7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Adaptive image vectorisation and brushing using mesh colours
Hettinga, Gerben; Echevarria, Jose; Kosinka, Jiri

Published in:
Computers & Graphics

DOI:
10.1016/j.cag.2022.05.004

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2022

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Hettinga, G., Echevarria, J., & Kosinka, J. (2022). Adaptive image vectorisation and brushing using mesh
colours. Computers & Graphics, 105, 119-130. https://doi.org/10.1016/j.cag.2022.05.004

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/lUMCG research database (Pure): http.//www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 08-06-2022


https://doi.org/10.1016/j.cag.2022.05.004
https://research.rug.nl/en/publications/fa89264b-e5a5-4eec-8d00-58fd5c771328
https://doi.org/10.1016/j.cag.2022.05.004

Computers & Graphics 105 (2022) 119-130

Contents lists available at ScienceDirect

Computers
& Graphics

Computers & Graphics

journal homepage: www.elsevier.com/locate/cag

Special Section on STAG 2021
Adaptive image vectorisation and brushing using mesh colours R

Check for
updates

Gerben J. Hettinga ?, Jose Echevarria °, Jifi Kosinka "

2 Bernoulli Institute, University of Groningen, The Netherlands
b Adobe Research, San Jose, CA, USA

ARTICLE INFO ABSTRACT

Article history:

Received 11 February 2022

Received in revised form 8 April 2022
Accepted 2 May 2022

Available online 13 May 2022

We propose the use of curved triangles and mesh colours as a vector primitive for image vectorisation.
We show that our representation has clear benefits for rendering performance, texture detail, as well
as further editing of the resulting vector images. The proposed method focuses on efficiency, but it
still leads to results that compare favourably with those from previous work. We show results over a
variety of input images ranging from photos, drawings, paintings, all the way to designs and cartoons.

Keywords: We implemented several editing workflows facilitated by our representation: interactive user-guided
Image vectorisation vectorisation, and novel raster-style feature-aware brushing capabilities.
Vector graphics © 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license

Mesh colours

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Vector images define an image as a collection of geometric
primitives, such as lines, ellipses, or more elaborate shapes. Vec-
tor graphics are key in many disciplines, such as graphics and web
design, or textile and printing industries, due to their ability to
display an image at arbitrary resolutions without loss of quality.
Image vectorisation is the process of converting a bitmap (raster)
image into a vector image. The manual vectorisation of a raster
image is a slow process, especially for highly detailed input such
as photographs, requiring expertise and immense amounts of
time [1].

Many approaches to automatic image vectorisation have been
proposed over the years, using various primitives. Nevertheless,
they have not been widely adopted due to their performance,
quality or controllability issues, although some commercial tools
like Adobe’s Live Trace [2] have become an artistic style of its
own despite its limitations. Creating realistic vector graphics thus
remains challenging.

In our recent paper [3], we proposed a new image vectorisa-
tion method that excels at processing time, detail control, ren-
dering efficiency, and the resulting vector images are well suited
for further editing. Our method performs well over a wide variety
of inputs, specially natural images and stylised design graphics. It
follows a pipeline of three main steps: image feature extraction,
2D mesh generation, and colour fitting/texture transfer; see Fig. 1.
Each step has been designed with performance, quality, and con-
trol in mind, leveraging recent advances in texture representation
and mesh generation. The resulting vectorised images can be
rendered in real-time on a wide range of hardware.

* Corresponding author.
E-mail address: j.kosinka@rug.nl (J. Kosinka).

https://doi.org/10.1016/j.cag.2022.05.004

Vector images are resolution-independent, which has com-
pression benefits with respect to high resolution raster images.
But most previous vector image representations are not editable
as intuitively as raster images. For example, raster brushes al-
low direct editing of pixel values, but most existing 2D vector
representations do not support analogous operations, especially
for soft brushes. Our vectorisation pipeline effectively turns a
raster image into a representation that supports hybrid work-
flows where users can edit colours through brushing, still retain-
ing all the advantages of vector images.

Our original contributions in [3] included the introduction of
mesh colours as an image vectorisation primitive, texture details
and soft feature extraction from the input image, and a fully
automatic and user-guided image vectorisation pipeline.

The present paper adds the following contributions:

e User-controllable adaptive mesh colour resolution. This al-
lows users to choose arbitrary target error thresholds, so the
method can automatically determine the resolution of the
mesh colour patches.

e Improved feature extraction. We filter noisy edges by ap-
plying progressive levels of blur to the image and keeping
only those edges that have correspondence in higher levels.
So edge extraction parameters can be lowered to capture
salient edges without worrying about introducing unwanted
noise.

e Extended editing tools. This include novel raster-style brush-
ing capabilities for our vector representation, which push
vector graphics in new directions beyond typical workflows.

The remainder of the paper is organised as follows. We first
present an overview of related work in vector graphics and image

vectorisation (Section 2). This is followed by an overview of

0097-8493/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.1016/j.cag.2022.05.004
http://www.elsevier.com/locate/cag
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2022.05.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:j.kosinka@rug.nl
https://doi.org/10.1016/j.cag.2022.05.004
http://creativecommons.org/licenses/by/4.0/

G.J. Hettinga, J. Echevarria and J. Kosinka

Computers & Graphics 105 (2022) 119-130

Fig. 1. An example input raster image (a) and our vectorised result (b). Please, zoom in to see the full details. The insets show the hard (red) and soft (green) image
features (c) extracted in the first step of our method. These features are then used to build a curved triangular 2D mesh (d), where each triangle is later equipped
with mesh colours (e) optimised from the input image. Our representation can be rendered efficiently in real-time (f), producing accurate renditions of the original
image (g). Our vector images automatically adapt to varying levels of detail within the same image (e.g. petal texture versus blurry background) as seen in (c)-(e).
They also capture both the infinite sharpness around salient image discontinuities and the smooth colour interpolation typical of vector graphics.

Source: Photo ©Jack Tamrong - stock.adobe.com.

our vectorisation method (Section 3) and a detailed description
of its stages: feature extraction (Section 4), mesh generation
(Section 5), and texture transfer (Section 6), including its new
adaptive image detail control. To demonstrate the capabilities of
our proposal, we show the results of applying our method to sev-
eral types of raster images, edits to the resulting vector images,
our improved user-guided vectorisation pipeline as well as our
novel brushing functionality and compare with previous works
(Section 7). Finally, we discuss our method before concluding the
paper (Section 8).

2. Related work

Solid colours & linear gradients. First automatic attempts at vec-
torising images partition them into regions representable by flat,
linear or quadratic gradients [4]. This produces stylised repre-
sentations of the original image. Vectorisation of natural im-
ages based on solid colours often requires a colour quantisation
step to simplify detail [5,6], affecting the detail preservation
of this approach. Additionally, user guidance for this quantisa-
tion is often needed to preserve boundaries between objects
[7-9]. Another early attempt relies on adaptively created image
triangulations [10].

Diffusion curves. Diffusion curves [11] represent an image by
a collection of curves defining sharp transitions in colour. The
colours assigned to either side of these curves are then diffused
over the rest of the image. When vectorising an image into the
diffusion curve representation, image edges are detected and
represented as smooth curves, and their colour is extracted from
the underlying image. The original diffusion curves have been
extended in many ways [12-15] to allow better user control
and increase the fidelity of the primitive itself, and thus also in
the vectorisation process. Although (generalised) diffusion curves
offer a powerful set of primitives, they tend to be expensive to
evaluate as this involves solving large linear systems [11], using
smart solvers [16,17] or even using raytracing [18,19]. Although
diffusion curves provide an excellent way to represent images,
they have not seen wide adoption due to the complex nature of
the solvers [20].

Parametric patches. Originally introduced in Adobe Illustrator [2],
the gradient mesh primitive represents an image as a regular
grid of bicubic patches [21,22], which are the result of interpo-
lation of the colours and colour gradients assigned to the vertices
of the (gradient) mesh. Early attempts at gradient mesh based
vectorisation have used it in combination with (pre-)segmented
regions with progressive subdivision of patches [23] or optimising
meshes [24]. An automatic pipeline based on quadrangulations
guided by frame fields was proposed by Wei et al. [25].

