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Abstract. We introduce a modification to the patchy method of Navasca and Krener for solving
the stationary Hamilton Jacobi Bellman equation. The numerical solution that we generate is a set
of polynomials that approximate the optimal cost and optimal control on a partition of the state
space. We derive an error bound for our numerical method under the assumption that the optimal
cost is a smooth strict Lyupanov function. The error bound is valid when the number of subsets in
the partition is not too large.
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1. Introduction. In this paper, we introduce a numerical scheme for solving
the infinite horizon optimal control problem of minimizing the integral∫ ∞

0

l(x, u)dt (1.1a)

of a Lagrangian l(x, u) subject to the controlled dynamics

ẋ = f(x, u) x(0) = x0 (1.1b)

where f and l are both smooth, and l is strictly convex in the control u ∈ Rm for all
states x ∈ Rn. The solution that we are interested in is an optimal cost π : Rn → R,
which is the minimum value of (1.1a) incurred by driving the state from an initial
value of x to the origin. The optimal control that drives the state to the origin is given
in feedback form by u = κ(x). Our solution is a set of polynomials that approximate
the optimal cost and optimal control on a partition of a subset of the state space.

Our method is a modification of the original patchy method [7], which we altered
to obtain the error bound in Theorem 3.6. Like the original patchy method, it is an
extension of the Cauchy-Kovalevskaya method [4], the fast marching method [13, 9],
the patchy technique of Ancona and Bressan [2], and Al’brekht’s power series method
[1].

Al’brekht’s method is an algorithm for computing a series solution to the optimal
cost that must be centered at the origin of the state space. A drawback to the
requirement that the series solution be centered at the origin is, even when the optimal
cost and optimal control are smooth over the entire domain of interest, their power
series solutions may be local in nature. This means that outside of some region
containing the origin, it may be impractical to compute the number of terms necessary
to achieve a desired accuracy. The patchy method that we present uses Al’brekht’s
series solution as an initialization step, and generates a new series solution centered
at a point away from the origin. Doing this enlarges the region where we have a valid
approximation to the optimal cost and optimal control.

∗This work was partially supported by AFOSR
†Naval Postgraduate School, 833 Dyer Road Monterey, CA 93943-5216 (twhunt@nps.edu,

ajkrener@nps.edu)
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1.1. The Hamilton-Jacobi-Bellman PDE. It is widely known that if the
optimal control problem (1.1) has a smooth optimal cost π(x), and the optimal control
can be put in feedback form u = κ(x), then the optimal control and optimal cost
satisfy the Hamilton-Jacobi-Bellman (HJB) equation

0 = min
u

(∂π
∂x

(x)f(x, u) + l(x, u)
)

κ(x) = arg min
u

(∂π
∂x

(x)
∂f

∂u
(x, u) +

∂l

∂u
(x, u)

) (1.2)

locally around the origin. Furthermore, if ∂π
∂x (x)f(x, u) + l(x, u) is strictly convex in

u locally around x = 0, u = 0, then the HJB PDEs (1.2) simplify to

0 =
∂π

∂x
(x)f(x, κ(x)) + l(x, κ(x)) (1.3a)

0 =
∂π

∂x
(x)

∂f

∂u
(x, κ(x)) +

∂l

∂u
(x, κ(x)). (1.3b)

1.2. Solutions to the Hamilton-Jacobi-Bellman PDE. The existence of
a solution of the optimal control problem (1.1) around the origin is determined by
the leading order terms of the problem data f and l. Suppose the dynamics and
Lagrangian have Taylor expansions

ẋ = Fx+Gu+

∞∑
k=2

f [k](x, u)

l(x, u) =
1

2

(
xTQx+ uTRu

)
+

∞∑
k=3

l[k](x, u)

(1.4)

where [k] denotes degree k terms in the power series, R is positive definite, and Q
is positive semidefinite. The optimal control problem is said to be nice if (F,G) is
stabilizable and (Q1/2, F ) is controllable.

