface longitude corresponding to breadth across unit square

Local surface latitude corresponding to height up unit square

Local surface position

Unit view ray direction vector

Tile width

Tile height

Inverse cosine in radians

atan2(x,y)G [-7C,7t] Inverse tangent in radians

0=acos
I
UJ

4>=atan2(lx,lz)

Angle between local position and local y axis

Angle of rotation of local position from local z axis about local y 
axis

fract(x) g  [0,1] Residue after subtracting the greatest smaller integer

All inverse trigonometric functions map to radians. The inverse tangent function to all four 

quadrants is defined such that atan2 : R2 -> [-tt.tc] with

sin(atan2(x,y)) = y  ; cos(atan2(x,y)) = ; where r = Vx^+y5.
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Various Primitives with a Checkered 

Surface Colour Texture Map
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The Plane : Tile Width w, Tile Height h

long = fract

lat = fract

k
w

k
h
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The Cube of X extent [ X ^ .X J ,  Y extent Z extent [ZmlnZ mui]

mfMMm

Over clipping plane Xmix : long = ■ - z ; lat = y mu’
^m ax  ^ m in  ^ m in

Over clipping plane X ^  : long = ; lat = *y ^T**
A n ix  ^m in *max *min

Over clipping plane : long = — -— ^p—  ; lat = * Zmin
^m«x n̂rin m̂ax ^min

Over clipping plane Y ^  : long = * ; lat = ^ ^min
ax Xnun m̂ax ^min

ly—Ymin , lx—Xmin
Over clipping plane Z ^ : long = —------——  ; lat =

^ m a x  ^ m in  X tnax- X tn in

^max- ly . . lx- Xmin
Over clipping plane : long = —------——  ; lat =

Ymax ^min X^x-X™,
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The Sphere of Radius R

7C—<t> 7 c - a t a n 2 ( l x , y

long = ^  =  5 ------

lat = rc-e
Tt-acos
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The Double Cone or Cylinder of Y extent [Yinin,Ymjij(]

7C—<j> n -2 ita n 2 ( \M

long=i ?  = — s —

lat = fract
lllcos(9>-Yg 
Y -Y •1 max 1 min

= fract lv- Y -Y •1 max 1 mm
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The Torus of Major Axis R, Minor Axis r

7C—<b *-atan20x,U
long = - ^  = — s —

rcos(P) = R - HI sin(0) = R-V H I2-  IJ_12cos2(0) = R -V U -ly2

_ Kr-$_ = 7C-atan2(sin(3),cos(3))
2k  2k

_ 7c-atan2(rsin(3)yrcos(3)) _ w-atan2(lytR-V.LI-ly)
2k  ~  2k
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Background Colour in View Direction ( , vy , vi )

x

( angles relative to world axes )

7c-<b ft-atan2(vx,v j
l0ng = ^ ----------2 T ~

lat =
7i—6 _  ff-acos(Vy) 

ft ft
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APPENDIX F: Algebra for Spawning View Rays

Synopsis:

Appendix F  derives formulae for the direction of reflected and refracted view rays to be 

spawned in solving the view model.

Derivation

View rays are spawned at a known surface point [APPENDIX C] of known surface normal 

[APPENDIX D]. The spawned rays all have source at this surface point, and their direction is 

found according to the laws of optical physics. Newton’s law is used to find the reflected view 

direction, Snell’s law for the refracted direction.

