54 research outputs found

    Phase retrieval with a multivariate Von Mises prior: from a Bayesian formulation to a lifting solution

    Get PDF
    In this paper, we investigate a new method for phase recovery when prior information on the missing phases is available. In particular, we propose to take into account this information in a generic fashion by means of a multivariate Von Mises dis- tribution. Building on a Bayesian formulation (a Maximum A Posteriori estimation), we show that the problem can be expressed using a Mahalanobis distance and be solved by a lifting optimization procedure.Comment: Preprint of the paper published in the proc. of ICASSP'1

    Linearly Convergent First-Order Algorithms for Semi-definite Programming

    Full text link
    In this paper, we consider two formulations for Linear Matrix Inequalities (LMIs) under Slater type constraint qualification assumption, namely, SDP smooth and non-smooth formulations. We also propose two first-order linearly convergent algorithms for solving these formulations. Moreover, we introduce a bundle-level method which converges linearly uniformly for both smooth and non-smooth problems and does not require any smoothness information. The convergence properties of these algorithms are also discussed. Finally, we consider a special case of LMIs, linear system of inequalities, and show that a linearly convergent algorithm can be obtained under a weaker assumption

    Oracle-Based Primal-Dual Algorithms for Packing and Covering Semidefinite Programs

    Get PDF
    Packing and covering semidefinite programs (SDPs) appear in natural relaxations of many combinatorial optimization problems as well as a number of other applications. Recently, several techniques were proposed, that utilize the particular structure of this class of problems, to obtain more efficient algorithms than those offered by general SDP solvers. For certain applications, such as those described in this paper, it maybe required to deal with SDP\u27s with exponentially or infinitely many constraints, which are accessible only via an oracle. In this paper, we give an efficient primal-dual algorithm to solve the problem in this case, which is an extension of a logarithmic-potential based algorithm of Grigoriadis, Khachiyan, Porkolab and Villavicencio (SIAM Journal of Optimization 41 (2001)) for packing/covering linear programs
    • …
    corecore