
Interpretable multiclass classification by MDL-based rule lists
Manuel Proença, H.; Leeuwen, M. van

Citation
Manuel Proença, H., & Leeuwen, M. van. (2020). Interpretable multiclass classification
by MDL-based rule lists. Information Sciences, 512, 1372-1393.
doi:10.1016/j.ins.2019.10.050

Version: Publisher's Version

License: Licensed under Article 25fa Copyright Act/Law (Amendment
Taverne)

Downloaded from: https://hdl.handle.net/1887/3280972

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/license:4
https://hdl.handle.net/1887/3280972

Information Sciences 512 (2020) 1372–1393

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Interpretable multiclass classification by MDL-based rule lists

Hugo M. Proença

∗, Matthijs van Leeuwen

LIACS, Leiden University, the Netherlands

a r t i c l e i n f o

Article history:

Received 9 May 2019

Revised 10 August 2019

Accepted 25 October 2019

Available online 25 October 2019

Keywords:

Rule lists

Minimum Description Length principle

Interpretable models

Classification

a b s t r a c t

Interpretable classifiers have recently witnessed an increase in attention from the data

mining community because they are inherently easier to understand and explain than

their more complex counterparts. Examples of interpretable classification models include

decision trees, rule sets, and rule lists. Learning such models often involves optimizing

hyperparameters, which typically requires substantial amounts of data and may result in

relatively large models.

In this paper, we consider the problem of learning compact yet accurate probabilistic rule

lists for multiclass classification. Specifically, we propose a novel formalization based on

probabilistic rule lists and the minimum description length (MDL) principle. This results in

virtually parameter-free model selection that naturally allows to trade-off model complex-

ity with goodness of fit, by which overfitting and the need for hyperparameter tuning are

effectively avoided. Finally, we introduce the Classy algorithm, which greedily finds rule

lists according to the proposed criterion.

We empirically demonstrate that Classy selects small probabilistic rule lists that outper-

form state-of-the-art classifiers when it comes to the combination of predictive perfor-

mance and interpretability. We show that Classy is insensitive to its only parameter, i.e.,

the candidate set, and that compression on the training set correlates with classification

performance, validating our MDL-based selection criterion.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Interpretable machine learning has recently witnessed a strong increase in attention [12] , both within and outside the

scientific community, driven by the increased use of machine learning in industry and society. This is especially true for

applications domains where decision making is crucial and requires transparency, such as in health care [27,30] and societal

problems [26,47] .

While it is of interest to investigate how existing ‘black-box’ machine learning models can be made transparent [38] , the

trend towards interpretability also offers opportunities for data mining, or Knowledge Discovery from Data (KDD), as this field

traditionally has a stronger emphasis on intelligibility.

In recent years several interpretable approaches have been proposed for supervised learning tasks, such as classification

and regression. Those include approaches based on prototype vector machines [35] , generalized additive models [32] , deci-

sions sets [25,44] , and rule lists [30,46] . Restricting our focus to classification, we make two important observations. First,
∗ Corresponding author.

E-mail addresses: h.manuel.proenca@liacs.leidenuniv.nl (H.M. Proença), m.van.leeuwen@liacs.leidenuniv.nl (M. van Leeuwen).

https://doi.org/10.1016/j.ins.2019.10.050

0020-0255/© 2019 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.ins.2019.10.050
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ins
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2019.10.050&domain=pdf
mailto:h.manuel.proenca@liacs.leidenuniv.nl
mailto:m.van.leeuwen@liacs.leidenuniv.nl
https://doi.org/10.1016/j.ins.2019.10.050

H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393 1373

Rule antecedent consequent usage

1 If {backbone = no} then Pr(invertebr.) = 0.55 10

Pr(bug) = 0.45 8

2 else if {breathes = no} then Pr(fish) = 0.93 13

Pr(reptile) = 0.07 1

3 else if {feathers = yes} then Pr(bird) = 1.00 20

4 else if {milk = no} then Pr(reptile) = 0.50 4

Pr(amphibian) = 0.50 4

∅ else else then Pr(mammal) = 1.00 41

Fig. 1. Example of a Probabilistic Rule List (PRL) obtained by Classy on the zoo dataset, without the need for any parameter tuning. Test accuracy: 87%.

The dataset contains 7 classes, 101 examples, and 35 binary variables. Usage refers to the number of examples covered by a certain rule and class label.

Note that we did not apply Laplace smoothing here for clarity of presentation; Eq. (5) defines the actual probability estimates.

we observe that state-of-the-art algorithms [3,25,30,44,46] are designed for binary classification; no interpretable methods

specifically aimed at multiclass classification have been proposed, in spite of being a common scenario in practice. Multiclass

classification is more challenging because of 1) the increased complexity in model search, due to the uncertain consequences

of favouring one class over the others, and 2) the lack of possibilities to prune the search such as commonly used when

finding, e.g., decision lists [3] or Bayesian rule lists [46] for binary classification. Our second observation is that although

recent methods based on rules [30,46] and decision sets [25,44] have been shown to be effective, they tend to have 1) a fair

number of hyperparameters that need to be fine-tuned, and 2) limited scalability. Especially the need for hyperparameter

tuning can be problematic in practice, as it requires significant amounts of computation power and data (i.e., not all data

can be used for training, as a substantial part has to be reserved for validation).

To address these shortcomings, we introduce a novel approach to finding interpretable, probabilistic multiclass classifiers

that requires very few hyperparameters and results in compact yet accurate classifiers . In particular, we will show that our

method naturally provides a desirable trade-off between model complexity and classification performance without the need

for parameter tuning, which makes the application of our approach very straightforward and the resulting models both

adequate classifiers and easy to interpret.

We will use probabilistic rule lists, as both the antecedent of a rule (i.e., a pattern) and its consequent (i.e., a probability

distribution) are interpretable [30] . Using a probabilistic model has the additional advantage that one cannot only provide a

crisp prediction, but also make a statement about the (un)certainty of that prediction.

We show that, given a set of ordered patterns, we can trivially estimate the corresponding consequent probability distri-

butions from the data. The remaining question, then, is how to select a set of patterns that together define a probabilistic

rule list that is accurate yet does not overfit. This is not only important to ensure generalizability beyond the observed data,

but also to keep the models as compact as possible: larger models are harder to interpret by a human analyst [21] . Recent

optimization [25] and Bayesian [46] approaches heavily rely on hyperparameters to achieve this, but those need to be tuned

by the analyst and we specifically aim to avoid this.

The solution that we propose is based on the minimum description length (MDL) principle [18,40] , which has been

successfully used to select small sets of patterns that summarize the data in the context of exploratory data mining [9,29,42] .

The MDL principle can be paraphrased as “induction by compression ” and roughly states that the best model is the one

that best compresses the data. Advantages of the MDL principle include that it has solid theoretical foundations, avoids

the need for hyperparameters, and automatically protects against overfitting by balancing model complexity with goodness

of fit.

Our first main contribution is the formalization of the problem of selecting the optimal probabilistic rule list using the minimum

description length principle. Although the MDL principle has been used for pattern-based classification before [42] , we are the

first to introduce a MDL-based problem formulation aimed at selecting rule lists for multiclass classification. Technically, our

approach includes the use of the prequential plug-in code, a form of refined MDL that has only been used once in pattern-

based modelling [9] . One advantage of our approach is that the resulting problem formulation is completely parameter-free.

Our second main contribution is Classy , a heuristic algorithm for finding good probabilistic rule lists. Inspired by the Krimp

algorithm [42] , we select a good set of rules from a set of candidate patterns. We empirically demonstrate, by means of a

variety of experiments, that Classy outperforms RIPPER, C5.0, CART, and Scalable Bayesian Rule Lists (SBRL) [46] when it

comes to the combination of classification performance and interpretability, in particular when taking into account that it

has much fewer hyperparameters.

1374 H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393

Table 1

Our approach, Classy , does Multiclass classification, makes Probabilistic predictions, has

a global optimisation Criterion , can handle large numbers of cand idate rules, and does

not need hyperparameter tuning . “Others” denotes classical algorithms such as CART,

CBA, C4.5, and RIPPER.

Method Multiclass Probabilistic Criterion � 1K cand No tuning

Classy ✔ ✔ ✔ ✔ ✔

IDS [25] ✔ - ✔ ✔ -

CORELS [3] - - ✔ - -

MRL [4] - ✔ ✔ - ✔

SBRL [46] - ✔ ✔ - -

FURIA [20] ✔ - - ✔ -

Others ✔ ✔ - ✔ -

To illustrate this, Fig. 1 shows an example rule list that was found using Classy on the zoo 1 dataset, without any param-

eter tuning. Although it is not perfectly accurate, its accuracy (87%) is pretty good considering that there are seven classes

and the list only has four rules. Moreover, it provides probabilistic predictions and is very easy to interpret.

The remainder of this paper is organized as follows. First, Section 2 discusses related work, after which we introduce

probabilistic rule lists and MDL for such lists in Sections 3 and 4 , respectively. Section 5 presents the Classy algorithm. After

that we continue with experiments in Section 6 and conclude in Section 7 .

2. Related work

We start by comparing the most important features of our algorithm to those of state-of-the-art algorithms, and then

provide a brief overview of the most relevant literature, grouped into three topics: 1) rule-based models; 2) similar ap-

proaches in pattern mining; and 3) MDL-based data mining. For an in-depth overview of interpretable machine learning, we

refer to Molnar [34] .

Table 1 compares the most important features of our proposed approach, called Classy , to those of other rule-based

classifiers, which will be described in the next subsections. Classical methods, such as CART [7] , C4.5 [37] and RIPPER [10] ,

lack a global optimisation criterion and thus rely on heuristics and hyperparameters to deal with overfitting. Fuzzy rule-

based models [2,23] , here represented by FURIA [20] use rule sets instead of rule lists and lack probabilistic predictions.

Recent Bayesian methods [25,4 4,4 4] are limited to small numbers of candidate rules and binary classification, limiting their

usability, and are here represented by SBRL [46] (which is representative for all of them). A recent approach also using MDL

and probabilistic rule lists (MRL) [4] is aimed at describing rather than classifying and cannot deal with multiclass problems

or a large number of candidates. Interpretable decision sets (IDS) [25] and certifiable optimal rules (CORELS) [3] use similar

rules but do not provide probabilistic models or predictions.

Note that methods that explain black-box models [38,39] , typically denoted by the term explainable machine learning ,

also aim to make the decisions of classifiers interpretable. However, they mostly focus on sample-wise (local interpretation)

explanations, while we focus on explaining the whole dataset (global interpretation) by means of a single model. As these

goals lead to clearly different problem formulations and thus different results, it would not be meaningful to empirically

compare our approach to explainable machine learning methods.

2.1. Rule-based models

Rule lists have long been successfully applied for classification; RIPPER is one of the best known algorithms [10] . Simi-

larly, decision trees, which can easily be transformed to rule lists, have been used extensively; CART [7] and C4.5 [37] are

probably the most best-known representatives. These early approaches represent highly greedy algorithms that use heuristic

methods and pruning to find the ‘best’ models.