More recently, subdivision surfaces were used over triangular
meshes [26,27], created using an elaborate pipeline of feature

120

extraction, mesh generation as well as colour fitting. However,
despite recent advances [28], subdivision surfaces are relatively
costly to evaluate and special care is needed to ensure inter-
polation of the colours assigned to mesh vertices [29]. Gradient
meshes and subdivision surfaces can model smooth regions of
an image with high accuracy, but require many patches in re-
gions with high-frequency changes in colour. Recently, other
non-standard forms of the gradient mesh have been proposed
to alleviate this problem [25,30-33], including our approach [3],
extended in the present paper.

Thin-plate splines have been used in combination with cubic
Bézier triangles [34]. The Bézier triangle mesh is generated by
simplifying a pixel-dense triangle mesh, which is followed by
optimisation and fitting. Chen et al. [35] combine dense thin-
plate splines, efficiently rendered with a specialised kernel, with
coarser gradient meshes generated from a manual segmenta-
tion of the image. Although most texture details are preserved,
sharp features are only approximated when not preserved by the
segmentation.

Our original method [3] also uses Bézier triangles for the mesh,
but generated directly from detected image features. In contrast
to prior art, we represent the colour inside each Bézier triangle
as mesh colours [36], and further improve on this using a user-
controllable adaptive approach. This allows for detailed texture
preservation and provides a cheap, yet accurate representation of
the original image. We note that recent work on new primitives
for colour manipulation [37] presents similar triangular subdivi-
sions, but the parametric shape of their colour distributions does
not capture spatial texture detail.

Other vectorisations. A related class of vectorisation methods
that focus on abstract/stylised imagery includes pixel art [38,39],
where aliased raster edges can be shape, texture or shading, mak-
ing that inference the core of the problem. Other recent works fo-
cus on perceptually-motivated vectorisations [40,41]. In a similar
vein, vectorisation of drawings and sketches [42-45] focuses on
inferring vector lines. Images can also be vectorised (and poten-
tially edited) using their skeletons/medial axis transforms [46,47].

Vector image editing. Ultimately, the resulting vector images
should allow their geometric and colour properties to be edited.
Most parametric patch-based representations are easily deformed
by deforming the handles of the parametric representations such
as the vertices of a mesh [26] or the control points of a high-
degree patch [27]. Other representations, such as diffusion curves,
can be manipulated by changing the curves themselves, but it
can be tedious to manipulate the image curve by curve. Local
and global deformation can be achieved by discretising the image
domain of diffusion curve images [48]. Our approach supports
such typical geometric edits at different levels, from independent
editing of vertex location and edge control points, to warping of
subsets of the mesh [3].



G.J. Hettinga, J. Echevarria and J. Kosinka

CGCG

Computers & Graphics 105 (2022) 119-130

Fig. 2. Our vectorisation pipeline presented on an illustrative example. From left to right: The input raster image, banded greyscale image to extract soft edges from,
extracted hard (red) and soft (green) image features, generated mesh, mesh colours with colours fitted, and the final (rasterised) result.

Many representations allow editing of colour through chang-
ing the colour distributions of a local region [25-27,35], by chang-
ing the colour and maintaining the variance. Liao et al. [26]
allow direct colour editing of colour values or their neighbour-
hoods. However, this is dependent on the local density of the
mesh. Diffusion curves can be colour edited at the curves but
do not allow for arbitrary brushing. Similar representations such
as Poisson vector graphics [49] and thin-plate spline based rep-
resentations [50] only allow editing directly at features or by
specifying entirely new features. Our proposed usage of mesh
colours is more flexible than parametric solutions. Coupled with
adaptive mesh resolution and hard image features, we showcase
novel raster-style brushing capabilities, including soft brushes.
This is different from vector brushes in some commercial drawing
applications [51], where the final vector image is a collection of
hard brush strokes.

3. Overview

Our method consumes a raster image (of any content) and
automatically converts it into a vector image. Although the vector
image needs to accurately represent the input raster content, the
resulting vector representation should meet several other condi-
tions: be editable, render efficiently, and be sparse. To that end,
we extract image features that capture representative geometry,
shading, and texture. In contrast to [3], we now determine image
edges using a Gaussian scale-space [11], which improves control
over noise filtering and keeping important edges.

Once vectorised using spline curves, the edges turn into intu-
itive handles for high level edits. These image features are also
the constraints for our mesh generation step, where we seek a
curved triangular mesh that follows them faithfully. We strive
for: an efficient mesh generation, enough triangles to obtain a
good topology to support detailed mesh colour patches, and a
representation that is easily editable by the user.

Next, each triangle is equipped with a mesh colour patch. Al-
though we do not intend to expose the mesh colours to the user,
we allow the user to modify them using a new brushing tech-
nique not present in [3]. Our automatic and now user-controllable
adaptive texture transfer process then fits the colours from the
input pixels to the mesh colours of the patches. To display our
vector representation, we rasterise it in real-time through tes-
sellation shaders, whose level of detail can be controlled on
the fly for detailed offline work or excellent performance for
visualisation.

These steps of our pipeline are visually represented in Fig. 2:

e the main features of the image are extracted (Section 4);
e a conforming mesh is generated (Section 5);
e image colours are transferred to mesh colours (Section 6).

Some of these intermediate steps for a more complex input are
shown in Fig. 1.

4. Feature extraction

The key to a successful image vectorisation is to establish
which features to preserve from the input raster image. Given

121

-
N %\\\

2D e

Lo

Fig. 3. Filtering edges with a scale-space approach removes edges that are the
result of noise. Note the difference in the red region on the battery, where hard
edges (red) on the left where removed, allowing for soft edges (green) to replace
them for cleaner geometry that still preserves all the texture detail.

that we aim for a universal method applicable to any input image,
we cannot make any assumptions about their content. However,
we define two types of features: hard and soft edges. A similar
distinction between hard and soft edges was made earlier on
by Lindeberg [52] and Elder [53] who describe differing blur
scales to edges which are extracted using a scale-space approach.
Their approach was later used in a vectorisation setting by Orzan
et al. [11] to estimate blur scales for edges.

Hard edges come mainly from colour discontinuities that typ-
ically capture salient shapes, contours, and textures of the ele-
ments in the image; and they should remain sharp on the vector
image. On the other hand, we use soft edges to model smooth
but complex colour transitions (e.g. shading). Edge detection is
still an active topic after decades of research [54], with recent
neural approaches that do an increasingly good job at inferring
geometrical edges at object level [55-57]. However, these meth-
ods are not that well suited to surfacing progressive texture detail
or complex colour transitions.

Edge extraction. For simplicity and ease of control, and similarly
to previous works [34,35], we use the Canny edge detector [58].
Given the performance of the rest of our method, this choice
provides interactive and intuitive control over the level of detail
of the resulting vectorisation. We typically set the low and high
thresholds to 15 and 100 in the range [0, 255], respectively.
Compared to [3], where a standard single blur pass was applied,
we filter further noisy edges by applying progressive levels of blur
to the image and keeping only those edges that have correspon-
dence in higher levels. Only those edges are kept that have at
least one pixel in the user defined scale. Fig. 3 shows an example
where the edges that are the result of noise are filtered away.
While this approach is good at detecting hard edges and contours,
it fails to pick up soft edges: lower thresholds lead to too much
noise and/or unwanted texture detail. Thus, we propose a simple
procedure to extract soft edges to complement the hard ones
found by Canny.