Al’brekht [1] showed that when the optimal control problem (1.3) is nice, the
optimal cost and optimal control have series solution centered at the origin of the
state space. Lukes [6] showed that both these series solutions converge to the optimal
cost and control under suitable conditions. Al’brekht’s method is an algorithm for
computing both these series. It works by computing the degree j and j−1 terms as a
pair in the expansions of the optimal cost and optimal control, starting at j = 2 and
terminating at some user specified degree. The original description of the algorithm
is in Al’brekht’s original work [1], and a generalization with notation consistent with
this paper is in [7]. The Matlab implementation of Al’brekht’s method that we use
in the patchy method is available by request [5].

2. Derivation of the patchy method.

2.1. Optimal control problem assumptions. We will derive the patchy method
for the special case of the optimal control problem where the control is scalar (m = 1),
and the dynamics and lagrangian have the form

ẋ = f(x) + g(x)u l(x, u) = q(x) +
1

2
r(x)u2 (2.1)

where

f, g : Rn → Rn q, r : Rn → R u ∈ R.
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The patchy method does not require these assumptions, but they do significantly
simplify its derivation. Furthermore, we assume

1. f , g, q, r have continuous partial derivatives of to degree d+ 2 on Xc.
2. The optimal control problem is “nice”, meaning it can be expressed in the

form of (1.4), and (F,G) is stabilizable and (F,Q1/2) is detectable. We also
assume that Q is strictly positive definite.

3. π has continuous partial derivatives up to order d+ 2 on Xc

4. q ≥ 0 and r > 0 on Xc

5. The optimal cost is a strict Lyapunov function on Xc, meaning

∂π

∂x
(x)ẋ =

∂π

∂x
(x)
(
f(x) + g(x)κ(x)

)
< 0 (2.2)

for all x in Xc \ {0}.
Assumptions 1 and 2 guarantee that assumption 3 holds in some neighborhood of the
origin. The Taylor series of π in this neighborhood can be computed by Al’brekht’s
method. The fifth assumption is essential in both the derivation of the patchy method
and the proof of its error bound in Theorem 3.6.

2.2. Overview of the patchy method. Although the method works in higher
dimensions, we will assume in the overview that the state space is two dimensional.
This allows us to illustrate how we partition the state space. We first compute the
degree d + 1 Taylor approximation to the optimal cost at the origin by Al’brekht’s
method, which we denote π0. We assume that all truncated series solutions to the
optimal cost and optimal control are polynomials of degree d + 1 and d. We then
pick a sublevel set π0 ≤ c on which π0 has an acceptable level of error. We refer
to this sublevel set as the Al’brekht patch and denote it as A. The patchy method
expands the domain of the numerical solution to a superset of the Al’brekht patch,
which we refer to as the computational domain and denote it as Xc. The patchy
method picks a patch point, denoted xi, on the boundary of the Al’brekht patch and
then computes an approximating polynomial to the optimal cost that is centered at
the new patch point, which we denote as πi. The core of the patchy algorithm is a
method to compute the approximate partial derivatives of the optimal cost at xi, thus
computing an approximation to the Taylor polynomial centered at xi of the optimal
cost. The patchy method repeats this process until the origin is surrounded with a
number of patch points.

The computational domain is partitioned into a set of patches during the course
of the patchy algorithm. Each patch point is associated with a single patch, and
the optimal cost and optimal control at any state that falls inside in the patch are
computed by the approximating polynomials centered at the associated patch point.
Every point in the computational domain is associated with exactly one patch, and we
compute the approximate optimal cost and optimal control at the point by the series
solutions centered at the associated patch point. In two dimensions, the boundaries
of the patch are the boundary of the Al’brekht patch, a level curve of the optimal
cost centered at the patch point, and two lateral boundaries that intersect the other
two boundaries. Illustrations of the Al’brekht patch and a typical patch in a two
dimensional state space are included in Figure 2.1.

Once the Patchy method has encircled the Al’brekht patch with new patches, it
generates a new ring of patches and associated optimal cost polynomials, where the
new patches form a ring that encloses the old set of patches.
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As we will see, under some standard assumptions on the underlying optimal
control problem, as well as the assumptions that the true solution is both sufficiently
smooth and a strict Lyapunov function, we can derive error estimates on the patchy
method. Unfortunately, these error estimates do not go to zero as the density of
patches on the computational domain goes to infinity. To our knowledge, the only
algorithm that provably solves the nonlinear Hamilton-Jacobi-Bellman equations in
multiple dimensions with higher order accuracy is the finite difference scheme due to
Szpiro and Dupuis [12]. Their method is provably second order accurate on subsets
of the computational domain where the true solution is smooth.

