212 research outputs found

    The Construction of Optimized High-Order Surface Meshes by Energy-Minimization

    Get PDF
    Despite the increasing popularity of high-order methods in computational fluid dynamics, their application to practical problems still remains challenging. In order to exploit the advantages of high-order methods with geometrically complex computational domains, coarse curved meshes are necessary, i.e. high-order representations of the geometry. This dissertation presents a strategy for the generation of curved high-order surface meshes. The mesh generation method combines least-squares fitting with energy functionals, which approximate physical bending and stretching energies, in an incremental energy-minimizing fitting strategy. Since the energy weighting is reduced in each increment, the resulting surface representation features high accuracy. Nevertheless, the beneficial influence of the energy-minimization is retained. The presented method aims at enabling the utilization of the superior convergence properties of high-order methods by facilitating the construction of coarser meshes, while ensuring accuracy by allowing an arbitrary choice of geometric approximation order. Results show surface meshes of remarkable quality, even for very coarse meshes representing complex domains, e.g. blood vessels

    Adaptive image vectorisation and brushing using mesh colours

    Get PDF
    We propose the use of curved triangles and mesh colours as a vector primitive for image vectorisation. We show that our representation has clear benefits for rendering performance, texture detail, as well as further editing of the resulting vector images. The proposed method focuses on efficiency, but it still leads to results that compare favourably with those from previous work. We show results over a variety of input images ranging from photos, drawings, paintings, all the way to designs and cartoons. We implemented several editing workflows facilitated by our representation: interactive user-guided vectorisation, and novel raster-style feature-aware brushing capabilities

    Discrete curvature approximations and segmentation of polyhedral surfaces

    Get PDF
    The segmentation of digitized data to divide a free form surface into patches is one of the key steps required to perform a reverse engineering process of an object. To this end, discrete curvature approximations are introduced as the basis of a segmentation process that lead to a decomposition of digitized data into areas that will help the construction of parametric surface patches. The approach proposed relies on the use of a polyhedral representation of the object built from the digitized data input. Then, it is shown how noise reduction, edge swapping techniques and adapted remeshing schemes can participate to different preparation phases to provide a geometry that highlights useful characteristics for the segmentation process. The segmentation process is performed with various approximations of discrete curvatures evaluated on the polyhedron produced during the preparation phases. The segmentation process proposed involves two phases: the identification of characteristic polygonal lines and the identification of polyhedral areas useful for a patch construction process. Discrete curvature criteria are adapted to each phase and the concept of invariant evaluation of curvatures is introduced to generate criteria that are constant over equivalent meshes. A description of the segmentation procedure is provided together with examples of results for free form object surfaces

    Conversion of trimmed NURBS surfaces to Catmull-Clark subdivision surfaces

    Get PDF
    This paper introduces a novel method to convert trimmed NURBS surfaces to untrimmed subdivision surfaces with Bézier edge conditions. We take a NURBS surface and its trimming curves as input, from this we automatically compute a base mesh, the limit surface of which fits the trimmed NURBS surface to a specified tolerance. We first construct the topology of the base mesh by performing a cross-field based decomposition in parameter space. The number and positions of extraordinary vertices required to represent the trimmed shape can be automatically identified by smoothing a cross field bounded by the parametric trimming curves. After the topology construction, the control point positions in the base mesh are calculated based on the limit stencils of the subdivision scheme and constraints to achieve tangential continuity across the boundary. Our method provides the user with either an editable base mesh or a fine mesh whose limit surface approximates the input within a certain tolerance. By integrating the trimming curve as part of the desired limit surface boundary, our conversion can produce gap-free models. Moreover, since we use tangential continuity across the boundary between adjacent surfaces as constraints, the converted surfaces join with G1 continuity. © 2014 The Authors.EPSRC, Chinese Government (PhD studentship) and Cambridge Trust

    A survey of parametric modelling methods for designing the head of a high-speed train