Fuzzy rules have been extensively studied in the context of classification and interpretability. Several approaches to con-

struct fuzzy rule-based models have been proposed, such as transforming the resulting model of another algorithm into a

fuzzy model and posteriorly optimizing it [20] , using genetic algorithms to combine pre-mined fuzzy association rules [2] ,

and doing a multiobjective search over accuracy and comprehensibility to find Pareto-optimal solutions [23] . Although these

approaches are related, the rules are aggregated in a rule set, i.e., a set of independent if rules that can be activated at the

same time to classify one instance, contrary to one rule at the time for rules lists. This makes the comparison between both

types of models difficult. Also, these fuzzy rule-based models do not provide probabilistic predictions.

Over the past years, rule learning methods that go beyond greedy approaches have been developed, i.e., by means of

probabilistic logic programming for independent rule-like models [5] , greedy optimization of submodular problem formula-

tion or simulated annealing in the case of decision sets [25,44] , by Monte-Carlo search for Bayesian rule lists [30,46] , and
1 http://archive.ics.uci.edu/ml/datasets/Zoo .

http://archive.ics.uci.edu/ml/datasets/Zoo

H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393 1375

through branch-and-bound with tight bounds for decision lists [3] . Even though in theory these approaches could be easily

extended to the multiclass scenario, in practice their algorithms do not scale with the higher dimensionality that arises from

the search in multiclass space with an optimality criteria. Also, only Bayesian rule lists [30,46] and Bayesian decision sets

[44] provide probabilistic predictions.

All previously mentioned algorithms share some similarities with Classy . In particular Bayesian rule lists [30,46] are

closely related as they use the same type of models, albeit with a different formulation, based on Bayesian statistics. This

difference leads to different types of priors—for example, we use the universal code of integers [41] —and therefore to differ-

ent results; we will empirically compare the two approaches. Certifiable optimal rules [3] have a similar rule structure but

do not provide probabilistic models or predictions. Decision sets [25] share the use of rules, but as opposed to (ordered)

lists they consider (unordered) sets of rules.

2.2. Pattern mining

Association rule mining [1] , a form of pattern mining, is concerned with mining relationships between itemsets and a

target item, e.g., a class. One of its key problems is that it suffers from the infamous pattern explosion , i.e., it tends to give

enormous amounts of rules. Several classifiers based on association rule mining have been proposed. Best-known are prob-

ably CBA [33] and CMAR [31] , but they tend to lack interpretability because they use large numbers of rules. Ensembles

of association rules, such as Harmony [43] or classifiers based on emergent patterns [16] , can increase classification per-

formance when compared to the previous methods, however they can only offer local interpretations. Subgroup discovery

and similar approaches [24] are all relevant too, but they focus on finding descriptive patterns and not on finding global

classification models. Approaches to supervised pattern mining based on significance testing [45] do not focus on finding

global models either.

A last class of related methods is that of supervised pattern set mining [49] . The key difference is that these methods

do not automatically trade-off model complexity and classification accuracy, requiring the analyst to choose the number of

patterns k in advance.

2.3. MDL-based data mining

In data mining, the MDL principle has been used to summarize different types of data, e.g., transaction data [9,42] , and

two-view data [28] .

In prediction it has been previously used to deal with overfitting [10,37] and in the selection of the best compressing

pattern [48] .

RIPPER and C4.5 [10,37] use the MDL principles in their post-processing phase as a criteria for pruning, while we use it

in a holistic way for model selection. Although Krimp has been used for classification [42] , it was not designed for this: it

outputs large pattern sets, one for each class, and does not give probabilistic predictions. DiffNorm [9] creates models for

combinations of classes and also uses the prequential plug-in code, but was designed for data summarization. Aoga et al.

recently also proposed to use probabilistic rule lists and MDL [4] , but 1) we propose a vastly improved encoding, which is

tailored towards prediction (instead of summarization), 2) our solution does multiclass classification, and 3) our algorithm

has better scalability.

3. Multiclass classification with rule lists

In this section we formalize the probabilistic rule list model and show how to estimate its parameters, i.e., the rule

consequent probabilities. The notation most commonly used throughout this paper is summarized in Table 2 .

Let D = (X, Y) = { (x 1 , y 1) , (x 2 , y 2) , ..., (x n , y n) } be a supervised Boolean dataset , i.e., a Boolean dataset X with a (multi)class

label vector Y . Note that any categorical dataset can be trivially represented as a Boolean dataset using dummy variables,

hence our methods apply to any categorical dataset as well. Each example forms a pair (x , y), which consists of an instance

of Boolean variables x and a class label y .

An instance x = (x 1 , x 2 , ..., x k) consists of k = | V | binary values, with V the set of all Boolean variables in X . That is, x is

an element of the set of all possible Boolean vectors of size | V |, i.e, x ∈ X

. = { 0 , 1 } | V | . A pattern a is a logical conjunction

of variable-value assignments over instance space X , e.g., a = [x 2 = 1 ∧ x 3 = 1] . A pattern a occurs in instance x , denoted

a � x , iff x satisfies the predicate defined by pattern a . Thus, in our example, the pattern occurs in an instance iff x 2 = 1 and

x 3 = 1 ; the values of the other variables do not influence the occurrence of this pattern. A pattern is said to have size | a |

equal to the number of conditions it contains; in this case | a | = 2 . Each class label is an element of the set of all classes,

i.e., y i ∈ Y, where Y = { 1 , . . . , |Y|} and |Y| is the number of classes in the dataset.

We consider the problem of multiclass classification. That is, given training data D , the goal is to induce a classification

model that accurately predicts class label c ∈ Y for any (possibly unseen) instance x ∈ X .

3.1. Probabilistic rule lists

A probabilistic rule list (PRL) R is an ordered list of k rules r 1 , . . . , r k ending with a default rule r ∅

, where each defines

a probability distribution over the class labels. Note that this means that R has | R | + 1 rules in total. Each rule consists

1376 H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393

Table 2

Table of commonly used notation.

Symbol Definition

D Dataset of examples

D a Subset of D where pattern a occurs

D y = c Subset of D where class label c occurs

D (a,y = c) Subset of D where a and c both occur

n Total number of examples/instances

X Dataset of instances of D (without class labels)

V Set of all Boolean variables in D

| V | Total number of Boolean variables in D

X Set of all possible binary vectors of size | V |

x Instance

x Boolean variable

Y Vector of class labels in D

Y Set of all class labels in D

|Y| Total number of class labels in D

y Class label

R Set of all proabilistic rule lists

R Proabilistic rule list

| R | Number of rules in R (excluding the default rule)

r i ith rule of R

a i Pattern/rule antecedent of r i
| a i | Number of logical conditions in pattern a i
supp (a) Number of instances where a occurs

U a i Usage of a i given R

U (a i ,c) Usage of a i where class c also occurs given R

θθθ i Vector of probabilities of each class label of r i
θ c

i
Probability of the ith rule for class c

of a pair r i = (a i , θθθ (a i)) , where a pattern a i is the antecedent and a categorical distribution (i.e., a generalized Bernoulli

distribution) over the class labels θθθ (a i) is the consequent. Whenever clear from the context we use θθθ i as shortcut for

the parameters associated with pattern a i . Each categorical distribution is parameterized by individual class probabilities

θθθ i = (θ
c 1
i

, . . . , θ
c |Y|
i

) , such that θ
c j
i

> 0 , ∀ i, j and

∑

j θ
c j
i

= 1 , ∀ i . That is, rule i is given by

a i → y ∼ Categorical(θθθ i) . (1)

The default rule r ∅

, which intuitively corresponds to a rule with the empty set as antecedent, is associated with a

categorical distribution over the class labels denoted by θθθ∅

. An example PRL with | R | = 2 rules is given by:

rule 1 : i f a 1 � x then y ∼ Categorical(θθθ 1) (2)

rule 2 : else i f a 2 � x then y ∼ Categorical(θθθ 2) (2)

default : else y ∼ Categorical(θθθ∅

) (2)

(2)

Given a PRL R , an instance x is classified by going through the rule list top-down, i.e., x is classified according to r ∗ =
(a ∗, θθθ ∗) , which is defined as the first rule in the list for which a ∗ occurs in x (a ∗� x). If none of the patterns a i , ∀ i ∈ 1,...,| R |

occurs in a given instance, the classifier automatically falls back to the default rule r ∅

. From the pattern a ∗ that is activated

for a given instance, the user obtains a corresponding probability distribution θθθ ∗ over the class labels for instance x . In case

a crisp prediction is necessary, as for example when comparing a PRL with other classifiers, we follow the typical approach,

which is to predict the class label that has the highest probability:

ˆ y = arg max
c∈Y

θ c
∗ . (3)

Note that contrary to decision lists, which only provide an associated class per rule, probabilistic rule lists provide a

distribution over all class labels. This provides the user with extra information about the classification that is made, in the

form of a probability of seeing each class label for a certain instance. This is especially relevant in the multiclass scenario

where crisp classification implies a choice between more than two classes.

3.2. Parameter estimation

In the previous section the PRL is assumed to be given, while in practice we want to learn its parameters from the data.

We defer the problem of selecting the patterns a i to the next section and first describe how to estimate the parameters of

the categorical distributions from data, i.e., how to estimate θθθ , for i ∈ { 1 , . . . , | R | , ∅ } , given an (ordered) set of patterns.
i

H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393 1377

We first introduce some notation. The support of a pattern a i is the number of times that the pattern occurs in (training)

data D :

supp(a i) = | { x ⊂ D | a i � x } | (4)

The usage of a i ∈ R is the number of times it is activated in (training) data D . That is, it is the support of a i minus the

instances that were already covered by other patterns that come before a i in R :

usage (a i | R, D) = |{ x ⊂ D | a i � x ∧

(∧

∀ j<i

a j � x

)

}|

For ease of presentation, we abbreviate usage (a i | R, D) as U

a i whenever D and R are clear from the context.

Next, we introduce class-specific usage as the number of times a pattern is activated on a training instance with class

label c . We define a class-conditioned dataset as

D

y = c = { (x , y) ⊂ D | y = c} ,
and class-specific usage as

U

(a i ,c) = usage (a i | R, D

y = c) .

Given the usages and class-specific usages, which are easy to compute, it is straightforward to define a maximum likeli-

hood estimator for Pr (y = c | a i) , for any rule a i and class c . We use a variant that is called a smoothed maximum likelihood

estimator:

ˆ θ c
i =

U

(a i ,c) + ε

U

a i + |Y| ε . (5)

Unlike the regular maximum likelihood estimator, this smoothed variant—known as Laplace smoothing—adds a (small)

pseudocount ε to each class-specific usage even when that class has no counts. This avoids zero probabilities for any class

label and corresponds to using a symmetric Dirichlet prior ε for each class [17] . Note that this estimate could be interpreted

as the confidence of the n th rule in a list, accounting for what has been covered by previous rules.

4. MDL for multiclass classification

Having defined our models and parameter estimator, the remaining question is how to select adequate models. As we

are interested in finding compact yet accurate rule lists that do not overfit, we resort to the minimum description length

(MDL) [18,40] principle, which can be paraphrased as “induction through compression ”. The problem of selecting a concrete

rule list from a large space of possible rule lists is a point hypothesis selection problem, for which we should use a two-part

code [18] .

In contrast to existing pattern-based modeling approaches (e.g., [29,42]), we deal with a supervised setting in which the

goal is to learn a mapping from instances to class labels. This implies that we are not looking for structure within instance

data X , but for structure in X that helps to predict Y .