2.3. Placing a new patch point. Given the previous patch point xi and its
associated approximate optimal cost πi, the patchy method must determine where
in the state space to place the new patch point xi+1. If the computed optimal cost
πi is sufficiently close to the true optimal cost in a neighborhood of xi, then by
the assumption that the optimal cost is a strict Lyapunov function, the closed loop
dynamics is not tangent to a level curve of πi in the neighborhood. Thus the partial
derivatives of the optimal cost can be calculated by the technique of this section at a
point on an appropriately chosen level curve of πi. The patchy method places xi+1

on a level curve of πi under the constraint that the distance between xi and xi+1 is
less than h, the maximum consecutive patch point distance. We derive the maximum
consecutive patch point distance in chapters 4 and 5.

2.4. Computing the optimal cost at a new patch point. Away from the
origin, the HJB equations alone do not fully specify all the partial derivatives of the
optimal cost at a given patch point. As a consequence, the patchy algorithm computes
some partial derivatives of the optimal cost from the HJB equations, and computes
the remaining partial derivatives from the previous optimal cost.

The computed optimal cost at the new patch point xi+1 is calculated by inheri-
tance, meaning we set

πi+1(xi+1) = πi(xi+1)

2.5. Computing the first order partial derivatives of the optimal cost
away from the origin. First, we compute n, the gradient direction of πi+1 at xi+1

from πi by

n ≡ 1

‖∂πi

∂x (xi+1)‖
∂πi

∂x
(xi+1). (2.3)

If the level sets of the previous and new optimal costs are tangent, then the gradients
of the previous and new optimal cost are collinear at the current patch point. In this
case, there is some positive scalar z such that

∂πi+1

∂x
(xi+1) = zn (2.4)

To compute z, we first define the scalars

fn ≡ n · f(xi+1) and gn ≡ n · g(xi+1). (2.5)

We can derive a formula for the optimal control in terms of the gradient of the optimal
cost by solving (1.3b) under the assumption (2.1). If we substitute this formula for
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the optimal control into (1.3a), then it reduces to the scalar quadratic equation

0 = − g2
n

2r(xi+1)
z2 + fnz + q(xi+1) (2.6)

under (2.4) and (2.5). If the computed and exact gradients of the optimal cost are
sufficiently close, then it follows from the assumption that the exact optimal cost is
a strict Lyapunov function that the quadratic equation (2.6) has exactly one strictly
positive root. We denote this positive root as z+, so the computed gradient of the
new optimal cost and the computed new optimal control at the new patch point are

∂πi+1

∂x
(xi+1) = z+n κi+1(xi+1) = − 1

r(xi+1)

∂πi+1

∂x
(xi+1)g(xi+1) (2.7)

2.6. Computing higher order partial derivatives of the optimal cost
away from the origin. Let ẋi+1 denote the computed optimal direction at the new
patch point calculated from the first order partial derivatives of the computed optimal
cost. If the exact and computed gradients of the optimal cost are sufficiently close
at the new patch point, then it follows from the assumption that the optimal cost
is a strict Lyapunov function that the computed optimal direction is nonzero. The
computed optimal direction is calculated from the formula

ẋi+1 = f(xi+1) + g(xi+1)κi+1(xi+1).

We set

V̂ 1 =
1

‖ẋi+1‖ ẋ
i+1 V̂ ≡

[
V̂ 1 · · · V̂ n

]
where V̂ 1, V̂ 2, . . . , V̂ n form an orthonormal basis of Rn. This can be done with a
Householder reflector [3, ch. 5.1.2]. We will compute the higher order partial deriva-
tives of the optimal cost under the change of variables

x = xi+1 + V̂ ξ̂

and then recover the partial derivatives with respect to the original state space vari-
ables. In the new variables, the HJB equations (1.3) become

0 =
∂π̂

∂ξ̂
(ξ̂)
(
f̂(ξ̂) + ĝ(ξ̂)κ̂(ξ̂)

)
+ q̂(ξ̂) +

1

2
r̂(ξ̂)