Notation

Symbol Meaning

n Unit surface normal

i  Incident view ray unit direction

r Spawned view ray unit direction
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The Reflected View Ray

By Newton’s law,

1  n, r are coplanar, so r = ori + pn

ixn = rxn = ajxn —> a = 1
- in  = r.n = od.n + P -> p = -2Ln 

Therefore

1  = 1 -  2(L.n>Q
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The Refracted View Ray 

Transmission Medium of Refractive Index v

■ I

By Snell’s law,

_L n, r are coplanar, so r = ori + pn

ixn = vrxn = vaixn -» a  = —
v

Moreover, since the refracted vector is of unit length

1 = r.r = a2+2ap(Ln)+P2 -> 0 = p2+2^ -p +

Finally, for successful transmission

7 - 1
P = - ^ ± V d e t ; det =

*  ' 2in
V

sign(i,n) = sign(jr.n) = sign(aLn+p) = sign(=+P) = sign(±Vdet) ( det<0 -> total internal reflection ) 

Therefore,

1 . r = —i+~ v
1— , v — 1 constant 
v
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APPENDIX G: Algebra for View Model Shading

Synopsis:

Appendix G derives formulae for the irradiance falling at given ray source point from a 

given ray direction, which thereby shade a visible radiant surface. Whilst full colour is to 

be synthesised, the formulae apply independently across the three primary light frequencies 

corresponding to red, green and blue, so that a monochrome image is effectively produced 

in each primary plane.

Derivation

The intensity of irradiance falling from a given direction is calculated as the appropriate fraction 

remaining from the visible radiant source after transmission through the scene environment. The 

radiant source will be a point on the nearest surface struck by the view ray found by solving the 

scene model, should such exist, or else a background environment In the latter case the visible 

background colour is known [APPENDIX E]. In the former case, surface radiance is modelled by 

laws of optical physics according to intensity of surface irradiance, the constituent material’s 

properties and unit vectors describing view direction, surface orientation, irradiance direction and 

so on. The surface point to be shaded is known from the scene model’s solution for the view ray 

[APPENDIX C]. The surface normal is also known [APPENDIX D], as is the surface colour 

[APPENDIX E] and reflected and refracted view directions [APPENDIX F]. The irradiance 

falling on the surface point from each point light source is found by solving the scene model for a 

corresponding illumination ray [APPENDIX C], Two major cases of view are modelled:

•The view ray enters the object at the surface

when the intensity of surface radiance is summed across the five categories of diffuse, 

specular, ambient, reflected and transmitted;

•The view ray leaves the object at the surface

when the intensity of surface radiance is summed across the two categories of reflected and 

transmitted for successful surface refraction, or only reflected for total internal reflection.
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For display purposes, the view model normalises all primary colour intensities to the real range 

[0,1]. The intensity of surface radiance is summed with appropriate weights for an average 

remaining within this range.

Notation

The following notation is used throughout the view model. The model applies independently to 

each primary colour frequency.

Symbol Meaning

1  Irradiated ray source

d Unit ray direction vector towards radiant source

a e (0,~) Rate of exponential light attenuation per unit length of transmission
through viewing medium

ICs.d-â  g  [0,1] Irradiance falling at ray  source from ra y  direction through attenuating
medium

X 6 (0,oo] Path length from ray source to nearest surface point intersected by
the ray (°° if none found)

B(d) e [0,1] Intensity of background colour in view direction; background is the
radiant source when X = «>.

p Visible point on nearest surface; radiant source when X < **>.

T(p) e  [0,1] Intensity of surface colour at visible point

R(p,d) g [0,1] Radiance from visible point along ray  direction

R« G [0,1] Ambient radiance

Rd G [0.1] Diffuse radiance

Rt e [0,1] Transmitted (refracted) radiance

R, g [0,1] Specular radiance

Rr g  [0,1] Reflected radiance
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Symbol 

fm e [0,1] 

l - f m e [0,1] 

fr € [0,1]

1 - f r  G [ 0 , 1 ]

ft G [0,1]

l - f t G [0,1]

f. G [0,1] 

1-f. G [0,1]

se [OH

am e  [0,oo]

n

r

1

c

Li e [0,1] 

li

Meaning

Fraction of mirrored specular and reflected radiance in surface radi
ance.

Remaining fraction of non-mirrored ambient, diffuse and transmitted 
radiance in surface radiance.