That is, to induce a mapping from instances to class labels, we should consider the instance data X to be given as ‘input’

to the (classification) model and only encode the class labels Y . Clearly, the models that we consider are the probabilistic

rule lists that we introduced in the previous section. Then, given the complete space of models R , uniquely specified by all

ordered sets of patterns over X , the optimal model is the model R ∈ R that minimizes

L (D, R) = L (Y | X, R) + L (R) , (6)

where L (Y | X, R) is the encoded length, in bits 2 , of the class labels given data X and model R , and L (R) is the encoded length,

in bits, of the model. Eq. (6) represents a trade-off between how well the model fits the data, L (Y | X, R) and the complexity of

that model, L (R). Note that, on a high level, two-part code in (6) is similar to the one that was recently used in the context

of two-view data [28] , but there the goal was summarization rather than classification and the details of the encodings are

very different. The next subsections describe the two parts of the encoding, together with examples of how to compute the

length of the encodings in practice.

4.1. Model encoding

Following the rule of parsimony associated with the MDL principle [18] , the model encoding should result in larger code

lengths for more complex models. To accomplish this we use only two types of codes for the different model components,

the universal code for integers and the uniform code.
2 To obtain lengths in bits, all logarithms in this paper are to the base 2.

1378 H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393

The universal code for integers [41] , also called the universal prior for integers, is given by L N (i) = log k 0 + log
∗

i, where

log
∗

i = log i + log log i + . . . and k 0 ≈ 2.865064. This code makes no a priori assumption about the maximum number i ac-

cepted by the model and a small assumption in terms of penalizing larger numbers, as it grows logarithmically with i and

thus slower than the number of data instances n . This makes it quite different from the Poisson prior typically used in

Bayesian approaches [46] : that prior more strongly penalizes integers that are further away from the expectation of the

distribution, as defined by the user-chosen parameter. We use L N (n) when we want to penalize the increase of elements in

the model, such as the number of rules or the length of a pattern.

The uniform code avoids any bias by assigning code words of equal length to all elements and is therefore used when

all elements are equal. E.g., to encode a variable x from a set of | V | variables: L U (x) = − log 1
| V | = log | V | .

We will now show how to compute the total length of a model, i.e., a probabilistic rule list R over the variable space V :

L (R) = L N (| R |) +

∑

a i ⊂R

L (a i) , (7)

where first the number of rules is encoded using the universal code for integers, and then the individual patterns are

encoded. The length of pattern a i is given by

L (a i) = L N (| a i |) + | a i | log | V | (8)

where the number of conditions in a i is encoded with the universal code for integers, and then each of its conditions are

encoded with a uniform code over V . Contrary to what is common in existing MDL-based pattern set mining approaches

(e.g., [9,42]), which are aimed at summarization, we do not use normalized supports for encoding our patterns. That is,

previous work typically uses codes based on the support of a pattern of size 1 (singleton), e.g., a = [x 2 = 1] , and normalizes

this support by the sum of all their supports. Although this works well for summarization, in classification higher support

does not necessarily imply better predictive power; hence we use the uniform code. In general, without prior knowledge

the uniform code represents the best, unbiased choice [18] .

Example 1 (part 1 of 2) : We use the example rule list in Fig. 1 to show how to compute the length of the model encoding.

The model contains 4 rules plus a default one, 1 condition per rule, over a dataset with 35 binary variables. According to

Eq. (7) the length of the model encoding is:

L (R) = L N (4) +

4 ∑

i =1

L N (1) + log 35 = 31 . 12 bits

Note that for the purpose of model selection we are only concerned with the length of the encoding, not in materialised

codes, hence the values should not be rounded to natural numbers.

4.2. Data encoding

For the encoding of the data we use the prequential plug-in code , because it is asymptotically optimal even without

any prior knowledge on the probabilities [18] . Moreover, the prequential plug-in code directly uses and gives us the smoothed

maximum likelihood estimates θ c
i

for Pr (y = c | a i) , as defined in Section 3.2 , which makes it a natural choice.

Intuitively, the idea of the prequential plug-in code is that one starts with a pseudocount ε for each possible element,

constructs a code using these pseudocounts, starts encoding/sending/decoding messages one by one, and then updates the

count of each element after sending/receiving each individual message .

We apply this idea to encode the class labels, Y . Ignoring the rule list for a moment, initially each class label has a

pseudocount of ε. Hence, when sending the first class label, y 1 , we effectively use a uniform code, i.e., − log ε
|Y| ε . After that,

however, we increase the count of that class label by one. Normalizing the updated counts results in a new categorical

probability distribution—hence a new code: − log ε+1
|Y| ε+1

. This code is the best possible code given the data seen so far and is

equal to the smoothed maximum likelihood of Eq. (5) . Formally, the plug-in code for encoding the class labels is defined as

Pr
plug-in

(y i = c | Y i −1) :=

|{ y ∈ Y i −1 | y = c}| + ε∑

k ∈Y |{ y ∈ Y i −1 | y = k }| + ε
, (9)

where y i represents the i th class label, Y i −1 = { y 1 , ..., y i −1 } represents the sequence of the i − 1 first class labels, and ε is the

pseudocount necessary for Pr plug-in (y 1 = c | y 0) to be valid. Choosing the uniform prior, i.e., ε = 1 , is a common choice for

categorical distributions [46] , and we will use that value henceforth.

We now show how the probabilistic rule lists can be used in the encoding of the class labels. By definition, only one rule

is activated for each instance, hence each rule only activates in a unique part (subset) of the dataset. By realizing that the

encoding of an example in a subset only depends on the rule that formed that subset, the encoding of the dataset can be

simplified to the sum of the encoding of its subsets. We define the part covered by a rule antecedent a i ∈ R as

D

a i = { X

a i , Y a i } = { (x , y) ∈ D | a i � x ∧

(∧

∀ j<i

a j � x

)

} .

H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393 1379

Thus it is possible to define the encoding of the whole data as:

L (Y | D, R) =

∑

a i ∈ R
L (Y a i | X

a i , R) . (10)

Inserting the prequential plug-in code (9) in (10) we obtain:

L (Y a i | X

a i , R) = − log

(

U a i ∏

j=1

Pr
plug-in

(y j | Y a i j−1
)

)

= − log

(∏

c∈Y
∏ U (a i ,c) −1

j=0 (j + ε) ∏ U (a i ,c) −1
j=0 (j + εC)

)

= − log

(∏

c∈Y (U

(a i ,c) − 1 + ε)! / (ε − 1)!

(U

a i − 1 + ε|Y|)! / (ε|Y| − 1)!

)

= − log

(∏

c∈Y �(U

(a i ,c) + ε) / �(ε)

�(U

a i + ε|Y|) / �(ε|Y|)
)

, (11)

where Y
a i
j

is a sequence of class labels of length j in part D

a i , and U

a i and U

(a i ,c) are the usage and class-specific usage of

pattern a i respectively. Further, � is the gamma function, an extension of the factorial to real and complex numbers that is

given by �(i) = (i − 1)! .

Even though the code was formulated for sequential data, the order in which the class labels are transmitted in i.i.d data

does not affect the encoded length, as the probability distribution only depends on the usage of the patterns, not on the

order, as can be seen in the last equation.

Example 1 (part 2 of 2) : We continue our example of Fig. 1 with the computation of the length of the data encoding. For

this we use ε = 1 , as we will also use in our experiments. First, we show how to compute the length of encoding the part

covered by rule 1 using Eq. (11) :

L (Y a 1 | X

a 1 , R) = − log

(
�(10 + 1)�(8 + 1)�(1) 5

�(1) 7
· �(7)

�(18 + 7)

)
= 32 . 46 bits

We repeat this step (not shown) for the other parts of the dataset, which are covered by rules 2,3,4 and ∅ respectively.

Summing the length of all five parts, following Eq. (10) , we obtain 110.36 bits for the length of the data encoding given R ,

i.e., L (Y | D, R).

Finally, we sum the results obtained for L (Y | D, R) and L (R) (in the first part of this example), and obtain 141.48 bits for

the joint length of the data and model encoding, as defined by Eq. (6) .

5. The CLASSY algorithm

Given our model class—probabilistic rule lists—and its corresponding MDL formulation, what remains is to develop an

algorithm that—given the training data—finds the best model according to our MDL criterion. To this end, in this section,

we present Classy , a greedy search based algorithm that iteratively finds the best rules to add to a rule list. This section is

structured as follows. First, a brief description of separate-and-conquer greedy search is given. Then compression gain, i.e.,

the measure that uses compression to score candidate rules, is described. After that, the Classy algorithm is defined. Then,

it is explained how individual rules—candidates for the model—are generated from the data. Finally, we analyse Classy ’s

time and space complexity.

5.1. Separate-and-conquer greedy search

Greedy search is very commonly used for learning decision trees and rule lists [10,15,37] , as well as for pattern-based

modelling using the MDL principle [9,28,42] . A few recent approaches use optimization techniques [46] , but these have

the limitation that the search space must be strongly reduced, providing an exact solution to an approximate problem (as

opposed to an approximate solution to an exact problem).

Global heuristics, such as evolutionary algorithms, have been extensively applied to fuzzy rule-based model learning

[13] , and although they could also be applied here, we found that the arguments in favor of a local search approach were

stronger: 1) local heuristics have often been successfully applied for pattern-based modelling using the MDL principle, mak-

ing it a natural approach to consider; 2) local heuristics are typically faster than global heuristics, as much fewer candidates

need to be evaluated; 3) global heuristics typically require substantially more (hyper) parameters that need to be tuned

(e.g., population size, selection and mutation operators, etc.), while local heuristics have very few.

Given the arguments presented here the algorithm that we propose is based on greedy search. More specifically, it is a

heuristic algorithm that, starting from a rule list with just a default rule equal to the priors of the class labels in the data,

adds rules according to the well-known separate-and-conquer strategy [15] : 1) iteratively find and add the rule that gives the

1380 H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393

largest change in compression; 2) remove the data covered by that rule; and 3) repeat steps 1-2 until compression cannot

be improved. This implies that we always add rules at the end of the list, but before the default rule .

5.2. Compression gain

The proposed heuristic is based on the compression gain that is obtained by adding a rule r = (a, θθθ) to a rule list R ,

which will be denoted by R �r . We will argue—and demonstrate empirically later—that for the current task it is better to

consider normalized gain rather than the typically used absolute gain. Note that the gains are defined positive if adding a

rule represents a compression improvement, and negative vice-versa.

Absolute compression gain , denoted �L (D, R �r), is defined as the difference in code length before and after adding a

rule r to R . The gain can be divided in two parts: data gain , �L (Y | X, R �r), and model gain , �L (R �r). Together this gives

�L (D, R � r) = L (D, R) − L (D, R � r)

= L (Y | X, R) − L (Y | X, R � r) ︸ ︷︷ ︸
�L (Y | X,R �r)

+ L (R) − L (R � r) ︸ ︷︷ ︸
�L (R)

. (12)

Using Eq. (7) we show absolute gain as:

�L (R � r) = L N (| R |) − L N (| R | + 1)

− L N (| a |) − | a | log | V | . (13)

Note that model gain is always negative, as adding a rule adds additional complexity to the model.