(
κ̂(ξ̂)

)2
(2.8a)

0 =
∂π̂

∂ξ̂
(ξ̂)ĝ(ξ̂) + r̂(ξ̂)κ̂(ξ̂) (2.8b)

where

π̂(ξ̂) ≡ π(xi+1 + V̂ ξ̂)

f̂(ξ̂) ≡ V̂ T f(xi+1 + V̂ ξ̂)

q̂(ξ̂) ≡ q(xi+1 + V̂ ξ̂)

κ̂(ξ̂) ≡ κ(xi+1 + V̂ ξ̂)

ĝ(ξ̂) ≡ V̂ T g(xi+1 + V̂ ξ̂)

r̂(ξ̂) ≡ r(xi+1 + V̂ ξ̂)

(2.9)

To derive a formula for the characteristic second order partial derivatives of the opti-
mal cost, we evaluate the derivative of the first HJB equation in (2.8a) with respect

to ξ̂j at ξ̂ = 0, and arrive at

0 = ‖ẋ‖ ∂2π̂

∂ξ̂j∂ξ̂1
(0)+

∂π̂

∂ξ̂
(0)
( ∂f̂
∂ξ̂j

(0)+
∂ĝ

∂ξ̂j
(0)κ̂(0)

)
+
∂q̂

∂ξ̂j
(0)+

1

2

∂r̂

∂ξ̂j
(0)
(
κ̂(0)

)2
(2.10)
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where ẋ denotes the optimal direction at xi+1. The terms involving the partial deriva-
tive of κ̂ with respect to ξ̂j drop out due to (2.8b). We compute the characteristic
second order partial derivatives of π̂i+1 by substituting in the computed approxima-
tions to the optimal direction and gradient of the optimal cost into (2.10), and solving
for the unknown second order partial derivatives of the optimal cost. This yields the
formula

∂2π̂i+1

∂ξ̂j∂ξ̂1
(0) = − 1

‖ẋi+1‖

[
∂π̂i+1

∂ξ̂
(0)
( ∂f̂
∂ξ̂j

(0) +
∂ĝ

∂ξ̂j
(0)κ̂i+1(0)

)
+
∂q̂

∂ξ̂j
(0)

+
1

2

∂r̂

∂ξ̂j
(0)
(
κ̂i+1(0)

)2]
. (2.11)

The characteristic second order partial derivatives are a strict subset of all the sec-
ond order partial derivatives, since the HJB equations do not specify all the second
order partial derivatives. We call the remaining second order partial derivatives non
characteristic. We compute them by inheritance, meaning for 2 ≤ j1 ≤ j2 ≤ n we set

∂2π̂i+1

∂ξ̂j1∂ξ̂j2
(0) =

∂2

∂ξ̂j1∂ξ̂j2

[
πi(xi+1 + V̂ ξ̂)

]
ξ̂=0

. (2.12)

To get the approximate first order partial derivatives of the optimal control, we follow
the same process. We differentiate the second HJB equation(2.8b) with respect to ξ̂j
at ξ̂ = 0, and after substituting in the computed partial derivatives of the optimal
control and cost, we obtain the formula

∂κ̂i+1

∂ξ̂j
(0) = − 1

r̂(0)

[
∂2π̂i+1

∂ξ̂j∂ξ̂
(0)ĝ(0) +

∂π̂i+1

∂ξ̂
(0)

∂ĝ

∂ξ̂j
(0)κ̂i+1(0) +

∂r̂

∂ξ̂j
(0)κ̂i+1(0)

]
.

(2.13)
We compute the remaining higher order partial derivatives in an analogous fashion.
Their formulas are in §9.2.

We now introduce new notation to describe how to recover the partial derivatives
with respect to the original state space variables from the partial derivatives with
respect to the new variables. They are computed by

∂2πi+1

∂xj1∂xj2
(xi+1) =

∂

∂ξ̂
⊗ ∂

∂ξ̂

[
π̂i+1(ξ̂)

]
ξ̂=0

(V̂ T ej1 ⊗ V̂ T ej2)

...