    Get PDF
    With the continuous increase of the running speed, the head shape of the high-speed train (HST) turns out to be a critical factor for further speed boost. In order to cut down the time used in the HST head design and improve the modelling efficiency, various parametric modelling methods have been widely applied in the optimization design of the HST head to obtain an optimal head shape so that the aerodynamic effect acting on the head of HSTs can be reduced and more energy can be saved. This paper reviews these parametric modelling methods and classifies them into four categories: 2D, 3D, CATIA-based, and mesh deformation-based parametric modelling methods. Each of the methods is introduced, and the advantages and disadvantages of these methods are identified. The simulation results are presented to demonstrate that the aerodynamic performance of the optimal models constructed by these parametric modelling methods has been improved when compared with numerical calculation results of the original models or the prototype models of running trains. Since different parametric modelling methods used different original models and optimization methods, few publications could be found which compare the simulation results of the aerodynamic performance among different parametric modelling methods. In spite of this, these parametric modelling methods indicate more local shape details will lead to more accurate simulation results, and fewer design variables will result in higher computational efficiency. Therefore, the ability of describing more local shape details with fewer design variables could serve as a main specification to assess the performance of various parametric modelling methods. The future research directions may concentrate on how to improve such ability

    Computational homogenization of fibrous piezoelectric materials

    Full text link
    Flexible piezoelectric devices made of polymeric materials are widely used for micro- and nano-electro-mechanical systems. In particular, numerous recent applications concern energy harvesting. Due to the importance of computational modeling to understand the influence that microscale geometry and constitutive variables exert on the macroscopic behavior, a numerical approach is developed here for multiscale and multiphysics modeling of thin piezoelectric sheets made of aligned arrays of polymeric nanofibers, manufactured by electrospinning. At the microscale, the representative volume element consists in piezoelectric polymeric nanofibers, assumed to feature a piezoelastic behavior and subjected to electromechanical contact constraints. The latter are incorporated into the virtual work equations by formulating suitable electric, mechanical and coupling potentials and the constraints are enforced by using the penalty method. From the solution of the micro-scale boundary value problem, a suitable scale transition procedure leads to identifying the performance of a macroscopic thin piezoelectric shell element.Comment: 22 pages, 13 figure

    Flexible G1 Interpolation of Quad Meshes

    Get PDF
    International audienceTransforming an arbitrary mesh into a smooth G1 surface has been the subject of intensive research works. To get a visual pleasing shape without any imperfection even in the presence of extraordinary mesh vertices is still a challenging problem in particular when interpolation of the mesh vertices is required. We present a new local method, which produces visually smooth shapes while solving the interpolation problem. It consists of combining low degree biquartic Bézier patches with minimum number of pieces per mesh face, assembled together with G1-continuity. All surface control points are given explicitly. The construction is local and free of zero-twists. We further show that within this economical class of surfaces it is however possible to derive a sufficient number of meaningful degrees of freedom so that standard optimization techniques result in high quality surfaces

    Arbitrary topology meshes in geometric design and vector graphics

    Get PDF
    Meshes are a powerful means to represent objects and shapes both in 2D and 3D, but the techniques based on meshes can only be used in certain regular settings and restrict their usage. Meshes with an arbitrary topology have many interesting applications in geometric design and (vector) graphics, and can give designers more freedom in designing complex objects. In the first part of the thesis we look at how these meshes can be used in computer aided design to represent objects that consist of multiple regular meshes that are constructed together. Then we extend the B-spline surface technique from the regular setting to work on extraordinary regions in meshes so that multisided B-spline patches are created. In addition, we show how to render multisided objects efficiently, through using the GPU and tessellation. In the second part of the thesis we look at how the gradient mesh vector graphics primitives can be combined with procedural noise functions to create expressive but sparsely defined vector graphic images. We also look at how the gradient mesh can be extended to arbitrary topology variants. Here, we compare existing work with two new formulations of a polygonal gradient mesh. Finally we show how we can turn any image into a vector graphics image in an efficient manner. This vectorisation process automatically extracts important image features and constructs a mesh around it. This automatic pipeline is very efficient and even facilitates interactive image vectorisation
    • …
    corecore