In the case of the data gain it should be noted that adding rule r to R only activates the part of the data previously

covered by the default rule, as new rules are only added after the previous ones and before the default rule. This search

strategy of adding rules assumes that the previous rules already cover their subset well, and that improvements only need

to be made where no rule is activated, which corresponds to the region of the dataset covered by the default rule. Hence,

we only need to compute the difference in length of using the previous default rule ∅ and the combination of the new

pattern a ∈ r with the new default rule ∅

′ . Using Eq. (10) we obtain

�L (Y | X, R � r) =

L (Y | X,R) ︷ ︸︸ ︷
�������∑

a i ∈ R
L (Y a i | X

a i , R) + L (Y ∅ | X

∅ , R) .

−
�������∑

a i ∈ R
L (Y a i | X

a i , R) − L (Y ∅

′ | X

∅

′
, R � r) − L (Y a | X

a , R � r)

︸ ︷︷ ︸
L (Y | X,R �r)

(14)

Normalized compression gain , denoted δL (D, X �r), is defined as the absolute gain normalized by the number of in-

stances that are activated by pattern a ∈ r , which can be obtained by dividing absolute gain by the usage of a :

δL (Y | X, R � r) =

�L (Y | X, R � r)

U

a
(15)

By normalizing for the number of instances that a rule covers, normalized gain favors rules that cover fewer instances but

provide more accurate predictions compared to absolute gain. When greedily covering the data, it is essential to prevent

choosing large but moderately accurate rules in an early stage; this is likely to lead to local optima in the search space, from

which it could be hard to escape. As this is bound to happen when using absolute gain, our hypothesis is that normalized

gain will lead to better rule lists. We will empirically verify if this is indeed the case.

5.3. Candidate generation

Candidates are probabilistic rules of the form r = (a, θθθ) that are considered for addition to a rule list for a dataset D .

The candidates are generated by first mining a rule antecedent/pattern a using a standard frequent pattern mining algo-

rithm, e.g., FP-growth [6] , and then finding the corresponding consequent categorical distribution θθθ given the dataset, i.e.,

using Eq. (5) . In practice these mining algorithms have only two parameters: the minimum support threshold m s and the

maximum length l max of a pattern. Mining frequent patterns can be done efficiently due to the anti-monotone property

of their support, i.e., given a pattern a and b , if a has less conditions then b , i.e., a ⊂ b , implies that supp (a) ≥ supp (b).

This property is also used to remove strictly redundant rules in Classy . Given all candidates from the frequent pat-

tern mining algorithm, if the antecedent a is a strict subset of antecedent b , i.e., a ⊂ b , and they have equal support,

supp(a) = supp(b) , we say that antecedent b is redundant and will never be selected. This is a consequence of their en-

coding, i.e., L plug−in (Y
a | X a , R) = L plug−in (Y

b | X b , R) in the case they are being considered for the same position, and that the

model encoding length of b will always be larger than a , i.e., L (a) < L (b). From this we can conclude that b will never be

preferred over a during model search, as the gain of a will always be greater.

H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393 1381

Algorithm 1 The Classy algorithm.

Input: Dataset D , candidate set Cands

Output: Multiclass probabilistic rule list R

1: Cands ← Remov eRedundancy (Cands)

2: R ← [∅]

3: repeat

4: r ← argmax ∀ r ′ ∈ Cands : δL (D, R � r ′)
5: R ← R � r

6: UpdateCandidates (D, R, Cands)

7: until δL (D, R � r ′) ≤ 0 , ∀ r ′ ∈ Cands

8: return R

5.4. Finding good rule lists

We are now ready to introduce Classy , a greedy algorithm for finding good solutions to the MDL-based multiclass classi-

fication problem as formalized in Section 4 . The algorithm, outlined in Algorithm 1 , expects as input a (supervised) training

dataset D and a set of candidate patterns, e.g., a set of frequent itemsets mined from D , and returns a probabilistic rule list.

The first step of our algorithm, line 1 is to remove the strictly redundant patterns as mentioned in Section 5.3 . After that,

in line 2 we initialize the rule list with the default rule, which acts as the baseline model to start from. Then, while there

is a rule that improves compression (Ln 7), we keep iterating over three steps: 1) we select the best rule to add (Ln 4)—we

here use normalized gain for ease of presentation, but this can be trivially replaced by absolute gain; 2) we add it to the

rule list (Ln 5); and 3) we update the usage, and gain of the candidate list (Ln 6). To update the usage of a candidate it is

necessary to remove from its usage the instances that it has in common with the previous added rule, and then the gain

of adding the candidate can be updated. When there is no rule that improves compression (negative gain) the while loop

stops and the rule list is returned.

5.5. Complexity

In this section we analyze the time and space complexity of Classy . In terms of time complexity, Classy can be divided

in two parts: 1) an initialization step, and 2) an iterative loop where one rule is added to a PRL in each iteration.

The time complexity of the initialization step is dominated by sorting the candidates (ascending by length) obtained after

running the frequent pattern mining algorithm, and the computation of their instance ids, i.e., the indexes of the instances

where each candidate is present. Sorting all candidates takes O(| C ands | log | C ands |) time. To compute the instance ids of the

candidates, Classy first computes the presence of each singleton condition, i.e., x i = 1 is tested for each variable, in each

instance, and then stores them as a bitset in a hash table. As this is done for the whole dataset, it takes O(| D || V |) time.

Then, for candidates of size equal or greater than two and given a sorted array of candidates, it sequentially computes the

instance ids of each candidate a based on its decomposition in two candidates of one less condition, i.e., it computes the

ids of a based on two candidates b 1 and b 2 for which b 1 ∪ b 2 = a of length | b 1 | = | b 2 | = | a | − 1 . The ids of a are obtained by

the intersection of the sets of instance ids of the smaller length candidates and has a complexity of O(| (b 1) ids | + | (b 2) ids |) .
As this is done for each class and in a worst case it would cover the whole dataset, it takes O(| D | + | D |) . Doing this for all

candidates gives O(| Cands || D |) .
After the initialization step Classy iteratively finds the best rule to add for a total of | R | runs, where R is the PRL that

Classy outputs at the end. The time complexity of this loop is dominated by the removal of the instance ids that all candi-

dates have in common with the last added rule. Using again the fact that the intersection of instance ids is upper bounded

by the dataset size | D |, the removal of instance ids takes at most O(| R || Cands || D |) time. Given that the rule list can grow

at most to the size of the dataset, an upper bound on this complexity is O(| Cands || D | 2) . Joining everything together, Classy

has a worst case time complexity of

O(| Cands || D | 2) ,
which is really a worst case scenario, because in general MDL will obtain PRLs that are much smaller than the dataset size,

i.e., | R | � | D |, making it possible to treat it as a constant. Making this assumption we obtain a more realistic worst case time

complexity of

O(| C ands | log | C ands | + | Cands || D |) .
Note that the time complexity associated with the Gamma function used in the computation of lengths (10) and gains

(15) of data encoding is not problematic when compared with the other terms. This is due to its recursive computation for

| D | values, which can be stored in a dictionary. In total this takes O(M(| D |) + | D |) time, where M (∗) is the complexity of

the used multiplication; in the case of our Python implementation this is the Katsuraba multiplication. From then on, the

lookup of a value only takes O(1) time.

1382 H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393

Table 3

Dataset properties: number of {samples, binary

variables, classes, average number of candidate pat-

terns per fold for Classy with m s = 5% and l max =

4 }. The datasets are ordered first by number of

classes and then by the number of samples.

Dataset | D | | V | |Y| | Cands |

hepatitis 155 48 2 39137

ionosphere 351 155 2 332560

horsecolic 368 81 2 23552

cylBands 540 120 2 304749

breast 699 14 2 299

pima 768 34 2 543

tictactoe 958 26 2 1907

mushroom 8124 84 2 79602

adult 48842 96 2 7231

iris 150 14 3 144

wine 178 63 3 13439

waveform 5000 96 3 86889

heart 303 46 5 21876

pageblocks 5473 39 5 2902

led7 3200 22 10 2507

pendigits 10992 81 10 107001

chessbig 28056 54 18 1384

In terms of memory complexity, Classy has to store for each candidate for each class: their instance ids O(| (a) ids ||Y|) ,
their support O(|Y|) , and their score O(|Y|) . It is easy to see that | (a) ids ||Y| is upper bounded by the dataset size | D | and

that all other memory requirements will be dominated by this part. Also, the storage of the gamma function for each integer

up to | D | is only O(| D |) , which gets dwarfed by the instance storage, thus obtaining a worst case memory complexity of

O(| D || Cands |) .

6. Experiments

In this section we empirically evaluate our approach

3 , first in terms of its sensitivity to the candidate set provided and

the relationship between compression and classification performance, and second in comparison to a set of representative,

state-of-the-art baselines in terms of classification performance, interpretability, overfitting, and runtime.

Data . We use 17 varied datasets (see Table 3) from the LUCS/KDD

4 repository, all of which are commonly used in clas-

sification papers. They were selected to be diverse, ranging from 150 to 48 842 samples, from 16 to 157 Boolean variables,

and from 2 to 18 classes.

Candidates . Frequent pattern mining algorithms generate different candidate sets by setting different values for the min-

imum support per class threshold m s and maximum pattern length l max . To demonstrate that Classy is insensitive to the

exact settings of these parameters, we fix a single set of parameter values for all experiments on all datasets (except when

we investigate the influence of the candidate set). Specifically, we use l max = 4 and m s = 5% , to obtain a desirable trade-off

between candidate set size, convergence, and runtime.

These values were objectively derived based on two criteria: making each run finish within 10 min while demonstrating

that Classy can deal with large candidate set sizes. First we chose l max = 4 because this potentially results in very large

candidate sets with many redundant rules (i.e., rules that are very similar / strongly overlapping). We then fixed m s by

requiring the runs for all datasets to strictly finish in under 10 min and for most datasets even under 1 min, so as to be

comparable to CART, C 5.0 and JRip in runtime, and also to have attained (empirical) convergence in terms of compression

ratio on the training set—further lowering m s would not increase compression—as can be seen from the vertical dashed

lines in Fig. 3 c.

Candidate patterns are mined using Borgelt’s implementation of the well-known frequent pattern mining algorithm

FP-growth [6] . The same candidate set was used for all experiments except when assessing its influence on Classy in

Section 6.2 . For that experiment we fixed l max = 4 and varied the minimum support threshold per class from m s =
{ 0 . 1% , 0 . 5% , 1% , 2%, 5%, 10%, 15%, 20%, 25%}.

Evaluation criteria . We evaluate and compare our approach based on classification performance, overfitting, inter-

pretability, and runtime. In addition, we assess the influence of the candidate set on our algorithm and whether better

compression corresponds to better classification. All results presented are averages obtained using 10 times repeated 10-fold

cross-validation (with different seeds).
3 Implementation available on https://github.com/HMProenca/MDLRuleLists .
4 http://cgi.csc.liv.ac.uk/ ∼frans/KDD/Software/LUCS- KDD- DN/DataSets/dataSets.html .

https://github.com/HMProenca/MDLRuleLists
http://cgi.csc.liv.ac.uk/~frans/KDD/Software/LUCS-KDD-DN/DataSets/dataSets.html

H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393 1383

To quantify how well a rule list compresses the class labels, we define relative compression as

L % =

L (D, R)

L (D, { ∅ }) , (16)

where L (D, { ∅ }) is the compressed size of the data given the rule list with only a default rule, i.e., with only the dataset

priors for each class. We measure relative compression on the training data, as we use that for model selection.