∂kπi+1

∂xj1 · · · ∂xjk
(xi+1) =

∂

∂ξ̂
⊗ · · · ⊗ ∂

∂ξ̂

[
π̂i+1(ξ̂)

]
ξ̂=0

(V̂ T ej1 ⊗ · · · ⊗ V̂ T ejk)

(2.14)

where ej is the jth column of the identity matrix. Each formula in (2.14) is a standard
dot product, written as the product of a row and column vector. The symbol ⊗ has
two meanings in (2.14). It is the standard Kronecker product if it appears between

two matrices. The row vector ∂
∂ξ̂
⊗· · ·⊗ ∂

∂ξ̂
[π̂i+1(ξ̂)] is new notation for the Kronecker

derivative, which is a bookkeeping mechanism. In the first equation in (2.14), if the
state space is two dimensional then the Kronecker derivative is defined as

∂

∂ξ̂
⊗ ∂

∂ξ̂

[
π̂i+1(ξ̂)

]
ξ̂=0

=
[
∂2π̂
∂ξ̂2

1

(ξ̂) ∂2π̂
∂ξ̂1∂ξ̂2

(ξ̂) ∂2π̂
∂ξ̂1∂ξ̂2

(ξ̂) ∂2π̂
∂ξ̂2

2

(ξ̂)
]
ξ̂=0

.
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We give the full definition of the Kronecker derivative in the appendix.

2.7. Computing the optimal cost and optimal control away from a
patch point. To compute the optimal cost or optimal control at a point in the
state space that is not a patch point, we need a means to determine which patch the
point belongs to. In other words, we need to know which polynomials πi and κi to
use to calculate the optimal cost and optimal control at some x̄ in the state space.
There are two types of patches, typical patches, and a single Al’brekht patch. The
boundary of the Al’brekht patch is a level curve of π0 that encloses the entire patch.
The optimal cost and optimal control at a point inside the Al’brekht patch are com-
puted from π0 and κ0. A typical patch is associated with the patch point xi+1 6= 0,
and the optimal cost and optimal control at every point in the patch is computed
from πi+1 and κi+1. When the state space is two dimensional, a typical patch has
four intersecting boundaries that enclose the patch. Two of the boundaries are level
curves of the optimal cost, and the other two boundaries are lateral boundaries. The
patch point xi+1 lies on the optimal cost level curve of πi that defines one of the
patch boundaries. The other optimal cost level curve patch boundary is a level curve
of πi+1. Each lateral boundary is a straight line segment that intersects the level
curve of πi at a point xb, and is oriented so that it points in the opposite direction of
the optimal direction f(xb) + g(xb)κ

i(xb). When the state space is two dimensional,
the patch boundary point xb is placed on a level curve of the optimal cost so that it
is halfway between two adjacent patch points that lie on the same level curve. The
optimal direction at xb may be computed from the approximate optimal cost associ-
ated with either adjacent patch point. Illustrations of the two types of patches are in
Figure 2.1.

�

x0 = 0

π0(x) = `0

A

(a) Al’brekht patch

�

xi+1

π
i+

1 (x) =`
i+

1

π
i (x

) =
`
i

xb

x̄�

�

f(xb) + g(xb)κ
i(xb)

(b) Typical patch

Fig. 2.1. Al’brekht patch and typical patch

3. Analytical error bound for the patchy method. The difference between
the exact and computed optimal cost grows as a power of the maximum consecutive
patch point distance times a term that grows exponentially as the patchy method
moves along a sequence of consecutive patch points. We first develop some concepts
and lemmas that we will need before making the more rigorous statement of the error
bound in Theorem 3.6 at the end of this section.

3.1. Sequence of consecutive patch points. The error bound is predicated
on the notion of a sequence of consecutive patch points.

Definition 3.1. The patch points xi and xi+1 are said to be consecutive if the
computed optimal cost polynomial centered at xi+1 was computed from information

7



contained in the computed optimal cost polynomial centered at xi. The origin is always
the first patch point in a sequence of consecutive patch points. A sequence of three
consecutive patch points is illustrated in Figure 3.1.