Upon closer inspection of the vectorisations obtained using
only hard edges, we noticed the missing soft edges we were inter-
ested in are typically orthogonal to the smooth colour gradients
in the image. To expose those features, we quantise a greyscale
version of the input image (20 levels by default), and extract the
discontinuities from the resulting banding using the marching



G.J. Hettinga, J. Echevarria and J. Kosinka

Fig. 4. Top row: Original image and the quantised greyscale image with the
extracted hard (red) and soft (green) edges overlaid. Bottom row: Our vectorised
version without using soft edges (left) and with soft edges (right). Note that soft
edges help to capture more detail and to avoid artefacts on the reflections of
the statue and in the background. Please, zoom in for a more detailed view.

squares algorithm. This is similar to the iso-contours used to
vectorise brushstrokes in [59], but our soft edges go through extra
processing before being traced differently.

Edge filtering. Because hard and soft edges may overlap near
areas where the image gradients change quickly, we filter the soft
edges based on their distance to neighbouring hard edges, effec-
tively removing them from areas where hard edges were already
present. We do this by creating the distance transform of the
previously extracted hard edges and using this as a filter for the
extracted edges from the banded image. This filtering promotes
the creation of sparser geometry later on in Section 5, as it re-
moves bands that overlap with hard edges or are closely parallel
to them. Fig. 4 shows the result of quantising the greyscale image,
and the subsequent soft features extracted from them (top right).
These features help us better capture soft image details, such as
all the blurry background elements in the input image (bottom
row).

5. Mesh generation

The goal of the mesh generation step is to create a mesh
of cubic Bézier triangles that conform to the detected image
features. We vectorise the detected edges by converting them
to cubic Bézier splines, which are then used to drive the curved
triangulation step.

Edge vectorisation. The extracted hard edges are traced and linked
into pixel chains [60] to be vectorised as cubic Bézier splines.
These splines help us capture curves and remove the aliasing
present on the hard edges, and enforce C° or G' continuity as
needed. In the spirit of [61], we progressively fit the splines to
the chains by recursively fitting curves to each whole pixel chain.

122

Computers & Graphics 105 (2022) 119-130

Fig. 5. Left: A cubic Bézier triangle with control points (the central one is in
red). Middle: Resolution 3 mesh colour texture with (4+1)-(44+2)/2=15 mesh
colours mapped on the cubic Bézier triangle. Right: Linear (top) and quartic
(bottom) interpolation.

We keep each fit only if the maximum error distance between a
polyline approximation of the Bézier curve and the pixel chain
is half a pixel. If not, the pixel chain is split at the pixel with
the largest distance, and new splines are fitted to the respective
halves of the previous pixel chain, until every segment of the pixel
chain is converted.

Soft edges are usually noisier and do not represent salient
image features that need to be preserved as accurately as the
hard edges. Therefore, we found an approximation is sufficient
and we do not have to strictly enforce the start and end points of
the spline piece to lie over the actual pixel-chain. Fig. 4 (top right)
shows the vectorised edges obtained from the input image. As can
be seen, the hard edges closely follow the discontinuous features
in the image, whereas the soft edges offer an approximation of
the bands from the quantisation, without affecting the quality of
the reconstruction. Hard and soft edges are kept separate to be
handled differently in later stages of the pipeline.

Curved triangulation. The soft and hard vectorised edges from the
previous step are curved, so direct application of standard lin-
ear meshing techniques would cause degeneracies if supporting
straight line segments crossed through the curved edges. One
option could be to subdivide the curved segments until only
accurate-enough linear elements remain, but this would quickly
increase the number of faces in the subsequent meshing step.
Instead, we choose to create a curved triangular mesh, as this
allows us to keep a lower number of generated triangles while
directly incorporating the curved edges.

To generate such a mesh we use the method of Mandad and
Campen [62] based on guarding triangles to avoid intersections
and employ standard constrained Delaunay triangulation. We
speed up the mesh optimisation phase by inserting supporting
vertices into the triangulation at regular intervals and only when
the inserted position is some distance from the nearest feature.
Alternatively, other curved triangulation methods [63] can be
used to generate the geometry, but the density of the resulting
mesh may end up being too high [64]. After the triangulation step,
we are left with a non-degenerate curved triangulation. This fixes
the topology of the mesh. Next, we determine its geometry and
parametrisation.

On each (curved) triangle, we construct a cubic Bézier trian-
gle (see Fig. 5, left) by using the control points of the curved
edges as edge control points and converting straight supporting
segments to cubic Bézier curves, which determines all the blue
control points. This ensures that all vectorised (hard and soft)
edges are exactly reproduced in the curved triangulation. To fix
the parametrisation, we add the central control point (red in
the figure) as the centroid of the edge control points of each
triangle. We also keep track of which edges represent hard and
soft features by tagging them. The straight segments generated
by the triangulation step are always deemed to be soft.



G.J. Hettinga, J. Echevarria and J. Kosinka

input

Fig. 6. From left to right: Input image and vectorisations using the same mesh
but different resolution r of mesh colours. On purpose, the mesh does not
capture the features of the input image correctly. Regardless, increasing r leads
to increasingly better approximations of the input image.

6. Texture transfer

As mentioned before, our goal is to use vector primitives able
to handle varying texture detail, while being fast to evaluate. We
propose the use of mesh colours [36], a first in the context of
image vectorisation, when not considering simple vertex colours
and standard linear interpolation. Mesh colours [65] are a conve-
nient way of storing colour and texture information in complex
meshes. This makes it robust to further transformations and
edits, especially when compared with parametric texture rep-
resentations from previous vectorisation work. These properties
make mesh colours a fitting mechanism for transferring texture
information from a raster to a mesh. However, mesh colours have
been used in conjunction with 3D painting tools [66], and there
are no standard ways of transferring texture information to mesh
colours.

Mesh colours. In our setup, we map triangular mesh colours
to the cubic Bézier triangles that were generated in the pre-
vious step (Section 5). Fig. 5, middle, shows a schematic view
of mapped mesh colours. The resolution r handles the number
R= @@ 42) of mesh colour vertices t; per patch, wherei =
(i,j, k), i+j+k = r and i, j, k > 0. We follow the procedure of [36]
to interpolate mesh colour values over each patch. For clarity of
presentation and to prepare the ground for our proposed mesh
colour fitting scheme (Section 6.1), in the following we detail the
steps for evaluating a mesh colour texture on a triangular patch.

The barycentric coordinates ¢ = (u, v, w) with respect to a
triangle A in the mesh are used to determine the three closest
mesh colours: t, tj, tx. These colours together determine a mesh
colour (sub)triangle of A. From the coordinates ¢ we determine
the local barycentric coordinates ¢ inside the mesh colour tri-
angle. These local coordinates are subsequently used to either
linearly or quartically interpolate between the three colour values
of the mesh colour triangle. The former results in piece-wise
linear C° colour interpolation over A, and the latter in piece-
wise quartic C! colour interpolation at the expense of increased
computational cost. We choose to use the C° version as there
is not a lot of difference (Fig. 5, right column), except in cases
where mesh colour values vary extremely. The resolution of each
mesh colour texture can be changed per triangle [67], effectively
adjusting the amount of texture detail that can be represented
and the storage required for it. Fig. 6 shows a simple example
where a static mesh approximates the same image with different
mesh colour resolutions. Higher mesh colour resolutions are able
to approximate the input more clearly.

6.1. Mesh colour fitting

At this stage, the mesh geometry is already fully defined and
mesh colours can be fitted to them. Ideally, the colour fitting
process should be implemented as a global least-squares problem
over all mesh colours of the entire mesh. This would automati-
cally generate smooth colour transitions over triangle boundaries

123

Computers & Graphics 105 (2022) 119-130

that are marked as smooth. However, this leads to a large system
of equations that needs to be solved and would not be practical
both with regards to memory and performance. Our approach
simplifies the problem, by fitting each triangle individually and
only afterwards smoothing mesh colours where appropriate.