Classification performance is measured using three measures: accuracy: balanced accuracy [8] ; and Area Under the ROC

Curve (AUC). Each measure portrays different aspects of the classifier performance. Accuracy shows the total number of

correct classifications. Balanced accuracy, or averaged class accuracy, takes into account the imbalance of class distributions

in the dataset and gives the same importance to each class. It is obtained by averaging the recall associated with each class

label; informally:

bAcc =

1

|Y|
∑

c∈Y
recall (c)

AUC, on the other hand, is not based on a fixed threshold and takes into account the probabilities associated with each

prediction. In case of multiclass datasets we use weighted AUC [36] , as it takes into account the class distribution in the

dataset. Weighted AUC is obtained by weighing per-class ‘binary’ AUCs (one-versus-all) with the marginal class frequencies:

AUC weighted =

∑

c∈Y
AUC(c)

supp(c)

| D | , (17)

where AUC (c) is the one-versus-all AUC for class label c and

supp(c)
| D | is the frequency of that same class label.

For interpretability we follow the most commonly used interpretation, i.e., that smaller models are easier to understand

[12] . With this in mind, we assess: the number of rules and the number of conditions per rule; in all cases, fewer is better.

When analyzing decision trees, the number of leaves is given as the number of rules (which includes the default rule), and

the average depth of the leaves (except for the longest—assumed the default rule) is given as the number of conditions per

rule. Although rule lists derived from decision trees can often be simplified, we here choose not to do this because these

directly measures how it would be read by humans.

Overfitting is measured in terms of the absolute difference between the AUC performance in the training set and in the

test set. Finally, for runtime, wall clock time in minutes is measured; no parallelization was used.

Note on standard deviations . Given that the number of values reported both in figures and tables is large, and that

standard deviations are usually 2+ orders of magnitude smaller than their corresponding averages, we choose not to report

them—to avoid unnecessarily cluttering the presentation. We did analyse them though and explicitly comment on the few

cases where relevant.

6.1. Compression versus classification

We first investigate the effect of using absolute (12) or normalized gain (15) . To this end Fig. 2 depicts how the two

heuristics perform with respect to relative compression (on the training set) and AUC (on the test set).

The first observation is that better compression of the training data clearly corresponds to better classification perfor-

mance on the test data. This is backed by a correlation of −0 . 92 and a corresponding p -value lower than 0.0 0 01 for the

independence test between both variables for the normalized gain data. This is a crucial observation, as it constitutes an

independent, empirical validation of using the MDL principle for rule list selection. Moreover, it also shows that MDL suc-

cessfully protects against overfitting: using normalized gain leads to models that not only compress the training data better,

but also provides accurate predictions on the test data.

The second observation is that normalized gain performs better overall than absolute gain: AUC is higher in 15 out of

17 cases and relative compression is lower or equal in 11 out of 17 times. This confirms that normalized gain is, as we

hypothesized, the best choice. We will therefore use normalized gain for the remaining experiments.

6.2. Candidate set influence

In this set of experiments we study the influence of the candidate set on Classy , which technically is its only “parameter”,

as it is the only part that can influence its output given the same dataset. In order to vary the candidate set objectively, the

minimum support threshold ranges over m s = { 0 . 1% , 0 . 5% , 1% , 2% , 5% , 10% , 15%, 20%, 25%} and the maximum pattern length

was fixed at l max = 4 , allowing the generation of large candidate sets.

The results can be seen in the set of Fig. 3 , which show the influence of the candidate set on Classy through: the size

of candidates mined in Fig. 3 a; runtime in Fig. 3 b; compression on the training set in Fig. 3 c; AUC in the test set in Fig. 3 d;

and the number of rules in a rule list in Fig. 3 e.

Fig. 3 a shows the growth of of the candidate set size with the minimum support threshold used, and that, as expected,

its growth is exponential with the change in minimum support. Fig. 3 b shows that in general the runtime increases at a rate

similar to the increase in candidate size of Fig. 3 a. This is in accordance with our analysis of time complexity in Section 5.5 ,

1384 H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393

Fig. 2. Relation between compression and AUC; better compression on the training set (lower relative compression) corresponds to better classification

on the test set (higher AUC). Obtained with Classy using normalized (squares) and absolute (circles) gain, on all 17 datasets; each point represents the 10

times repeated 10-fold average for one dataset with one type of gain; each connected pair represents the same dataset, for the two types of gain.

which tells us that the time complexity of Classy grows proportionally to the dataset size times the candidate set size, thus,

given a fixed dataset size it becomes proportional only to the candidate set size.

Fig. 3 c and d show how Classy performs in classification in terms of compression in the training set and AUC in the

test set, respectively. The values for both plots remain constant for most cases, and when a value deteriorates in terms

of compression (increase in compression ratio) for smaller candidate sets, it also deteriorates accordingly in terms of AUC

(decrease in AUC) in the test set. We make two important observations: 1) the minimum in compression is achieved at

the minimum support used for 13 out of 17 datasets, and in the cases where it does not happen the difference in relative

compression is below 1%, which tells us that Classy can find a good description of the data using large candidate sets,

without too greedily using rules that only cover few instances; 2) the minimum in compression and maximum in AUC

are achieved for the same support value for 12 out 17 cases, and in the other cases, the difference is usually smaller than

2% in both measures, revealing the robustness of our MDL formulation at obtaining models that generalize well. The main

exception is ionosphere , where the best AUC is found at the minimum support threshold of 10%, while the lowest threshold

finds a PRL with 3% lower AUC, without almost any change in compression. This can be explained by the relatively small

number of examples of ionosphere (351 instances) combined with its peculiar structure.

Fig. 3 e shows the number of rules selected based on the candidate set. As expected the number of rules selected only

decreases or remains constant with the candidate set, except for mushroom . Upon closer inspection, we observe that this is

due to the disappearance of a rule with good performance but low coverage from the candidate set, which has to be replaced

by a combination of other rules. The cases where many more rules are selected for lower minimum support thresholds, such

as chessbig and adult , have lower compression and higher AUC values for these large number of rules, which makes these

selections sustainable.

6.3. Classification performance

We now compare the classification performance of Classy to Scalable Bayesian Rule Lists (SBRL) [46] , JRip

5 , FURIA

5 ,

CART 6 , C5.0 7 , and Support Vector Machines 8 (SVM). These methods are state-of-the-art classifiers, and SBRL, CART, C5.0,

JRip, and FURIA—a fuzzy unordered rule induction algorithm—are clearly related to our approach. C5.0 is a newer version of

C4.5, and JRip is a Java-implementation of RIPPER.

Classy has no parameters apart from the candidate set, which was generated using FP-growth with m s = 5% and l max = 4

for each dataset (as described at the beginning of Section 6). We tuned CART by selecting the best performing model on

the training set from the models generated with the following complexity parameters: {0.0 01; 0.0 03; 0.01; 0.03; 0.1}. The
5 https://cran.r-project.org/package=RWeka .
6 https://cran.r-project.org/package=rpart .
7 https://cran.r-project.org/package=C50 .
8 https://cran.r-project.org/package=e1071 .

https://cran.r-project.org/package=RWeka
https://cran.r-project.org/package=rpart
https://cran.r-project.org/package=C50
https://cran.r-project.org/package=e1071

H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393 1385

(a) candidate set size

(b) runtime

(c) compression in training set

(d) AUC in test set

(e) number of rules

Fig. 3. Influence of the minimum support threshold on {candidate set size; runtime (in minutes); relative compression on the training set; AUC in the test

set; number of rules} for a maximum rule length of 4 and a minimum support threshold per class of m s = { 0 . 1% , 0 . 5% , 1% , 2% , 5% , 10% , 15% , 20% , 25% } . The

values were averaged over 10 times repeated 10-fold crossvalidation and each dataset is connected by a line to aid visualization. The vertical dashed line

represents the selected minimum support of 5% used to compare against the other algorithms.

same was done for C5.0, with confidence factors: {0.05; 0.15; 0.25; 0.35; 0.45}. The SVM, with radial kernel, was tuned using

3-fold cross-validation and a grid search on γ = { 2 −6:0 } and c = { 2 −4:4 } within the training set. JRip and FURIA were tuned

by setting their hyperparameters to 3 folds, a minimum weight of 2, and 2 optimization runs.

SBRL was trained using the guidelines provided by the authors [46] : the number of chains was set to 25; iterations to

50 0 0; η, representing the average size of patterns in a rule, to 1; and λ, representing the average number of rules, to 5. The

algorithm was first run on the training set and then re-run with λ changed to the number of rules obtained. In an attempt

to follow their guidelines to use around 300 candidate rules, minimum and maximum itemset length were set to 1 and 2

(or 3 if possible) respectively, while the minimum threshold for the negative and positive classes was set to one of {5%, 10%,

15%}. Note that we initially attempted a fair comparison by using the same candidates for SBRL as for Classy , but due to

the limitations on the number of rules that SBRL could practically handle this unfortunately turned out to be infeasible.

The results are presented in Table 4 . The SVM models achieves the best ranking overall, but they do not belong to the

class of interpretable models.

1
3

8
6

H
.M

.
 P

ro
en

ça
 a

n
d
 M

.
 va

n
 Leeu

w
en

 /
 In

fo
rm

a
tio

n
 Scien

ces
 51

2
 (2

0
2

0
)
 13

7
2

–
13

9
3

Table 4

Classification performance average results (10 times repeated 10-fold crossvalidation) measured through {accuracy; balanced accuracy; Area Under the ROC Curve (AUC) (weighted AUC for multiclass datasets)},

per dataset {binary;multiclass} for each algorithm. At the bottom of the binary and multiclass datasets the average rank of the algorithm for each is presented. The rank of 1 is given for the best value (highest

classification performance) and 7 and 6 for the worst in binary and multiclass, respectively. Note that SBRL cannot do multiclass classification, hence only being present in the binary ranking and the blank spaces.