�

x0 = 0

A�

�

x1

x2 �

�

�

�

�

�

	




�

�




�

�
�

�

�

�

�

�

�

Fig. 3.1. A sequence of three consecutive patch points x0, x1, x2

3.2. Notation. The patchy algorithm takes a truncated series solution to the
optimal cost centered at the previous patch point, and generates a new series solution
to the optimal cost centered at the next patch point. Thus, it can be interpreted as
a mapping from a set of polynomial coefficients associated with the previous patch
point to a set of polynomial coefficients associated with the new patch point. These
coefficients are approximate partial derivatives of the optimal cost evaluated at the
appropriate patch point, so we introduce notation to reflect this.

Ĉij denotes the vector of computed jth partial derivatives of the optimal cost at

xi. For example, if the state space is two dimensional

Ĉi2 =
[
∂2π̂
∂x2

1
(xi) ∂2π̂

∂x1∂x2
(xi) ∂2π̂

∂x2
2
(xi)

]
Ĉi is the vector of all partial derivatives of the computed optimal cost at xi up to
order d+ 1, that is

Ĉi =
[
Ĉi0 Ĉi1 · · · Ĉid+1

]
We denote with φj the part of the patchy method that computes the jth order

partial derivatives of the optimal cost at the current patch point from the partial
derivatives of the optimal cost evaluated at the previous patch point, meaning

Ĉi+1
j = φj(Ĉ

i)

8



Cij denotes the vector of exact jth partial derivatives of the optimal cost π at xi,

and Ci has a definition that is analogous to Ĉi.

3.3. Local truncation vector. Definition 3.2. Ci denotes the vector of
exact partial derivatives of the optimal cost at xi, and Ci+1

j denotes the exact partial

derivatives of order j of the optimal cost at xi+1, where xi and xi+1 are consecutive
patch points. The local truncation vector τ ij is

τ ij ≡ Ci+1
j − φj(Ci)

which is the difference between the exact jth order partial derivatives of π at xi+1,
and the computed partial derivatives of π at xi+1 that are generated by feeding φj the
exact partial derivatives of of π centered at xi.

3.4. The Lipschitz condition. Definition 3.3. Suppose Cij and Ĉij are vec-
tors of exact and approximate partial derivatives of order j of the optimal cost π at
xi. The function φ is said to satisfy the Lipschitz condition if there exists a maximum
multiplier Mmax > 0 and a maximum consecutive patch point distance h > 0, such
that for all M ≤Mmax and all ‖xi+1 − xi‖ ≤ h, then

‖φk(Ci)− φk(Ĉi)‖2 ≤ LM‖xi+1 − xi‖d+2−k
2 for 0 ≤ k ≤ d+ 1

whenever

‖Cij − Ĉij‖2 ≤M‖xi+1 − xi‖d+2−j
2 for 0 ≤ j ≤ d+ 1

The following lemma will help us establish that the patchy method satisfies the
Lipschitz condition.

Lemma 3.4. Polynomials satisfy the Lipschitz condition of Definition 3.3 with
Mmax ≤ ∞. We may write any degree d+ 1 polynomial as

P (C, x) ≡
d+1∑
`=0

C` ·m`(x).

where C` is a coefficient vector as defined in §3.2 and m`(x) is a vector of `th degree
monomials so that all the degree ` terms of the polynomial are C` ·m`(x). Thus, if
‖C` − Ĉ`‖2 ≤M‖x‖d+2−`

2 , then there exists Linh <∞ such that∣∣∣ ∂kP

∂xj1∂xj2 · · · ∂xjk
(C, x)− ∂kP

∂xj1∂xj2 · · · ∂xjk
(Ĉ, x)

∣∣∣ ≤ LinhM‖x‖d+2−k
2

Proof. Since P (C, x)− P (Ĉ, x) = P (C − Ĉ, x), we may assume without a loss of
generality that Ĉ = 0, and ‖C`‖2 ≤M‖x‖d+2−`

2 . By Cauchy-Schwarz,

∣∣∣ ∂kP

∂xj1∂xj2 · · · ∂xjk
(C, x)

∣∣∣ ≤ d+1∑
`=k

‖C`‖
∣∣∣∣∣∣ ∂km`

∂xj1∂xj2 · · · ∂xjk
(x)
∣∣∣∣∣∣.

Each entry in the kth order partial derivative of m` is O(‖x‖`−k), and by assumption
‖C`‖2 ≤M‖x‖d+2−`

2 , so each term in the sum is O(‖x‖d+2−k).
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The next lemma establishes a bound on the difference between the Taylor poly-
nomial coefficients of the optimal cost π, and the coefficients of the computed optimal
cost πi.