We first fit mesh colours to each cubic Bézier triangle T
parametrised over A separately. We sample each T in the mesh
uniformly to obtain the pairs (p;, ¢;) for every sample position p;
in the image with ¢; its barycentric coordinates in A, i.e., T(¢;) =
pi. To effectively fit mesh colours, we need to ensure that the
number of samples m satisfies m > R. Using the image position
p; of each evaluated pair, we look up the bilinearly interpolated
colour value I(p;) = ¢; in the input raster image I. Using ¢;, we
determine the local barycentric coordinates ai of p; in its mesh
colour (sub)triangle. We then minimise the following function on
a per-triangle basis, used once per colour channel:

min Z(Tc(d),.) - c,-)z,

where T¢ evaluates the colour corresponding to T. This is a stan-
dard least squares problem that we solve for the mesh colours
of T. The matrix of the system can be reused for fitting triangles
with the same mesh colour resolution r, since it is independent of
the actual image positions and it uses only parametric positions
(expressed in terms of ¢), which are generated uniformly for each
triangle. We efficiently perform this sample pair creation process
in parallel for each triangle using GPU compute shaders.

To increase the efficiency of this colour fitting step, we can
use different mesh colour resolutions based on the size of each
triangle with respect to the original image, as follows. We assume
that during the feature extraction step most regions of highly
varying colour are split into smaller ones, and that each resulting
triangle after the mesh generation step lies in an area with small
changes in colour. Therefore, the smaller the triangle, the lower
resolution it needs to represent the textured area of the original
image. We bin the triangles based on their pixel area in the
original image into N different bins. These bins correspond to
increasing resolution of mesh colours. This benefits performance
as lower resolution textures require less samples to be generated,
reducing CPU-GPU congestion and improving the speed of the
fitting.

In this paper we introduce an improved strategy to adaptively
find the best resolution of mesh colours to use for a patch,
according to some user defined maximum error threshold E;a.
We start fitting at resolution 0 and increase the resolution and
only stop fitting when the mean squared error has gone below
the threshold. Naturally, this process converges as the resolution
of mesh colours will at some point exceed the resolution of pixels
contained in the triangular area denoted by the current patch
being fitted. Adaptively fitting patches takes more time than the
previous simpler binning approach, as potentially multiple fits
have to be done per-patch. However we can reuse the colours
already sampled from the original image for each subsequent fit.

Offset sampling. We found that bilinear sampling does not fetch
correct colours when sampling close to hard edges, causing colour
bleeding artefacts to appear on the triangles (Fig. 7, top). Inspired
by Liao et al. [11,26], we use a one-pixel padding around hard
edges. When sampling at hard edges, the actual sampling is offset
from the padded region. This ensures that sharp transitions on the
raster image are preserved by sampling on the correct side of the
edge (Fig. 7, bottom). By offsetting the sampling we are able to
create crisp edges without affecting the smooth interpolation on
either side of the edge.



G.J. Hettinga, J. Echevarria and J. Kosinka

Fig. 7. Vectorised image without (top) and with (bottom) offset sampling around
hard edges. Insets show the increased sharpness not only on silhouettes, but also
hard edges coming from other sources like shading.

Colour smoothing. After each individual triangle in the mesh has
been fitted with its associated mesh colours, we can increase the
fidelity of our vectorisation by smoothing mesh colours that are
on the edges of the triangles. The smoothing procedure, where
mesh colour values on edges are averaged with respect to their
values on adjacent mesh colour patches, only needs to be done for
edges that were previously deemed to be smooth, i.e., support-
ing (smooth) edges that were created in the triangulation step
(Section 5), or the smooth edges from the feature extraction stage
(Section 4).

When faced with differences in resolution of adjacent trian-
gles, the smoothing step cannot be achieved as a simple averaging
step. In this case we choose to let the lower resolution triangle
dictate the mesh colours on the edge of the higher resolution
one. We achieve this by linearly interpolating the missing mesh
colours so that the mesh colours of the two triangles align. The
mesh colours that are already aligned can simply be copied.
Averaging is used when the resolutions are equal.

This step guarantees at least C° interpolation of colour in
smooth regions. Fig. 8 shows the difference between before and
after colour smoothing. Before smoothing, the underlying trian-
gulation is clearly visible in some regions. After smoothing, these
artefacts vanish and the resulting vector image has C° colour
interpolation everywhere except at hard features.

6.2. Rendering

The resulting vector graphics representation should lend itself
to efficient rendering. To this end, we employ tessellation shaders
in the modern graphics pipeline. All triangles are rendered as
cubic Bézier triangles. We store the mesh colours in textures as
proposed by [36] and evaluate them using the process outlined
in Section 6.1 in a fragment shader. This of course leads to
duplication of mesh colour data for edges and vertex positions,
but it is necessary to model hard edges; this gives distinct colours
on either side of the edge and no filtering should be applied there.

We have not focused our efforts on improved filtering of
textures, such as trilinear filtering and MIP-mapping. There have
been recent improvements and variants on the mesh colour tech-
nique that extend them with increased filtering capabilities and
hardware support [66-68].

124

Computers & Graphics 105 (2022) 119-130

Fig. 8. Top: Input image (left) and our vectorised result (right). Bottom: Without
smoothing (left) the seams of the mesh become apparent (some examples
are highlighted by the red arrows), which is especially undesirable at large
magnification factors typical for vector graphics. The proposed smoothing of the
mesh colour values of neighbouring mesh colour patches removes such seams
for a more natural and higher quality result (right).

7. Results

Fig. 1 (left) shows an intricate input image with lots of detail.
Our extracted image features keep the sharpness of hard features,
while the mesh colour patches capture fine texture as desired;
see also the accompanying video. Fig. 2 shows a simple logo
that turns into a relatively simple vector image that could be
edited further to remove the background, for example. Fig. 4
shows an interesting combination of sharp and soft details, which
our image features help capture accurately. Fig. 7 shows another
example of clean stylised graphics faithfully captured by our
representation.

In the following we focus on the improvements and extensions
over the conference version [3] of this paper.

7.1. Adaptive image fitting

Adaptively fitting mesh colours allows for the mesh colours to
be used in areas where they are most needed. In Fig. 9 we show
different mesh colours fittings of the same geometry, features,
and mesh, but with various maximum permissible mean squared
error (MSE) per-patch thresholds. Naturally, by decreasing the
threshold the input image is reconstructed better. Most of the
small errors with respect to the original image accumulate along
the edges. This can be attributed to the offset sampling we do
along hard edges (Section 6) to hallucinate the infinite sharpness
of vector graphics, and the fact that the vectorised edges might
not perfectly align with the actual edges in the image.

The adaptivity of our solution means that lowering the error
threshold does not translate in a resolution increase in every
patch, since some image regions can be already well approxi-
mated by patches of lower resolution. In Fig. 10 we show the
distribution of patch resolutions when increasing the maximum
error threshold E.x for several examples. We can see that for
lower thresholds the higher resolution mesh colour patches dom-
inate, whilst increasing the threshold allows some patches to
become lower resolution, with an expected gradual increase in
the error.



G.J. Hettinga, J. Echevarria and J. Kosinka

Table 1

Computers & Graphics 105 (2022) 119-130

The performance of our vectorisation pipeline on several of the results featured in this paper. The time measurements
are shown in seconds except for the rendering time, which is shown in milliseconds, and are split over the elements
of our vectorisation pipeline: FE = Feature Extraction, MG = Mesh Generation, CF = Colour Fitting, RT = Rendering
Time, CR = Compression Ratio. A indicates the number of triangles and E, stands for Epx.