Accuracy Balanced accuracy AUC

datasets Classy SBRL JRip CART C5.0 FURIA SVM Classy BRL JRip CART C5.0 FURIA SVM Classy BRL JRip CART C5.0 FURIA SVM

hepatitis 0.83 0.78 0.79 0.79 0.79 0.79 0.83 0.66 0.59 0.65 0.67 0.65 0.61 0.70 0.67 0.62 0.64 0.72 0.68 0.70 0.85

ionosphere 0.89 0.88 0.90 0.91 0.90 0.90 0.92 0.87 0.86 0.89 0.89 0.89 0.88 0.91 0.88 0.88 0.89 0.92 0.92 0.91 0.96

horsecolic 0.80 0.84 0.81 0.83 0.83 0.83 0.84 0.78 0.82 0.80 0.81 0.82 0.81 0.82 0.82 0.83 0.81 0.85 0.85 0.84 0.88

cylBands 0.70 0.68 0.73 0.73 0.74 0.76 0.81 0.65 0.65 0.72 0.71 0.73 0.74 0.80 0.70 0.73 0.74 0.78 0.78 0.79 0.88

breast 0.93 0.94 0.93 0.93 0.94 0.94 0.94 0.94 0.95 0.94 0.94 0.95 0.95 0.95 0.94 0.95 0.96 0.95 0.95 0.95 0.96

pima 0.73 0.74 0.73 0.73 0.73 0.74 0.74 0.66 0.69 0.68 0.67 0.67 0.68 0.67 0.70 0.69 0.68 0.71 0.69 0.68 0.75

tictactoe 0.98 0.81 0.98 0.92 0.94 0.99 0.99 0.98 0.75 0.97 0.91 0.93 0.98 0.99 0.98 0.86 0.97 0.97 0.98 1.00 1.00

mushroom 1.00

adult 0.85 0.85 0.85 0.85 0.85 0.80 0.86 0.75 0.75 0.74 0.75 0.76 0.74 0.76 0.89 0.88 0.74 0.88 0.87 0.76 0.86

rank 4.4 4.6 4.8 4.9 4.1 3.3 1.9 4.9 4.3 4.4 4.7 3.6 3.8 2.3 4.6 4.8 5.4 3.9 3.8 3.8 1.7

iris 0.95 0.94 0.93 0.93 0.93 0.94 0.95 0.94 0.93 0.93 0.93 0.94 0.97 0.97 0.97 0.97 0.95 0.99

wine 0.89 0.88 0.87 0.89 0.93 0.95 0.90 0.89 0.87 0.90 0.92 0.95 0.95 0.93 0.93 0.95 0.96 1.00

waveform 0.75 0.77 0.76 0.76 0.78 0.80 0.75 0.77 0.76 0.76 0.78 0.80 0.91 0.87 0.90 0.90 0.86 0.94

heart 0.56 0.54 0.57 0.54 0.57 0.59 0.30 0.22 0.31 0.30 0.27 0.30 0.74 0.54 0.76 0.72 0.69 0.84

pageblocs 0.93 0.93 0.93 0.92 0.92 0.93 0.51 0.52 0.52 0.48 0.52 0.52 0.74 0.72 0.74 0.69 0.73 0.72

led7 0.74 0.72 0.75 0.75 0.74 0.76 0.74 0.72 0.75 0.75 0.74 0.76 0.94 0.92 0.94 0.94 0.88 0.95

pendigits 0.92 0.95 0.92 0.96 0.97 0.98 0.92 0.95 0.92 0.96 0.97 0.99 0.99 0.98 0.99 1.00 0.99 1.00

chessbig 0.50 0.52 0.49 0.78 0.62 0.93 0.44 0.61 0.41 0.81 0.67 0.92 0.90 0.81 0.87 0.96 0.67 1.00

rank 4.0 3.4 3.2 2.6 1.6 1.1 4.1 4.4 4.1 4.1 3.2 1.3 2.6 5.1 3.8 3.4 4.6 1.5

H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393 1387

Classy performs on par with most tree- and rule-based models in terms of accuracy and balanced accuracy, worst than

FURIA for these two measures, and better than these in terms of AUCs for multiclass datasets. The better performance of FU-

RIA can be explained by the fact that it uses fuzzy rule sets rather than probabilistic rule lists; this allows for multiple rules

to be activated and aggregated for a single classification, which improves predictive performance but makes interpretability

less straightforward. This also means that the number of rules and conditions cannot be directly compared: a FURIA rule

set consisting of 5 rules actually translates to up to 32 unique rules in the rule list setting. Further, FURIA does not provide

probabilistic predictions, unlike our approach.

Comparing to other rule list models, such as SBRL and JRip, Classy performs better for most of the measures used.

When viewed against the tree-based models, we can see that our method performs on par with CART for most measures

and slightly worse than C5.0, except for AUC in the multiclass scenario. Also, as we will show later, C5.0 tends to obtain

equivalent rule lists that are much bigger than the ones produced by Classy , which makes them perform better in general

(but not always).

6.4. Interpretability

The results are shown in Table 5 , where we use AUC, the number of rules, and the number of conditions to compare the

trade-off between AUC and model complexity of the tree- and rule-based models. Note that we choose AUC for predictive

performance as it agrees with our goal of using the probabilities output of Classy to explain the decisions made. Also note

that we intentionally removed FURIA from the rankings of the number of rules and conditions as its models are rule sets—

not rule lists.

For binary datasets Classy is in a middle ranking, better than SBRL and JRip, and worst than CART, C5.0 nd FURIA. On

the other hand, in multiclass datasets it achieves a much lower (= better) ranking than all the other algorithms.

Classy tends to find more compact models, with similar number of rules and fewer logical conditions in total, than

C5.0, CART, and JRip, that are as accurate or better than these. This can be clearly seen by its average rank of 2 and 1.9

for rules and 1.7 and 1.5 for the total number of conditions, for binary and multiclass datasets respectively. It also can be

seen that for most datasets it obtained the lowest number of conditions of all tree- and rule-based classifiers. Although

SBRL also finds very compact rule lists, with small number of rules and conditions, the low variance between the reported

values for the different datasets suggests that this strongly depends on the hyperparameter settings, which penalize too

strongly the number of rules not around the user defined expected average number of rules. Indeed, the compact rule lists

exhibit subpar classification performance for some datasets (i.e., hepatitis and tictactoe). This suggests that without additional

(computation-intensive) tuning of these hyperparameters, the recommended procedure for SBRL may lead to underfitting. As

expected, C5.0, with its tendency to maximize the classification performance as much as possible, tends to create overgrown

models, such as the almost 30 0 0 rules for chessbig , that do not necessarily generalize well, such is the case in adult , where

it obtained the same number of rules as Classy but with a 2% lower AUC, and for pendigits were it obtained a number of

rules around 4 times higher than Classy and CART for the same performance.

6.5. Statistical significance testing

To analyze whether the results Tables 4 and 5 are statistically different [11] , we use two non-parametric multiple hy-

pothesis tests, namely Friedman’s test [14] and Iman and Davenport’s test [22] , on the rankings of the algorithms.

The results can be seen in the left side of Table 6 , which divides the datasets into two groups, for binary and multiclass

datasets respectively. The results show that there are significant differences for most measures (significance level 0.05). The

only exceptions are balanced accuracy in the binary case, AUC of rule-based models in the binary case, and the number of

rules for the multi-class case.

For those cases where the null hypothesis—stating that the algorithms perform on par—is rejected we proceed with a

post-hoc Holm’s test [19] for pairwise comparisons with Classy as control algorithm.

The results of these pairwise comparisons can be seen in the right side of Table 6 . For most of these tests the null

hypothesis—stating that Classy and its competitor perform on par—cannot be rejected. This can be mostly explained by the

relatively small number of datasets; the power of the tests is not very high. We therefore cannot draw strong conclusions

from these results, but this is not necessarily a negative outcome: we aimed at showing that Classy performs as well as

other rule- and tree-based algorithms while obtaining simpler models. The results show that Classy does use significantly

fewer conditions than C5.0 for both multiclass and binary datasets, and than CART for the binary case. Also, as expected the

SVM obtained always better results than Classy except for multiclass AUC. FURIA was better in terms of accuracy but worse

in terms of AUC.

6.6. Overfitting

To study overfitting, we compared the averages of the absolute difference between the AUC values in the training and

test set over 10 times repeated 10-folds for each algorithm. The results can be seen in Table 7 . In general Classy , together

with SVM, seem to be the most consistent algorithms in obtaining the lowest values. The usual performance of Classy is 5%

or lower, 12 out of 17 times, except in the case of hepatitis were it got 13%, which was the best value after SVM. SBRL is very

1
3

8
8

H
.M

.
 P

ro
en

ça
 a

n
d
 M

.
 va

n
 Leeu

w
en

 /
 In

fo
rm

a
tio

n
 Scien

ces
 51

2
 (2

0
2

0
)
 13

7
2

–
13

9
3

Table 5

Interpretability performance average results (10 times repeated 10-fold crossvalidation) of tree- and rule-based models measured through {Area Under the ROC Curve (AUC) (weighted AUC

for multiclass datasets); number of rules; number of conditions }, per dataset {binary; multiclass} for each algorithm. Rank gives the average rank of each algorithm for binary and multiclass

datasets. The rank of 1 is given for the best value (highest AUC or lowest number of rules/conditions). Note that SBRL cannot do multiclass classification, hence only being present in the

binary ranking and the blank spaces. ∗ The number of rules and conditions used by FURIA are presented as a reference, as they are not directly comparable to those of the other methods as

they form rule sets (and cannot be trivially translated to rule lists). FURIA was therefore also not included in the rankings of those criteria.

AUC Number of rules Number of conditions

datasets Classy SBRL JRip CART C5.0 FURIA Classy SBRL JRip CART C5.0 FURIA Classy SBRL JRip CART C5.0 FURIA

hepatitis 0.67 0.62 0.64 0.72 0.68 0.70 2 2 3 4 9 4 ∗ 1 2 5 6 38 7 ∗

ionosphere 0.88 0.88 0.89 0.92 0.92 0.91 6 3 6 5 12 7 ∗ 4 4 9 10 58 12 ∗

horsecolic 0.82 0.83 0.81 0.85 0.85 0.84 4 2 4 6 16 6 ∗ 3 2 7 10 76 9 ∗

cylBands 0.70 0.73 0.74 0.78 0.78 0.79 5 3 7 20 59 11 ∗ 4 4 17 111 897 18 ∗

breast 0.94 0.95 0.96 0.95 0.95 0.95 3 3 4 5 6 5 ∗ 3 5 11 13 15 13 ∗

pima 0.70 0.69 0.68 0.71 0.69 0.68 3 2 3 10 11 2 ∗ 3 3 3 23 47 2 ∗

tictactoe 0.98 0.86 0.97 0.97 0.98 1.00 9 6 10 24 42 10 ∗ 21 15 27 66 254 17 ∗

mushroom 1.00 1.00 1.00 1.00 1.00 1.00 6 5 5 8 9 8 ∗ 7 8 7 25 35 17 ∗

adult 0.89 0.88 0.74 0.88 0.87 0.76 53 13 17 22 52 21 ∗ 114 25 81 106 630 34 ∗

rank 3.8 4.0 4.4 3.0 2.9 2.9 2.6 1.1 2.8 3.7 4.9 ∗ 1.7 1.7 2.7 3.9 5.0 ∗

iris 0.97 0.97 0.97 0.97 0.95 3 3 3 3 2 ∗ 2 2 3 3 3 ∗

wine 0.95 0.93 0.93 0.95 0.96 5 5 5 8 4 ∗ 4 7 6 24 6 ∗

waveform 0.91 0.87 0.90 0.90 0.86 25 23 46 81 15 ∗ 65 108 125 683 33 ∗

heart 0.74 0.54 0.76 0.72 0.69 5 3 11 39 2 ∗ 4 6 28 299 2 ∗

pageblocs 0.74 0.72 0.74 0.69 0.73 13 8 10 9 3 ∗ 13 9 20 37 4 ∗

led7 0.94 0.92 0.94 0.94 0.88 20 19 29 28 3 ∗ 46 74 43 138 6 ∗

pendigits 0.99 0.98 0.99 1.00 0.99 78 107 66 266 74 ∗ 221 439 30 2934 133 ∗

chessbig 0.90 0.81 0.87 0.96 0.67 195 418 118 2874 281 ∗ 483 2688 25 48826 803 ∗

rank 1.8 4.3 2.9 2.4 3.8 2.3 2.0 2.2 3.5 ∗ 1.5 2.4 2.1 4.0 ∗

H
.M

.
 P

ro
en

ça
 a

n
d
 M

.
 va

n
 Leeu

w
en

 /
 In

fo
rm

a
tio

n
 Scien

ces
 51

2
 (2

0
2

0
)
 13

7
2

–
13

9
3

1
3

8
9

Table 6

Statistical significance testing of differences between the algorithms. Results for Friedman (χ 2 statistic), and Iman and Davenport (F statistic) tests for all the measures presented in Tables 4 and 5

for binary and multiclass datasets with a significance level of 0.05. In case the null hypothesis for the differences is rejected, the post-hoc Holm’s procedure is used for pairwise comparisons with

Classy as control. AUC all is the AUC comparison with all algorithms (SVM included) of Table 4 and AUC rules is the AUC comparison of all tree- and rule-based algorithms (SVM excluded) of Table 5 .

p represents the p -value obtained for each specific test, R the rejection of H 0 —null hypothesis. Note that not all algorithms can be tested for all measures, thus k shows the number of algorithms

tested for each measure.