Lemma 3.5. Suppose there exists a maximum consecutive patch point distance
h > 0 such that φ satisfies the Lipschitz condition with constants L and Mmax. Also,
suppose there exists a local truncation error constant T such that for any patch points
xi and xi+1 in Xc \ A within a radius of h of each other,

‖τ ij‖ ≤ Thd+2−j

where the approximating polynomials to the optimal cost are degree d + 1. Let Ĉij
denote the vector of jth order partial derivatives of the optimal cost computed by the
patchy method, where i is the sequence index for a sequence of consecutive patch points.
Let Cij denote the corresponding vector of exact partial derivatives. The growth in the

difference between the true and computed jth partial derivatives of the optimal cost is
bounded by

‖Cij − Ĉij‖ ≤
Li − 1

L− 1
Thd+2−j for 1 ≤ i ≤ N

where N is the smallest integer such that

LN − 1

L− 1
T ≤Mmax

Proof. The proof proceeds by induction on the sequence index i, and is similar in
spirit to the construction of an error bound between the true solution of an ODE and
a solution computed by a one step method [11, ch. 7.2]. We assume that all arithmetic
is exact. It follows from the definition of the local truncation vector that the difference
between the true and computed jth order partial derivatives is bounded by

‖Ci+1
j − Ĉi+1

j ‖ ≤ ‖φj(Ci)− φj(Ĉi)‖+ ‖τ ij‖

At the origin, the patchy algorithm computes the exact partial derivatives of the opti-
mal cost by Al’brekht’s method, so Ĉ0

j = C0
j for 0 ≤ j ≤ d+ 1. Therefore the theorem

holds in the base case of the induction proof. Now, suppose that at the ith patch point
in the sequence of consecutive patch points,

‖Cij − Ĉij‖ ≤
Li − 1

L− 1
Thd+2−j and

Li − 1

L− 1
T ≤Mmax

for 0 ≤ j ≤ d+ 1. Then

‖φj(Ci)− φj(Ĉi)‖ ≤ L
Li − 1

L− 1
Thd+2−j

for 0 ≤ j ≤ d+1 since φ satisfies the Lipschitz condition. Therefore, at the next patch
point in the sequence, the difference between the partial derivatives is bounded by

‖Ci+1
j − Ĉi+1

j ‖ ≤ LL
i − 1

L− 1
Thd+2−j + Thd+2−j =

Li+1 − 1

L− 1
Thd+2−j .

Thus, the conclusion of the lemma holds.
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3.5. Analytical bound on absolute error of the optimal cost. Theorem
3.6. Suppose there exists a maximum consecutive patch point distance h > 0 such
that φ satisfies the Lipschitz condition. Also, suppose there exists a local truncation
error constant T such that for any consecutive patch points xi and xi+1 in Xc \ A
within a radius h of each other, ‖τ ij‖ ≤ Thd+2−j, where the degree of all the optimal
cost approximating polynomials is d + 1. Finally, assume that the maximum patch
diameter is proportional to the maximum consecutive patch point distance. Then
there exist constants L and K such that for any x in the ith patch in a sequence, the
error between the exact and computed optimal cost is bounded by

|π(x)− πi(x)| ≤ K
(Li − 1

L− 1
+ 1
)
hd+2

and the difference between corresponding kth order partial derivatives is bounded by∣∣∣ ∂kπ

∂xj1 · · · ∂xjk
(x)− ∂kπi

∂xj1 · · · ∂xjk
(x)
∣∣∣ ≤ K(Li − 1

L− 1
+ 1
)
hd+2−k.