Image Resolution A-10° FE MG CF Total RT CR

Fig. 1 1280 x 853 ~9 1.0 0.2 25 3.7 ~ 22 0.28
Fig. 2 924 x 510 ~1 024 0.1 4 1.1 <1 0.03
Fig. 4 bottom left 848 x 1280 ~ 50 0.5 0.7 4 5.3 ~25 0.78
Fig. 7 1280 x 1181 ~ 4 19 0.06 19 39 ~2 0.06
Fig. 8 441 x 441 ~6 0.2 0.1 4.4 4.7 ~3 1.7

Fig. 9 top 1920 x 1284 ~ 15 1.5 0.3 1.5 33 ~ 25 0.18
Fig. 9 bottom 1280 x 853 ~15 1.5 0.3 133 15.2 ~ 30 0.65
Fig. 10 top (E, = 50) 1280 x 853 ~8 1.1 0.3 2.8 43 ~ 26 0.27
Fig. 10 top (Em = 1) 1280 x 853 ~8 1.5 0.3 15.3 17.0 ~ 26 0.93
Fig. 10 mid (E, = 50) 1280 x 853 ~6 0.8 0.1 2.0 2.9 ~ 16 0.12
Fig. 10 mid (E, = 1) 1280 x 853 ~6 0.8 0.1 47 5.7 ~ 17 0.33
Fig. 10 bottom (E, = 50) 1280 x 853 ~ 41 1.2 0.7 20.3 22.6 ~ 30 1.83
Fig. 10 bottom (E,, = 1) 1280 x 853 ~ 33 1.2 0.5 74.9 76.9 ~30 446

7.2. Performance

Table 1 shows the performance of our vectorisation method
for several results featured in this paper. In addition to the total
timings, we also show timings of several of the intermediate
steps, and rendering times of the rasterisation of the obtained
vector images. We ran the method on a low-end laptop, with
an NVIDIA MX150 GPU, 8 GB of RAM, and an Intel i5-8250 CPU;
obtaining times that make our method practical.

The original method [3] could vectorise any image with rea-
sonable performance, taking just a few seconds for the whole
process. Although our new adapted method is geared more to-
wards quality rather than performance, it is able to vectorise most
simple images within seconds and more complex images within
tens of seconds. Naturally, when requiring lower error rates the
performance decreases. This performance difference is due to the
higher prevalence of high resolution mesh colour patches, as can
be seen in Fig. 10. The higher rates of these patches also impact
the compression ratio, as more mesh colours samples are needed
for higher resolution patches.

The feature extraction step (Section 4) is dependent on the
resolution of the input image, and the number of features in
the image. The mesh generation step (Section 5) depends on
the content of the image, and the number of extracted features
and their orientations. For instance, curved features that lie close
to each other will generate more triangles than just a single
curve. Then the performance of the colour fitting step (Section 6)
depends on the number of generated triangles. However, due
to our parallelisation and our adaptive patch resolution, it can
be achieved quite efficiently. The resulting vector images can be
rendered quickly through our use of tessellation shaders. Even
for images with a large number of triangles we achieve real-time
performance rates (see the accompanying video).

7.3. Editing

Key to any image vectorisation method is the editability of
the resulting representation. In the following, we show different
types of edits and workflows, some only possible due to the
intuitiveness of our structure and steps, and/or the efficiency of
the whole pipeline.

Geometry editing. We support low-level deformations, i.e., drag-
ging vertex positions and tangent handles of the cubic edges of
the Bézier triangles. However, in some areas a relatively large
number of elements can be generated and editing can become
tedious. Instead, the mesh can be effectively manipulated using
proportional editing tools [26] paired with handling of curves
in the spirit of [69]. We show an example of this in Fig. 11

125

and the supplementary video. Because of our real-time rendering
performance, users can efficiently zoom in and out for precise
control.

User-guided vectorisation. We also created an interactive applica-
tion that allows users to draw spline curves on top of a raster
image. Replacing the automatic feature extraction stage of the
pipeline, the user can mark them as hard or soft features. The
created curved features are used as inputs to the rest of the
pipeline. This user-guided process of vectorisation can be done
fully interactively thanks to the efficiency of our pipeline. In
addition, the user adds curves locally, which requires only local
updates to the triangulation and mesh colours. Fig. 12 shows
interactively generated vectorisations of raster images. Lastly, the
same workflow could be used to clean up automatically vec-
torised images by adding or fixing features that were not captured
correctly in the edge detection phase.

Colour editing. Due to the way mesh colours are connected to the
mesh, we can replicate the expressiveness and editing capabilities
of raster images by allowing the user to brush over the vector
image directly, so the colours of the mesh colours are updated
accordingly; see Fig. 13. Naturally, the higher the resolution of the
mesh colours, the better the capacity to capture the brushstrokes,
becoming akin to brushing on a raster image. After the initial
vectorisation of a raster image, we allow the user to increase the
resolution of the mesh colour patches arbitrarily. This is achieved
without loss of quality given the new mesh colours can be created
using linear interpolation from the initial mesh colours. This pro-
cedure can be used to increase the resolution locally or globally.
Note that this would be harder for representations based on
subdivision surfaces, as this requires global subdivision [28]; or
thin plate splines, as this increases the complexity of computation
(matrix-inversion). Our representation is only spatially affected as
mesh colour evaluation is a constant operation.

The inclusion of the feature curve information in the vec-
torised representation also allows for interesting hybrid interac-
tions (Fig. 14). Stroke colours are propagated from the centre of
the brush outwards, visiting all triangle faces in the perimeter
of the brush which are directly accessible from the centre of the
brush, so hard features can be used as barriers to this propagation.

Free-form authoring workflows. By combining the interactive fea-
ture creation and brushing features we create novel free-form
vector graphics workflows. Using the guided vectorisation pro-
cess described before, the user first draws the main features of the
design. Based on those features, the mesh generation step creates
and initialises a blank mesh colour canvas to receive user brush-
strokes. With the addition of feature-aware strokes this workflow
becomes a novel and powerful tool to create vector images. A



G.J. Hettinga, J. Echevarria and J. Kosinka

Fig. 9. Top to bottom, colour fittings of the same image with different maxi-
mum MSE thresholds [500, 200, 100, 50, 10] resulting in mean squared errors
[17.88,11.84,9.55, 7.43, 5.32]. Error maps scaled 20 times for visualisation
purposes.

potential limitation comes from the fact that editing the initial
features later on might update the underlying triangulation, thus
changing the distribution of mesh colours unexpectedly. This
could be alleviated by trying to approximate the mesh colours
from the original triangulation, but this will most likely incur
some loss of quality. Fig. 15 shows some examples created using
the proposed free-form workflow, which would be impossible to
author using previous representations.

7.4. Comparisons with previous work

We compare against recent methods and relevant primitives
for image vectorisation: thin-plate splines (TPS), subdivision
meshes, and diffusion curves. For all comparisons we must state
that we could only approximately compare. This is because many

126

Computers & Graphics 105 (2022) 119-130

~N

MSE

(%

MSE

Fig. 10. Plots showing the distribution of patch resolutions from our proposed
adaptive colour fitting, for the resulting vectorisations on the right. The maps
show the error incurred for Ej.x = 1.0, scaled 20 times for visualisation

purposes.

Fig. 11. Our vector images are easily editable by manipulating the curved mesh.
From left to right: One of our vectorised results, the mesh of the vector, the
edited mesh, and the rendered edited image. See the accompanying video for
the editing session.

algorithms only vectorise the images partially by first manually
segmenting them and/or we were not able to find the original
input images and were left with a lower quality input image. Still,
we have to the best of our abilities tried to compare our method
to existing methods.

Fig. 16 shows a comparison with a partially automatic TPS-
based method [35]. As can be seen, their method is very good
at capturing fine texture detail, but at the same time it scales
similarly to a raster image, thus loosing some sharpness around
hard edges. In addition, their vector patches often show seams



G.J. Hettinga, J. Echevarria and J. Kosinka

Fig. 12. User-guided vectorisations of several images. Left to right: Original
image, user-placed curves in red (hard edges) and green (soft edges) with
the generated mesh in blue, and the resulting vectorisation. Top: 47 curves
generated 460 triangles. Middle: 155 curves generated 993 triangles. Bottom:
186 curves generated 1404 triangles. Please, see also the accompanying video.

Fig. 13. A vector brushing example. Left: Vector image obtained with our
method. Right: The same vector image after a localised application of a green
soft brush. While the result resembles the ones achievable in standard raster
editing workflows, this one leverages our whole representation, with strokes
optionally blocked by hard features (like the ones outlining the red parts of the
shell), and remaining in vector space during the whole process.

under magnification. In contrast, our method hallucinates vector-
style sharpness around hard edges and does not show texture
seams thanks to our colour smoothing around soft edges. Our
texture detail is affected both by the feature extraction step
and the patch resolution, obtaining less realistic abstracted looks
when not sufficient.