Fraction of reflected view radiance in mirrored radiance

Remaining fraction of specular highlight radiance in mirrored radi
ance

Fraction of transmitted view radiance in non-mirrored radiance

Remaining fraction of ambient and diffuse radiance in non-mirrored 
radiance

Fraction of ambient radiance in ambient and diffuse radiance

Remaining fraction of diffuse radiance in ambient and diffuse radi
ance

Sharpness of specular highlights, modelling variance of microfacet 
normal distribution

Rate of exponential light attenuation per unit length of transmission 
through constituent material of surface object

Unit surface normal vector at visible point

Vector in reflected view direction

Vector in transmitted (refracted) view direction

Light source count

Irradiant light intensity from i* light source 

Unit vector from surface point to i* light source
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Characterisation : X -  °°

No visible surface point

I0Ld,a) =

if (a>0) then 
0

else (a=0) then 
B(d)
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Visible surface point

Characterisation : X < oo

I(Ld^) = e_x*R(p,d)

where R(p,d) is defined as follows:

Ray leaves (transparent) object at visible surface point

if ( successful refraction ) then 
fmI(Eia)+(l-fm)I(PxLa-am) 

else ( total internal reflection ) then 
I(Eia)

Ray enters object at visible surface point

Rd = T(p)^Limax(li.n,0) ( Lambert’s Law )

Rt = T(p)I(E,La+ain) ( Snell’s Law )

R, = £ L imax(li,r,0)* ( Phong’s Model)

Characterisation : d.n > 0

Characterisation : d.n < 0

:  [ }
Where

R. = T(e)

C

c

i=l

Rr = I(p ia )  ( Newton’s Law )
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APPENDIX H: Gallery of Specimen Images

Synopsis:

Appendix H  constitutes a gallery of specimen images demonstrating the realism synthesised 

by ray tracing. All the images are produced from implementations developed during this 

research.
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1: A Goblet in A Box of Mirrors

2: A Refractive Goblet
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3: A CSG Model of a Refractive Dice

4: A Pyramid of Dice
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5: Primitive Solids - The Cone, Cube, Cylinder, Plane, Sphere and Torus

6: A CSG model of a Mug [Fig 2.2.1a]
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7: A Smooth-Shaded Polyhedral Model of a Teapot

8: A Reflective Teapot
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9: A Teapot in a Box of Mirrors

10: A Recursive Arrangement of Reflective Spheres
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11: A Stair-Case

12: A Scene Comprising Over Twenty Thousand Objects
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13: A Tree Modelled with Truncated Cones

14: A Tree in a Box of Mirrors
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17: A Recursive Arrangement of Reflective Spheres [Fig 7.4a]

18: Trees Modelled with Cylinders and Spheres [Fig 7.4b]
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19: An Arrangement of Cones along a 3D Spline Path [Fig 7.4c]

20: Several Robots Inside a Room [Fig 7.4d]
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21: A Single Torus [Fig 7.7.2b]

I

22: Eighty Tori [Fig 7.7.2c]
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23: An Octtree Decomposition of Simplicity 0 [Fig 6.1a]

24: An Octtree Decomposition of Simplicity 1 [Fig 6.1a]
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25: An Octtree Decomposition of Simplicity 0 [Fig 6.1a]

26: An Octtree Decomposition of Simplicity 1 [Fig 6.1a]
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28: An Arrangement of Spheres along a 3D Spline Path
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29: A CSG Model of Paper Clip Built from Cylinders, Clipping Planes and Tori

30: An Arrangement of Interlocking Paper Clips along a 3D Spline Path
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31: A Single Texture Mapped Sphere

32: Numerous Texture Mapped Spheres
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33: A Molecule Modelled with Spheres

34: A Frame from an Animated Film [John; 1989]
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35: Frames from an Animated Sequence of a Blinking Face

36: Frames from an Animated Sequence of a Bouncing, Deforming Ball
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