Difference tests Holm’s post-hoc procedure (Classy as control)

Friedman Iman and Davenport SBRL JRip CART C5.0 FURIA SVM

Measures Classes k χ2 p H 0 F p H 0 p H 0 p H 0 p H 0 p H 0 p H 0 p H 0

Acc binary 7 13 . 36 0.038 R 2.63 0.028 R 0.827 — 0.703 — 0.585 — 0.743 — 0.300 — 0.014 R

multi 6 17.34 0.004 R 5.36 < 0.001 R 0.504 — 0.385 — 0.142 — 0.009 R 0.002 R

bAcc binary 7 8.94 0.177 — 1.59 0.171 —

multi 6 15.71 0.008 R 4.53 0.003 R 0.738 — 1.000 — 1.000 — 0.350 — 0.003 R

AUC all binary 7 16.00 0.014 R 3.37 0.007 R 0.827 — 0.445 — 0.300 — 0.413 — 0.413 — 0.005 R

multi 6 20.00 0.001 R 7.00 <0 . 001 R 0.008 R 0.229 — 0.423 — 0 . 033 — 0.229 —

AUC rules binary 6 5.70 0.337 — 1.16 0.346 —

multi 5 13.10 0.011 R 4.85 0.004 R 0.002 R 0.155 — 0.429 — 0.011 R

Rules binary 5 28.18 <0 . 001 R 28.82 < 0.001 R 0.053 — 0.766 — 0.136 — 0.002 R

multi 4 6.64 0.084 — 2.68 0.073 —

Conditions binary 5 29.40 < 0.001 R 35.64 < 0.001 R 1.000 — 0.205 — 0.011 R < 0.001 R

multi 4 16.35 0.001 R 14.96 < 0.001 R 0.175 — 0.333 — < 0.001 R

1390 H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393

Table 7

Overfitting average results (10 times repeated 10-fold crossvalidation) using

the absolute difference between AUC performance in training and test sets as

measure, per fold, for each algorithm and each dataset. Rank gives the average

rank of each algorithm for binary and multiclass datasets. Note that SBRL does

not have a values for multiclass datasets.

| AUC train − AUC test |
datasets Classy SBRL JRip CART C5.0 FURIA SVM

hepatitis 0.13 0.16 0.19 0.14 0.21 0.22 0.13

ionosphere 0.06 0.05 0.07 0.04 0.05 0.08 0.04

horsecolic 0.06 0.06 0.08 0.06 0.09 0.08 0.10

cylBands 0.07 0.06 0.09 0.11 0.18 0.13 0.12

breast 0.02 0.02 0.02 0.02 0.02 0.02 0.02

pima 0.06 0.05 0.05 0.06 0.07 0.05 0.05

tictactoe 0.01 0.03 0.01 0.02 0.02 0.00 0.00

mushroom 0.00 0.00 0.00 0.00 0.00 0.00 0.00

adult 0.01 0.00 0.01 0.00 0.01 0.01 0.03

rank 3.6 2.7 4.4 4.2 5.2 4.3 3.6

iris 0.02 0.02 0.02 0.02 0.04 0.01

wine 0.03 0.05 0.04 0.04 0.03 0.00

waveform 0.02 0.02 0.02 0.03 0.02 0.02

heart 0.05 0.04 0.07 0.15 0.04 0.06

pageblocs 0.00 0.00 0.00 0.00 0.00 0.00

led7 0.01 0.01 0.01 0.01 0.01 0.01

pendigits 0.00 0.01 0.00 0.00 0.01 0.00

chessbig 0.00 0.02 0.00 0.02 0.00 0.00

rank 2.4 4.8 4.4 4.1 3.6 1.8

consistent, clearly achieving the lowest values for binary datasets, however this can be explained by its more conservative

choice of rules and thus lower AUC on the test set as shown in Table 4 . Comparing with all rule- and tree-based models,

Classy obtained the lowest ranking for multiclass datasets, being, from these ones, the algorithm that less overfits overall.

6.7. Runtime

All runtimes are averages over ten times repetitions of ten folds, run on a 64-bit Windows Server 2012 R 2, with Intel Xeon

E5-2630v3 CPU at 2.4GHz and 512GB RAM. Runtimes include parameter tuning where applicable, and candidate mining for

Classy and SBRL.

The results are depicted in Fig. 4 . CART, C5.0, JRip and FURIA are the fastest, with most runtimes under 1 min with Classy

being at maximum one order of magnitude slower. Comparing to SBRL, Classy is 10 times faster, even though it considers

around 100 times more candidates than this and performs better in terms of AUC. The worst runtimes were obtained for

SVM, due to its costly grid search.

It should be noticed that reducing the candidate set size of Classy would have an exponential reduction in its runtimes

without much deterioration of its classification performance, as can be seen in Fig. 3 b and d.

6.8. Discussion

From the classification and interpretability results of Tables 4 and 5 it can be seen that Classy is able to provide a

good trade-off between classification performance and rule list size. This is particularly the case for multiclass datasets such

as chessbig , where classical algorithms like JRip find a model with double the number of rules, or in the case of mushroom ,

where CART and C5.0 find more complex models with the same performance. It is interesting to notice that Classy performs

better in terms of AUC than accuracy. This shows that when it makes a wrong prediction it does so with a small probability,

which is reassuring. Moreover, Classy has only one hyperparameter — its candidate set — which its tuning is hardly needed

as the algorithm has no problem in dealing with large numbers of candidates. This is quite different from the extensive

tuning done for the other methods. It is important to observe that all methods except for Classy were tuned .

More importantly, in the set of Fig. 3 , it is shown that larger candidate sets do not result in worse models, as our

formalization in terms of the MDL principle is well-suited to avoid overfitting without the need for cross-validation and/or

parameter tuning. In other words, Classy is insensitive to its only parameter — its candidate set — making it virtually

parameter-free. This is a big advantage, as one can simply run Classy on all training data with as many candidates as

possible, without worrying about any parameters. It also means that all training data can be used for training, which is

important in case of small data: no data needs to be reserved for validation.

From Fig. 2 we can observe that better compression corresponds to better classification, which is a strong empirical

validation of our formalization. As expected, normalized gain is clearly the best heuristic to use in combination with our

greedy rule selection strategy, as it results in better classifiers for 88% of the datasets.

H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393 1391

Fig. 4. Average runtime per fold in minutes for each algorithm and each dataset. The datasets are ordered first by the number classes and then by

number of samples (ascending). The vertical dashed line separates binary (to the left) from multiclass datasets. Note that SBRL does not have a runtime

for multiclass datasets.

From the runtimes of Fig. 4 , it can be seen that Classy runtimes are slower by an order of magnitude than other (fast)

algorithms, such as C5.0, CART, and JRip, and similar to SBRL. This is expected for the size of candidate sets used in our

experiments, as can be seen in Table 3 .

In terms of classification and interpretability, comparing the average ranking with other rule- and tree-based methods

in Table 5 , it is shown that Classy performs equally well while also able to find rule lists with less conditions, without any

parameter tunning . CART creates models with fewer rules that have more conditions per rule, while C5.0 has a high AUC at

the expense of over-complex rules. FURIA has a better performance in terms of both standard and balanced accuracy, and

worst in terms of AUC, which is expected as it is not a probabilistic classifier. Also, it is hard to compare its interpretability

as all its rules can interact with each other, generating a much larger equivalent rule list than Classy . SBRL on the other

hand seems to be able to find simple models that underperform in terms of AUC compared with Classy , which can be either

a result of its formalization or because it cannot use larger candidate sets. The experiments also revealed that the Poisson

distribution used as prior in SBRL, for the number of conditions per rule and the number of rules, creates tight constraints

from which the results hardly deviate. Our results suggest that if the ‘optimal’ values for these hyperparameters are not

known in advance, the best model may not be found. An indicative example of this is the tictactoe dataset in Table 4 , a

deterministic dataset for which SBRL can only find the right amount of rules and logical conditions per rule when given

these exact values in advance. The results obtained with Classy demonstrate that using the universal prior for integers

alleviates this strong dependence on hyperparameter tuning.

In terms of overfitting, Table 7 shows that Classy has a tendency to select models that generalize well and that are not

overconfident in the training set. It obtains low differences between training and test compared with the other rule- and

tree-based models.

7. Conclusions and future work

We proposed a novel formalization of the multiclass classification problem using probabilistic rule lists and the mini-

mum description length (MDL) principle. Our problem formulation allows for parameter-free model selection and naturally

trades off model complexity with predictive accuracy, effectively avoiding overfitting. To find solutions to this problem, we

introduced the heuristic Classy algorithm, which greedily constructs rule lists using the MDL-based criterion.

We empirically demonstrated, on a variety of datasets, that Classy finds probabilistic rule lists that perform on par with

state-of-the-art interpretable classifiers with respect to predictive accuracy, despite the fact that some form of hyperpa-

rameter tuning is done for all methods except for Classy . Moreover, the models found by our approach were shown to be

more compact than those obtained by the other methods, which is expected to make them more understandable in prac-

tice. Finally, compression was shown to strongly correlate with predictive accuracy, which can be regarded as an empirical

validation of the MDL-based selection criterion.

1392 H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393

Directions for future work include, for instance, the following:

• Bridge the gap between both kinds of search methods used to learn rule lists from data in a principled way, namely

optimal strategies — accurate but slow — and greedy methods — fast but imperfect.

• Extend our MDL formulation to other types of data and/or tasks, such as continuous data and regression problems.

Declaration of Competing Interest

None.

Acknowledgment

This work is part of the research programme Indo-Dutch Joint Research Programme for ICT 2014 with project number

629.002.201, SAPPAO, which is (partly) financed by the Netherlands Organisation for Scientific Research (NWO).

References

[1] R. Agrawal , T. Imieli ́nski , A. Swami , Mining association rules between sets of items in large databases, in: ACM sigmod record, vol. 22, ACM, 1993,

pp. 207–216 .

[2] J. Alcala-Fdez , R. Alcala , F. Herrera , A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and
lateral tuning, IEEE Trans. Fuzzy Syst. 19 (5) (2011) 857–872 .

[3] E. Angelino , N. Larus-Stone , D. Alabi , M. Seltzer , C. Rudin , Learning certifiably optimal rule lists, KDD’17, ACM, 2017 .
[4] J.O.R. Aoga , T. Guns , S. Nijssen , P. Schaus , Finding probabilistic rule lists using the minimum description length principle, DS’18, 2018 .

[5] E. Bellodi , F. Riguzzi , Structure learning of probabilistic logic programs by searching the clause space, Theory Pract. Logic Program. 15 (2) (2015)
169–212 .