Because our image quality is often comparable to that of [35],
we chose not to include gradient meshes [24] in our comparisons,
as their limitations when capturing highly detailed textures were
already demonstrated by Chen et al.

Fig. 18 shows a comparison against another TPS-based method
[34], where our simpler and more performant pipeline achieves

127

Computers & Graphics 105 (2022) 119-130

A Van

Fig. 14. Left: Brushing over our vector representation without awareness of hard
features (red line) provides the same experience as when brushing over a raster
image. Right: If we make the strokes aware of hard features, colour updates
stop precisely at their boundaries. When the endpoint of a hard feature is in
the perimeter of the brush (dashed black circle), the stroke naturally wraps
around the feature. Triangle mesh shown in blue.

VW
———

Fig. 15. Examples of vector images created using the proposed free-form
workflow, by first drawing the outlines of the shapes, and using brushstrokes
to paint solid colours and texture detail afterwards.

comparable results to their more intensive vectorisation method.
Fig. 19 shows a comparison with another mesh-based approach
[26] that uses subdivision surfaces. Our decoupling into a spatial
2D mesh and 3D (RGB) mesh colours allows finer control over
colour whilst not complicating the geometry, capturing higher
level of detail while achieving comparable smoothness and mesh
density.

Fig. 17 shows comparisons with hierarchical diffusion curves
[12]. We found that their image feature extraction translates into
a global loss of clarity and detail for photos. For designed graphics,
their method extracts cleaner features that produce quality closer
to our method. The reported timings of the images in Fig. 17 are
in the hundreds of seconds [12], our vectorisation pipeline is able
to vectorise these same images at least one order of magnitude
faster.

It is also worth mentioning that our precise tracing of hard
edges following the contours of the objects allows straightfor-
ward cut-outs to remove image backgrounds.

7.5. Discussion

Previous vector graphics primitives have focused mostly on
high colour continuity surfaces. Our vector representation is ‘only’



G.J. Hettinga, J. Echevarria and J. Kosinka

Computers & Graphics 105 (2022) 119-130

Fig. 16. Comparisons between [35] (left) and our proposed method (right).
Our method seems better at hallucinating sharpness coming from geometric
discontinuities (petals in the second row, holes in the last row), which are easily
picked up by our extracted image features. However, ours is not that good at
capturing extremely detailed textures like fur (first row). Insets also show the
relevance of our colour smoothing across patches, absent in [35] (second and
bottom rows). Vectorised backgrounds were not available from [35], but included
for completeness.

CP, but given our proposed feature extraction step, the mesh is
generated in a way that all triangles lie on areas with little varia-
tion in colour. These areas can then easily be handled by the mesh
colour patches, removing the need for smoother interpolation
strategies like subdivision surfaces or thin-plate splines, which
are less efficient to evaluate than our representation.

Our pipeline uses standard and also state-of-the-art tech-
niques for extracting features and constructing the geometry,
but while the proposed steps in our method are on top of each
other, the proposed algorithms for them are independent on each
other. This means that the proposed pipeline can be potentially
updated/upgraded in the future. We already did that to the image
feature extraction and adaptive mesh colour resolution, with
respect to the conference version of this paper [3]. In any case,
we also proposed a variety of interactive tools that can be used if
fully-automatic methods fail.

Although tessellation shaders increase the rendering perfor-
mance, it is still possible to render the images using only the CPU,
or alternatively using compute shaders or texture based solutions
for the Web. In addition, a downgraded approximation of the
vector image can be created easily by extracting each mesh colour
patch as a piece-wise linear triangulation, using the evaluated
mesh colour positions as vertices. This may help the compatibility
with current vector format standards such as PDF [21] that do not
directly support our proposed vector representation.

Theoretically, we could push our method to two extremes:
on the one hand, the whole input image could be represented
using only two triangles with a very high resolution of the mesh
colours; on the other hand, each pixel of the input image could

128

Fig. 17. From top to bottom: Input images, our results, results from [12], our
extracted image features, and the ones from [12]. When applied to photos,
our method produces sharper and cleaner results across the whole image
(please, zoom in for details). For simpler inputs with clearer discontinuities,
both methods perform similarly.

be captured by two triangles with a very low (in this case zero)
texture resolution. Both are similar in spirit to [25], which is
an efficient method, but it does not adapt its resolution to lo-
cal regions with higher detail. In addition, not having explicit
image features for geometric edits means the user would need
to move each vertex manually, so having some sort of higher-
level vectorised control features is more desirable. In summary,
one needs to find a good balance between the number (and
geometry) of the mesh triangles and the mesh colour resolution.
We believe our pipeline achieves this balance to a very good
extent, but additional optimisations are still possible, such as
iterative feedback between different steps of our pipeline.

Our method does not readily support one pixel wide features.
All hard edges are deemed to be ‘step‘ edges. The offset sampling
thus misses one pixel wide features as the colours are not picked
up by the fitting step. Single pixel wide features require separate
treatment, such as in combination with some of the methods
focusing on sketch vectorisation mentioned in Section 2.

8. Conclusion

We have presented a fully automatic image vectorisation
method that can vectorise any image, ranging from natural



G.J. Hettinga, J. Echevarria and J. Kosinka

Computers & Graphics 105 (2022) 119-130

Fig. 18. From left to right: Input image, our result, result from [34], our image features and triangle mesh, and the ones from [34]. Final quality is very similar
between both methods, including sharpness around hard edges due to their feature alignment, and our offset sampling and mesh colours. The main differences lie
in the 2D mesh, with theirs being sparser. However, the complexity of their mesh optimisation and the evaluation of their thin-plate splines is higher than our
simpler but more efficient approach. Note that the vectorised background was not available from [34], but we included it in our result for completeness.

Fig. 19. From left to right: Input image, our result, result from [26], our image features and mesh, image features and mesh from [26]. While image features and
triangle structure look similar, our mesh colour patches are able to capture more detail, even in smooth regions such as under the nose.

images to logos and cartoon images, with good performance and
reconstruction accuracy. Through our novel use of mesh colours,
we are able to adaptively transfer detailed colour textures to a
mesh of curved triangles generated from our feature extraction
step.

Our efficient pipeline is capable of vectorising a wide range of
image types in seconds on commodity hardware. To ensure that
not only hard edges but also smooth image regions are captured
correctly, we add soft edges obtained from colour banding to our
image features. These features are vectorised, and then respected
by the mesh of curved triangles equipped with mesh colours
representing the vectorised image. This results in relatively sparse
vector representations that are flexible and easy to edit in a
variety of ways, as demonstrated in the examples presented
throughout the paper and the supplementary video.

CRediT authorship contribution statement

Gerben J. Hettinga: Conceptualisation, Methodology, Soft-
ware, Investigation, Writing - original draft. Jose Echevarria:
Conceptualisation, Methodology, Writing - original draft, Writing

- review & editing. Jifi Kosinka: Conceptualisation, Methodology,
Writing - review & editing, Supervision, Project administration.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.cag.2022.05.004.

129

References
[1] Yang M, Chao H, Zhang C, Guo ], Yuan L, Sun ]. Effective clipart image

vectorization through direct optimization of bezigons. IEEE Trans Vis

Comput Graphics 2016;22(02):1063-75.

Adobe illustrator: Meshes. 2019, Online; https://helpx.adobe.com/

illustrator/using/meshes.html. [Accessed 11 February 2022].

Hettinga GJ, Echevarria ], Kosinka ]. Efficient image vectorisation using

mesh colours. In: Frosini P, Giorgi D, Melzi S, Rodola E, editors. STAG:

Smart tools and applications in graphics. The Eurographics Association;

2021.

Lecot G, Levy B. Ardeco: automatic region detection and conversion. In:

17th Eurographics symposium on rendering. 2006, p. 349-60.

Adobe illustrator: Image trace. 2019, Online; https://helpx.adobe.com/

illustrator/using/image-trace.html. [Accessed 11 February 2022].

