216 research outputs found

    Flow Stability of Patchy Vector Fields and Robust Feedback Stabilization

    Full text link
    The paper is concerned with patchy vector fields, a class of discontinuous, piecewise smooth vector fields that were introduced in AB to study feedback stabilization problems. We prove the stability of the corresponding solution set w.r.t. a wide class of impulsive perturbations. These results yield the robusteness of patchy feedback controls in the presence of measurement errors and external disturbances.Comment: 22 page

    The patchy Method for the Infinite Horizon Hamilton-Jacobi-Bellman Equation and its Accuracy

    Get PDF
    We introduce a modification to the patchy method of Navasca and Krener for solving the stationary Hamilton Jacobi Bellman equation. The numerical solution that we generate is a set of polynomials that approximate the optimal cost and optimal control on a partition of the state space. We derive an error bound for our numerical method under the assumption that the optimal cost is a smooth strict Lyupanov function. The error bound is valid when the number of subsets in the partition is not too large.Comment: 50 pages, 5 figure

    Nearly Optimal Patchy Feedbacks for Minimization Problems with Free Terminal Time

    Full text link
    The paper is concerned with a general optimization problem for a nonlinear control system, in the presence of a running cost and a terminal cost, with free terminal time. We prove the existence of a patchy feedback whose trajectories are all nearly optimal solutions, with pre-assigned accuracy.Comment: 13 pages, 3 figures. in v2: Fixed few misprint

    Robust Control of Hybrid Systems

    Get PDF

    Quasi-optimal robust stabilization of control systems

    Full text link
    In this paper, we investigate the problem of semi-global minimal time robust stabilization of analytic control systems with controls entering linearly, by means of a hybrid state feedback law. It is shown that, in the absence of minimal time singular trajectories, the solutions of the closed-loop system converge to the origin in quasi minimal time (for a given bound on the controller) with a robustness property with respect to small measurement noise, external disturbances and actuator noise

    Stochastic population growth in spatially heterogeneous environments: The density-dependent case

    Full text link
    This work is devoted to studying the dynamics of a structured population that is subject to the combined effects of environmental stochasticity, competition for resources, spatio-temporal heterogeneity and dispersal. The population is spread throughout nn patches whose population abundances are modelled as the solutions of a system of nonlinear stochastic differential equations living on [0,∞)n[0,\infty)^n. We prove that rr, the stochastic growth rate of the total population in the absence of competition, determines the long-term behaviour of the population. The parameter rr can be expressed as the Lyapunov exponent of an associated linearized system of stochastic differential equations. Detailed analysis shows that if r>0r>0, the population abundances converge polynomially fast to a unique invariant probability measure on (0,∞)n(0,\infty)^n, while when r<0r<0, the population abundances of the patches converge almost surely to 00 exponentially fast. This generalizes and extends the results of Evans et al (2014 J. Math. Biol.) and proves one of their conjectures. Compared to recent developments, our model incorporates very general density-dependent growth rates and competition terms. Furthermore, we prove that persistence is robust to small, possibly density dependent, perturbations of the growth rates, dispersal matrix and covariance matrix of the environmental noise. Our work allows the environmental noise driving our system to be degenerate. This is relevant from a biological point of view since, for example, the environments of the different patches can be perfectly correlated. As an example we fully analyze the two-patch case, n=2n=2, and show that the stochastic growth rate is a decreasing function of the dispersion rate. In particular, coupling two sink patches can never yield persistence, in contrast to the results from the non-degenerate setting treated by Evans et al.Comment: 43 pages, 1 figure, edited according to the suggestion of the referees, to appear in Journal of Mathematical Biolog
    • 

    corecore