13,220 research outputs found

    On smoothed analysis of quicksort and Hoare's find

    Get PDF
    We provide a smoothed analysis of Hoare's find algorithm, and we revisit the smoothed analysis of quicksort. Hoare's find algorithm - often called quickselect or one-sided quicksort - is an easy-to-implement algorithm for finding the k-th smallest element of a sequence. While the worst-case number of comparisons that Hoare’s find needs is Theta(n^2), the average-case number is Theta(n). We analyze what happens between these two extremes by providing a smoothed analysis. In the first perturbation model, an adversary specifies a sequence of n numbers of [0,1], and then, to each number of the sequence, we add a random number drawn independently from the interval [0,d]. We prove that Hoare's find needs Theta(n/(d+1) sqrt(n/d) + n) comparisons in expectation if the adversary may also specify the target element (even after seeing the perturbed sequence) and slightly fewer comparisons for finding the median. In the second perturbation model, each element is marked with a probability of p, and then a random permutation is applied to the marked elements. We prove that the expected number of comparisons to find the median is Omega((1−p)n/p log n). Finally, we provide lower bounds for the smoothed number of comparisons of quicksort and Hoare’s find for the median-of-three pivot rule, which usually yields faster algorithms than always selecting the first element: The pivot is the median of the first, middle, and last element of the sequence. We show that median-of-three does not yield a significant improvement over the classic rule

    Interpretable multiclass classification by MDL-based rule lists

    Get PDF
    Interpretable classifiers have recently witnessed an increase in attention from the data mining community because they are inherently easier to understand and explain than their more complex counterparts. Examples of interpretable classification models include decision trees, rule sets, and rule lists. Learning such models often involves optimizing hyperparameters, which typically requires substantial amounts of data and may result in relatively large models. In this paper, we consider the problem of learning compact yet accurate probabilistic rule lists for multiclass classification. Specifically, we propose a novel formalization based on probabilistic rule lists and the minimum description length (MDL) principle. This results in virtually parameter-free model selection that naturally allows to trade-off model complexity with goodness of fit, by which overfitting and the need for hyperparameter tuning are effectively avoided. Finally, we introduce the Classy algorithm, which greedily finds rule lists according to the proposed criterion. We empirically demonstrate that Classy selects small probabilistic rule lists that outperform state-of-the-art classifiers when it comes to the combination of predictive performance and interpretability. We show that Classy is insensitive to its only parameter, i.e., the candidate set, and that compression on the training set correlates with classification performance, validating our MDL-based selection criterion

    Smoothed Efficient Algorithms and Reductions for Network Coordination Games

    Get PDF
    Worst-case hardness results for most equilibrium computation problems have raised the need for beyond-worst-case analysis. To this end, we study the smoothed complexity of finding pure Nash equilibria in Network Coordination Games, a PLS-complete problem in the worst case. This is a potential game where the sequential-better-response algorithm is known to converge to a pure NE, albeit in exponential time. First, we prove polynomial (resp. quasi-polynomial) smoothed complexity when the underlying game graph is a complete (resp. arbitrary) graph, and every player has constantly many strategies. We note that the complete graph case is reminiscent of perturbing all parameters, a common assumption in most known smoothed analysis results. Second, we define a notion of smoothness-preserving reduction among search problems, and obtain reductions from 22-strategy network coordination games to local-max-cut, and from kk-strategy games (with arbitrary kk) to local-max-cut up to two flips. The former together with the recent result of [BCC18] gives an alternate O(n8)O(n^8)-time smoothed algorithm for the 22-strategy case. This notion of reduction allows for the extension of smoothed efficient algorithms from one problem to another. For the first set of results, we develop techniques to bound the probability that an (adversarial) better-response sequence makes slow improvements on the potential. Our approach combines and generalizes the local-max-cut approaches of [ER14,ABPW17] to handle the multi-strategy case: it requires a careful definition of the matrix which captures the increase in potential, a tighter union bound on adversarial sequences, and balancing it with good enough rank bounds. We believe that the approach and notions developed herein could be of interest in addressing the smoothed complexity of other potential and/or congestion games

    Smoothed Complexity Theory

    Get PDF
    Smoothed analysis is a new way of analyzing algorithms introduced by Spielman and Teng (J. ACM, 2004). Classical methods like worst-case or average-case analysis have accompanying complexity classes, like P and AvgP, respectively. While worst-case or average-case analysis give us a means to talk about the running time of a particular algorithm, complexity classes allows us to talk about the inherent difficulty of problems. Smoothed analysis is a hybrid of worst-case and average-case analysis and compensates some of their drawbacks. Despite its success for the analysis of single algorithms and problems, there is no embedding of smoothed analysis into computational complexity theory, which is necessary to classify problems according to their intrinsic difficulty. We propose a framework for smoothed complexity theory, define the relevant classes, and prove some first hardness results (of bounded halting and tiling) and tractability results (binary optimization problems, graph coloring, satisfiability). Furthermore, we discuss extensions and shortcomings of our model and relate it to semi-random models.Comment: to be presented at MFCS 201
    corecore