Li T-M, Luka¢ M, Gharbi M, Ragan-Kelley ]. Differentiable vector graphics

rasterization for editing and learning. ACM Trans Graph 2020;39(6).

Xie ], Winnemoller H, Li W, Schiller S. Interactive vectorization. In:

Proceedings of the 2017 CHI conference on human factors in comput-

ing systems. CHI '17, New York, NY, USA: Association for Computing

Machinery; 2017, p. 6695-705.

Richardt C, Lopez-Moreno ], Bousseau A, Agrawala M, Drettakis G. Vectoris-

ing bitmaps into semi-transparent gradient layers. Comput Graph Forum

2014;33(4):11-9.

Favreau J-D, Lafarge F, Bousseau A. Photo2clipart: Image abstraction and

vectorization using layered linear gradients. ACM Trans Graph 2017;36(6).

Demaret L, Dyn N, Iske A. Image compression by linear splines over

adaptive triangulations. Signal Process 2006;86(7):1604-16.

Orzan A, Bousseau A, Winnemoller H, Barla P, Thollot |, Salesin D. Diffusion

curves: A vector representation for smooth-shaded images. ACM Trans

Graph 2008;35(2):71-9.

Xie G, Sun X, Tong X, Nowrouzezahrai D. Hierarchical diffusion curves for

accurate automatic image vectorization. ACM Trans Graph 2014;33(6):230.

Lu S, Jiang W, Ding X, Kaplan CS, Jin X, Gao F, et al. Depth-aware image

vectorization and editing. Vis Comput 2019;1-13.

Dai W, Luo T, Shen ]. Automatic image vectorization using superpixels

and random walkers. In: Image and signal processing (CISP), 2013 6th

international congress on, Vol. 2. IEEE; 2013, p. 922-6.

Zhao S, Durand F, Zheng C. Inverse diffusion curves using shape

optimization. IEEE Trans Vis Comput Graphics 2017.

[16] Jeschke S, Cline D, Wonka P. A GPU Laplacian solver for diffusion

curves and Poisson image editing. Trans Graph (Siggraph Asia 2009)
2009;28(5):1-8.

[2]

(3

[4]
[5]
(6]
171

(8]

[9

[10]

[11]

[12]
[13]

[14]

[15]


https://doi.org/10.1016/j.cag.2022.05.004
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb1
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb1
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb1
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb1
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb1
https://helpx.adobe.com/illustrator/using/meshes.html
https://helpx.adobe.com/illustrator/using/meshes.html
https://helpx.adobe.com/illustrator/using/meshes.html
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb3
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb3
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb3
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb3
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb3
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb3
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb3
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb4
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb4
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb4
https://helpx.adobe.com/illustrator/using/image-trace.html
https://helpx.adobe.com/illustrator/using/image-trace.html
https://helpx.adobe.com/illustrator/using/image-trace.html
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb6
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb6
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb6
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb7
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb7
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb7
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb7
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb7
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb7
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb7
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb8
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb8
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb8
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb8
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb8
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb9
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb9
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb9
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb10
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb10
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb10
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb11
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb11
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb11
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb11
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb11
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb12
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb12
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb12
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb13
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb13
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb13
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb14
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb14
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb14
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb14
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb14
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb15
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb15
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb15
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb16
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb16
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb16
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb16
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb16

G.J. Hettinga, J. Echevarria and J. Kosinka

[17] Jeschke S, Cline D, Wonka P. Estimating color and texture parameters for

[18]

[19]
[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

[31]

[32]

[33]

[34]
[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

vector graphics. In: Computer graphics forum, Vol. 30, no. 2. Wiley Online
Library; 2011, p. 523-32.

Bowers JC, Leahey ], Wang R. A ray tracing approach to diffusion curves.
In: Computer graphics forum, Vol. 30, no. 4. Wiley Online Library; 2011,
p. 1345-52.

Prévost R, Jarosz W, Sorkine-Hornung O. A vectorial framework for ray
traced diffusion curves. Comput Graph Forum 2015;34.

Boyé S, Barla P, Guennebaud G. A vectorial solver for free-form vector
gradients. ACM Trans Graph 2012;31(6).

Adobe PDF. 2006, Online; https://www.adobe.com/content/dam/acom/
en/devnet/pdf/pdf_reference_archive/pdf_reference_1-7.pdf. [Accessed 11
February 2022].

Sun |, Liang L, Wen F, Shum H-Y. Image vectorization using optimized
gradient meshes. ACM Trans Graph (TOG) 2007;26(3):11.

Price B, Barrett W. Object-based vectorization for interactive image editing.
Vis Comput 2006;22(9):661-70.

Lai YK, Hu SM, Martin RR. Automatic and topology-preserving gradi-
ent mesh generation for image vectorization. ACM Trans Graph (TOG)
2009;28(3):85.

Wei G, Zhou Y, Gao X, Ma Q, Xin S, He Y. Field-aligned quadrangulation for
image vectorization. In: Computer graphics Forum, Vol. 38, no. 7. Wiley
Online Library; 2019, p. 171-80.

Liao Z, Hoppe H, Forsyth D, Yu Y. A subdivision-based represen-
tation for vector image editing. IEEE Trans Vis Comput Graphics
2012;18(11):1858-67.

Zhou H, Zheng ], Wei L. Representing images using curvilinear feature
driven subdivision surfaces. I[EEE Trans Image Process 2014;23(8):3268-80.
Zhou ], Hettinga G, Houwink S, Kosinka ]. Feature-adaptive and hierarchical
subdivision gradient meshes. Comput Graph Forum 2022;41:389-401.
Verstraaten TW, Kosinka ]. Local and hierarchical refinement for
subdivision gradient meshes. Comput Graph Forum 2018;37(7):373-83.
Lieng H, Kosinka ], Shen J, Dodgson NA. A colour interpolation scheme for
topologically unrestricted gradient meshes. In: Computer graphics forum,
vol. 36, no. 6. Wiley Online Library; 2017, p. 112-21.

Li XY, Ju T, Hu SM. Cubic mean value coordinates. ACM Trans Graph
2013;32(4):126-:10.

Barendrecht PJ, Luinstra M, Hogervorst |, Kosinka ]. Locally refinable
gradient meshes supporting branching and sharp colour transitions. Vis
Comput 2018;34(6-8):949-60.

Baksteen SD, Hettinga GJ, Echevarria J, Kosinka J. Mesh colours for gradient
meshes. In: Frosini P, Giorgi D, Melzi S, Rodola E, editors. STAG: Smart tools
and applications in graphics. The Eurographics Association; 2021.

Xia T, Liao B, Yu Y. Patch-based image vectorization with automatic
curvilinear feature alignment. ACM Trans Graph (TOG) 2009;28(5):115.
Chen K, Luo Y, Lai Y, Chen Y, Yao C, Chu H, et al. Image vectorization with
real-time thin-plate spline. IEEE Trans Multimed 2020;22(1):15-29.
Mallett I, Seiler L, Yuksel C. Patch textures: Hardware implementation of
mesh colors. In: High-performance graphics. The Eurographics Association;
2019.

Shugrina M, Kar A, Fidler S, Singh K. Nonlinear color triads for approxima-
tion, learning and direct manipulation of color distributions. ACM Trans
Graph 2020;39(4).

Kopf ], Lischinski D. Depixelizing pixel art. ACM Trans Graph 2011;30(4).
Silva MAG, Montenegro A, Clua E, Vasconcelos C, Lage M. Real time
pixel art remasterization on GPUs. In: 2013 XXVI Conference on graphics,
patterns and images. 2013, p. 274-81.

Hoshyari S, Dominici EA, Sheffer A, Carr N, Wang Z, Ceylan D, et
al. Perception-driven semi-structured boundary vectorization. ACM Trans
Graph 2018;37(4).

Dominici EA, Schertler N, Griffin J, Hoshyari S, Sigal L, Sheffer A. Poly-
Fit: Perception-aligned vectorization of raster clip-art via intermediate
polygonal fitting. ACM Trans Graph 2020;39(4).