[6] C. Borgelt , Efficient implementations of Apriori and eclat, in: FIMI03: Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implemen-

tations, 2003 .
[7] L. Breiman , J. Friedman , C.J. Stone , R.A. Olshen , Classification and Regression Trees, CRC press, 1984 .

[8] K.H. Brodersen , C.S. Ong , K.E. Stephan , J.M. Buhmann , The balanced accuracy and its posterior distribution, in: 2010 20th International Conference on
Pattern Recognition, IEEE, 2010, pp. 3121–3124 .

[9] K. Budhathoki , J. Vreeken , The difference and the norm – characterising similarities and differences between databases, in: ECMLPKDD’15, Springer,
2015, pp. 206–223 .

[10] W.W. Cohen , Fast effective rule induction, in: Machine Learning Proceedings 1995, Elsevier, 1995, pp. 115–123 .

[11] J. Demšar , Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res. 7 (Jan) (2006) 1–30 .
[12] F. Doshi-Velez, B. Kim, Towards a rigorous science of interpretable machine learning, arXiv:1702.08608 (2017).

[13] A. Fernandez , V. Lopez , M.J. del Jesus , F. Herrera , Revisiting evolutionary fuzzy systems: Taxonomy, applications, new trends and challenges,
Knowl.-Based Syst. 80 (2015) 109–121 .

[14] M. Friedman , The use of ranks to avoid the assumption of normality implicit in the analysis of variance, J. Am. Stat. Assoc. 32 (200) (1937) 675–701 .
[15] J. Fürnkranz , D. Gamberger , N. Lavra ̌c , Foundations of Rule Learning, Springer Science & Business Media, 2012 .

[16] M. García-Borroto , J.F. Martínez-Trinidad , J.A. Carrasco-Ochoa , A survey of emerging patterns for supervised classification, Artif. Intell. Rev. 42 (4) (2014)
705–721 .

[17] A. Gelman , H.S. Stern , J.B. Carlin , D.B. Dunson , A. Vehtari , D.B. Rubin , Bayesian Data Analysis, Chapman and Hall/CRC, 2013 .

[18] P.D. Grünwald , The Minimum Description Length Principle, MIT press, 2007 .
[19] S. Holm , A simple sequentially rejective multiple test procedure, Scand. J. Stat. (1979) 65–70 .

[20] J. Hühn , E. Hüllermeier , Furia: an algorithm for unordered fuzzy rule induction, Data Min. Knowl. Discovery 19 (3) (2009) 293–319 .
[21] J. Huysmans , K. Dejaeger , C. Mues , J. Vanthienen , B. Baesens , An empirical evaluation of the comprehensibility of decision table, tree and rule based

predictive models, Decis. Support Syst. 51 (1) (2011) 141–154 .
[22] R.L. Iman , J.M. Davenport , Approximations of the critical region of the fbietkan statistic, Commun. Stat. 9 (6) (1980) 571–595 .

[23] F. Jiménez , G. Sánchez , J.M. Juárez , Multi-objective evolutionary algorithms for fuzzy classification in survival prediction, Artif. Intell. Med. 60 (3) (2014)

197–219 .
[24] P. Kralj Novak , N. Lavra ̌c , G. Webb , Supervised descriptive rule discovery: a unifying survey of contrast set, emerging pattern and subgroup mining, J.

Mach. Learn. Res. 10 (2009) 377–403 .
[25] H. Lakkaraju , S.H. Bach , J. Leskovec , Interpretable decision sets: a joint framework for description and prediction, KDD’16, ACM, 2016 .

[26] H. Lakkaraju , C. Rudin , Learning cost-effective and interpretable treatment regimes for judicial bail decisions, NIPS 2016, 2016 .
[27] H. Lakkaraju , C. Rudin , Learning cost-effective and interpretable treatment regimes, Artificial Intelligence and Statistics, 2017 .

[28] M. van Leeuwen , E. Galbrun , Association discovery in two-view data, IEEE Trans. Knowl. Data Eng. 27 (12) (2015) .

[29] M. van Leeuwen , J. Vreeken , Mining and using sets of patterns through compression, in: Frequent Pattern Mining, Springer, 2014, pp. 165–198 .
[30] B. Letham , C. Rudin , T.H. McCormick , D. Madigan , et al. , Interpretable classifiers using rules and Bayesian analysis: building a better stroke prediction

model, Ann. Appl. Stat. 9 (3) (2015) 1350–1371 .
[31] W. Li , J. Han , J. Pei , CMAR: accurate and efficient classification based on multiple class-association rules, in: Data Mining, 2001. ICDM 2001, Proceedings

IEEE International Conference on, IEEE, 2001, pp. 369–376 .
[32] Y. Lou , R. Caruana , J. Gehrke , Intelligible models for classification and regression, in: KDD’12, ACM, 2012, pp. 150–158 .

[33] B.L.W.H.Y. Ma , B. Liu , Integrating classification and association rule mining, KDD’98, 1998 .

[34] C. Molnar , Interpretable machine learning, A Guide for Making Black Box Models Explainable, 2018 .
[35] I. Polaka , E. Gašenko , O. Barash , H. Haick , M. Leja , Constructing interpretable classifiers to diagnose gastric cancer based on breath tests, Procedia

Comput. Sci. 104 (2017) .
[36] F. Provost, P. Domingos, Well-trained pets: Improving probability estimation trees (20 0 0).

[37] J.R. Quinlan , C4. 5: Programs for Machine Learning, Elsevier, 2014 .
[38] M.T. Ribeiro , S. Singh , C. Guestrin , Why should i trust you?: Explaining the predictions of any classifier, in: KDD’16, ACM, 2016, pp. 1135–1144 .

[39] M.T. Ribeiro , S. Singh , C. Guestrin , Anchors: high-precision model-agnostic explanations, in: Proceedings of the Thirty-Second AAAI Conference on

Artificial Intelligence (AAAI), 2018 .
[40] J. Rissanen , Modeling by shortest data description, Automatica 14 (5) (1978) .

[41] J. Rissanen , A universal prior for integers and estimation by minimum description length, Ann. Stat. (1983) 416–431 .
[42] J. Vreeken , M. van Leeuwen , A. Siebes , Krimp: mining itemsets that compress, Data Min. Knowl. Discovery 23 (1) (2011) 169–214 .

[43] J. Wang , G. Karypis , Harmony: efficiently mining the best rules for classification, in: Proceedings of the 2005 SIAM International Conference on Data
Mining, SIAM, 2005, pp. 205–216 .

http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0001
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0001
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0001
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0001
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0002
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0002
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0002
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0002
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0003
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0003
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0003
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0003
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0003
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0003
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0004
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0004
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0004
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0004
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0004
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0005
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0005
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0005
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0006
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0006
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0007
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0007
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0007
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0007
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0007
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0008
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0008
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0008
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0008
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0008
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0009
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0009
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0009
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0010
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0010
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0011
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0011
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0012
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0012
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0012
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0012
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0012
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0013
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0013
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0014
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0014
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0014
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0014
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0015
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0015
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0015
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0015
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0016
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0016
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0016
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0016
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0016
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0016
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0016
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0017
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0017
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0018
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0018
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0019
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0019
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0019
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0020
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0020
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0020
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0020
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0020
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0020
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0021
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0021
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0021
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0022
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0022
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0022
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0022
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0023
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0023
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0023
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0023
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0024
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0024
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0024
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0024
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0025
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0025
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0025
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0026
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0026
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0026
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0027
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0027
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0027
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0028
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0028
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0028
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0029
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0029
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0029
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0029
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0029
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0029
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0030
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0030
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0030
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0030
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0031
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0031
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0031
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0031
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0032
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0032
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0032
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0033
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0033
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0034
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0034
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0034
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0034
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0034
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0034
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0035
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0035
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0036
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0036
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0036
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0036
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0037
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0037
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0037
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0037
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0038
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0038
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0039
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0039
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0040
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0040
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0040
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0040
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0041
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0041
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0041

H.M. Proença and M. van Leeuwen / Information Sciences 512 (2020) 1372–1393 1393

[44] T. Wang , C. Rudin , F. Velez-Doshi , Y. Liu , E. Klampfl, P. MacNeille , Bayesian rule sets for interpretable classification, in: Data Mining (ICDM), 2016 IEEE
16th International Conference on, IEEE, 2016, pp. 1269–1274 .

[45] G.I. Webb , Discovering significant patterns, Mach. Learn. 68 (1) (2007) 1–33 .
[46] H. Yang , C. Rudin , M. Seltzer , Scalable Bayesian rule lists, in: Proceedings of the 34th International Conference on Machine Learning-Volume 70, JMLR.

org, 2017, pp. 3921–3930 .
[47] J. Zeng , B. Ustun , C. Rudin , Interpretable classification models for recidivism prediction, J. R. Stat. Soc. 180 (3) (2017) .

[48] X. Zhang , G. Dong , K. Ramamohanarao , Information-based classification by aggregating emerging patterns, in: IDEAL, Springer, 20 0 0, pp. 48–53 .

[49] A. Zimmermann , S. Nijssen , Supervised pattern mining and applications to classification, Frequent Pattern Mining, Springer, 2014 .

Hugo M. Proença is a PhD candidate at the Leiden Institute of Advanced Computer Science (LIACS) of Leiden University. His

research project is part of a joint Dutch-Indian project in collaboration with GE India Technology Center in Bangalore and IIT
Roorkee, which aims at optimizing the accuracy and reliability of predicting scheduled flight times. His research interests include

interpretable machine learning, the Minimum Description Length (MDL) principle, and pattern mining.

Dr. Matthijs van Leeuwen is assistant professor and group leader of the Explanatory Data Analysis group at LIACS, Leiden Uni-

versity, the Netherlands. His primary research interest is exploratory data mining: how can we enable domain experts to explore
and analyse their data, to discover structure and ultimately novel knowledge? Van Leeuwen was awarded several grants and best

paper awards, co-organised international conferences and workshops, and is on the editorial board of DAMI and the guest edi-

torial board of the ECML PKDD Journal Track. He was guest editor of a TKDD special issue on Interactive Data Exploration and
Analytics.

http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0042
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0042
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0042
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0042
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0042
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0042
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0042
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0043
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0043
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0044
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0044
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0044
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0044
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0045
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0045
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0045
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0045
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0046
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0046
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0046
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0046
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0047
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0047
http://refhub.elsevier.com/S0020-0255(19)31013-8/sbref0047

	Interpretable multiclass classification by MDL-based rule lists
	1 Introduction
	2 Related work
	2.1 Rule-based models
	2.2 Pattern mining
	2.3 MDL-based data mining

	3 Multiclass classification with rule lists
	3.1 Probabilistic rule lists
	3.2 Parameter estimation

	4 MDL for multiclass classification
	4.1 Model encoding
	4.2 Data encoding

	5 The Classy algorithm
	5.1 Separate-and-conquer greedy search
	5.2 Compression gain
	5.3 Candidate generation
	5.4 Finding good rule lists
	5.5 Complexity

	6 Experiments
	6.1 Compression versus classification
	6.2 Candidate set influence
	6.3 Classification performance
	6.4 Interpretability
	6.5 Statistical significance testing
	6.6 Overfitting
	6.7 Runtime
	6.8 Discussion

	7 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgment
	References