Favreau JD, Lafarge F, Bousseau A. Fidelity vs. Simplicity: A global approach
to line drawing vectorization. ACM Trans Graph 2016;35(4).

130

[43]

[44]

[45]
[46]
[47]
(48]
[49]
[50]
[51]

[52]

[53]
[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]
[66]

[67]

[68]

[69]

Computers & Graphics 105 (2022) 119-130

Najgebauer P, Scherer R. Inertia-based fast vectorization of line drawings.
Comput Graph Forum 2019;38(7):203-13.

Egiazarian V, Voynov O, Artemov A, Volkhonskiy D, Safin A, Taktasheva M,
et al. Deep vectorization of technical drawings. In: Vedaldi A, Bischof H,
Brox T, Frahm JM, editors. Computer vision. Cham: Springer International
Publishing; 2020, p. 582-98.

Stanko T, Bessmeltsev M, Bommes D, Bousseau A. Integer-grid sketch
simplification and vectorization. Comput Graph Forum 2020;39(5):149-61.
Wang ], Kosinka ], Telea A. Spline-based medial axis transform
representation of binary images. Comput Graph 2021;98:165-76.

Wang ], Kosinka ], Telea A. Spline-based dense medial descriptors for lossy
image compression. ] Imaging 2021;7(8).

Lu S, Ding X, Gao F, Chen J. Shape manipulation of diffusion curves images.
IEEE Access 2020;8:57158-67.

Hou F, Sun Q, Fang Z, Liu Y], Hu SM, Qin H, et al. Poisson vector graphics
(PVG). IEEE Trans Vis Comput Graphics 2018;26(2):1361-71.

Finch M, Snyder ], Hoppe H. Freeform vector graphics with controlled
thin-plate splines. ACM Trans Graph 2011;30(6):1-10.

Adobe fresco: Vector brushes. 2020, Online; https://helpx.adobe.com/
fresco/using/vector-brushes.html.[Accessed 11 February 2022].

Lindeberg T. Edge detection and ridge detection with automatic scale
selection. In: Proceedings CVPR IEEE computer society conference on
computer vision and pattern recognition. 1996, p. 465-70.

Elder JH, Zucker SW. Local scale control for edge detection and blur
estimation. IEEE Trans Pattern Anal Mach Intell 1998;20(7):699-716.
Maini R, Aggarwal H. Study and comparison of various image edge
detection techniques. Int ] Image Process (IJIP) 2009;3(1):1-11.

Xie S, Tu Z. Holistically-nested edge detection. In: Proceedings of the IEEE
international conference on computer vision. 2015.

Liu Y, Cheng M, Hu X, Wang K, Bai X. Richer convolutional features for
edge detection. In: 2017 IEEE conference on computer vision and pattern
recognition. 2017, p. 5872-81.

He ], Zhang S, Yang M, Shan Y, Huang T. BDCN: Bi-directional cascade
network for perceptual edge detection. IEEE Trans Pattern Anal Mach Intell
2020;1-14.

Canny J. A computational approach to edge detection. IEEE Trans Pattern
Anal Mach Intell 1986;PAMI-8(6):679-98.

Benjamin MD, DiVerdi S, Finkelstein A. Painting with triangles. In:
NPAR 2014, Proceedings of the 12th international symposium on
non-photorealistic animation and rendering. 2014.

Kovesi P. MATLAB and octave functions for computer vision and image
processing: Edge linking and line segment fitting. 2020, Online; https://
www.peterkovesi.com/matlabfns/index.html#edgelink. [Accessed 31 March
2022].

Schneider PJ. An algorithm for automatically fitting digitized curves. In:
Graphics gems. USA: Academic Press Professional, Inc.; 1990, p. 612-26,
https://dl.acm.org/doi/10.5555/90767.90941.

Mandad M, Campen M. Bézier guarding: Precise higher-order meshing of
curved 2D domains. ACM Trans Graph 2020;39(4).

Hu Y, Schneider T, Gao X, Zhou Q, Jacobson A, Zorin D, et al. Tri-
Wild: Robust triangulation with curve constraints. ACM Trans Graph
2019;38(4):52:1-52:15.

Mandad M, Campen M. Guaranteed-quality higher-order triangular
meshing of 2D domains. ACM Trans Graph 2021;40(4).

Yuksel C, Keyser ], House DH. Mesh colors. ACM Trans Graph 2010;29(2).
Yuksel C, Lefebvre S, Tarini M. Rethinking texture mapping. Comput Graph
Forum 2019;38(2):535-51, (Proceedings of Eurographics 2019).

Yuksel C. Mesh colors with hardware texture filtering. In: ACM SIGGRAPH
2016 Talks. SIGGRAPH '16, New York, NY, USA: Association for Computing
Machinery; 2016.

Mallett I, Seiler L, Yuksel C. Patch textures: Hardware support for mesh
colors. IEEE Trans Vis Comput Graphics 2020. [in press].

Liu S, Jacobson A, Gingold Y. Skinning cubic Bézier splines and
Catmull-Clark subdivision surfaces. ACM Trans Graph 2014;33(6):1-9.


http://refhub.elsevier.com/S0097-8493(22)00067-X/sb17
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb17
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb17
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb17
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb17
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb18
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb18
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb18
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb18
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb18
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb19
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb19
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb19
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb20
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb20
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb20
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdf_reference_archive/pdf_reference_1-7.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdf_reference_archive/pdf_reference_1-7.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdf_reference_archive/pdf_reference_1-7.pdf
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb22
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb22
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb22
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb23
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb23
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb23
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb24
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb24
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb24
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb24
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb24
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb25
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb25
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb25
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb25
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb25
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb26
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb26
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb26
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb26
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb26
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb27
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb27
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb27
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb28
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb28
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb28
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb29
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb29
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb29
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb30
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb30
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb30
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb30
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb30
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb31
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb31
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb31
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb32
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb32
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb32
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb32
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb32
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb33
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb33
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb33
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb33
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb33
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb34
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb34
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb34
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb35
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb35
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb35
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb36
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb36
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb36
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb36
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb36
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb37
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb37
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb37
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb37
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb37
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb38
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb39
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb39
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb39
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb39
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb39
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb40
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb40
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb40
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb40
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb40
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb41
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb41
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb41
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb41
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb41
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb42
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb42
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb42
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb43
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb43
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb43
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb44
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb44
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb44
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb44
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb44
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb44
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb44
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb45
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb45
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb45
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb46
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb46
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb46
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb47
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb47
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb47
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb48
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb48
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb48
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb49
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb49
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb49
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb50
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb50
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb50
https://helpx.adobe.com/fresco/using/vector-brushes.html
https://helpx.adobe.com/fresco/using/vector-brushes.html
https://helpx.adobe.com/fresco/using/vector-brushes.html
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb52
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb52
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb52
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb52
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb52
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb53
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb53
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb53
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb54
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb54
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb54
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb55
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb55
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb55
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb56
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb56
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb56
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb56
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb56
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb57
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb57
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb57
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb57
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb57
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb58
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb58
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb58
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb59
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb59
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb59
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb59
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb59
https://www.peterkovesi.com/matlabfns/index.html#edgelink
https://www.peterkovesi.com/matlabfns/index.html#edgelink
https://www.peterkovesi.com/matlabfns/index.html#edgelink
https://dl.acm.org/doi/10.5555/90767.90941
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb62
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb62
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb62
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb63
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb63
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb63
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb63
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb63
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb64
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb64
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb64
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb65
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb66
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb66
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb66
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb67
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb67
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb67
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb67
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb67
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb68
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb68
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb68
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb69
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb69
http://refhub.elsevier.com/S0097-8493(22)00067-X/sb69

	Adaptive image vectorisation and brushing using mesh colours
	Introduction
	Related work
	Overview
	Feature extraction
	Mesh generation
	Texture transfer
	Mesh colour fitting
	Rendering

	Results
	Adaptive image fitting
	Performance
	Editing
	Comparisons with previous work
	Discussion

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A. Supplementary data
	References