Proof. The basic idea behind the proof is to write the true optimal cost as the sum
of its Taylor polynomial and a remainder term, then apply Lemma 3.5 to bound the
difference between the coefficients of πi and the coefficients of the Taylor polynomial.
By Lemma 3.5, there is some Lipschitz constant L such that the exact and computed
kth order partial derivatives of the optimal cost at xi are bounded by

‖Cik − Ĉik‖ ≤
Li − 1

L− 1
Thd+2−k

where T is the local truncation constant from the theorem statement. Let x̄ be any
point in the ith patch in a sequence of consecutive patches, and let D denote the
maximum patch diameter for all the patches in the computational domain Xc. By
Lemma 3.4, there exists Linh such that∣∣∣ ∂k

∂xj1 · · · ∂xjk
[
P (Ci − Ĉi, x− xi)

]
x=x̄

∣∣∣ ≤ Linh
Li − 1

L− 1
TDd+2−k

By assumption, the optimal cost is smooth on Xc, so it follows from the definition of
the Taylor remainder constant RT that∣∣∣ ∂k

∂xj1 · · · ∂xjk
[
π(x− xi)− P (Ci, x− xi)

]
x=x̄

∣∣∣ ≤ RTDd+2−k.

Therefore

∣∣∣ ∂kπ

∂xj1 · · · ∂xjk
(x)− ∂kπi

∂xj1 · · · ∂xjk
(x)
∣∣∣

≤
∣∣∣ ∂k

∂xj1 · · · ∂xjk
[
P (Ci − Ĉi, x− xi)

]
x=x̄

∣∣∣
+
∣∣∣ ∂k

∂xj1 · · · ∂xjk
[
π(x− xi)− P (Ci, x− xi)

]
x=x̄

∣∣∣
≤
(
Linh

Li − 1

L− 1
T +RT

)(D
h

)d+2−k
hd+2−k.
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The error bound from the theorem statement follows by setting K = (D/h)d+2 max(TLinh, RT ).
Our assumption that the patch diameter D is proportional to the maximum consecu-
tive patch point distance h guarantees that D/h is bounded from above by a constant.

In sections 4-7, we list sufficient conditions that guarantee that the local trunca-
tion error of the patchy algorithm has the desired order, and the patchy algorithm
satisfies the Lipschitz condition, thus guaranteeing the error bound in the previous
theorem.

4. Local truncation error for first order partial derivatives of the opti-
mal cost. We state Theorem 4.1 whose content implies the first order local truncation
vector is bounded by ‖τ i1‖ ≤ Thd+1, and defer its proof until after we have established
some supporting lemmas. In this section, we always assume that the conditions on
the optimal control problem in §2.1 hold.

Theorem 4.1. Suppose π solves the HJB equations (1.3) under the assumptions
in §2.1. Let π̄ denote the Taylor polynomial of the optimal cost centered at the previous

patch point, and let ∂πi+1

∂x (xi+1) denote the computed gradient of the optimal cost at
xi+1, computed from the coefficients of π̄. There exists a ball centered at the origin in
which the Al’brekht patch must lie, a maximum consecutive patch point distance, and
a constant T such that∣∣∣∣∣∣∂π

∂x
(xi+1)− ∂πi+1

∂x
(xi+1)

∣∣∣∣∣∣ ≤ T ∣∣∣∣∣∣∂π
∂x

(xi+1)− ∂π̄

∂x
(xi+1)

∣∣∣∣∣∣. (4.1)

whenever the distance from xi+1 to the previous patch point is less than the maximum
consecutive patch point distance . The maximum consecutive patch point distance hT
must be less than the consecutive patch point distance that we derive in Lemma 4.3,
and small enough to ensure ‖∂π∂x (xi+1)− ∂π̄

∂x (xi+1)‖ ≤M∆, where

M∆ < inf
Xc\A

∣∣∣∣∣∣∂π
∂x

(x)
∣∣∣∣∣∣

M∆ <
infXc\A|∂π∂x (x)f(x)|

supXc\A‖f(x)‖

M∆ <
infXc\A|∂π∂x (x)g(x)|

supXc\A‖g(x)‖

M∆ <
1

2
sup
Xc\A

(∣∣∣∣∣∣∂π
∂x

(x)
∣∣∣∣∣∣(‖f(x)‖2 + 2

q(x)

r(x)
‖g(x)‖2

)
+ ‖f(x)‖2 + ‖g(x)‖2

)
inf
Xc\A

(∂π
∂x

(x)ẋ
)2

The assumptions in §2.1 guarantee that each right hand side of the previous four
inequalities is strictly positive.

Corollary 4.2. There exists a maximum consecutive patch point distance hT
and local truncation constant T such that for any two consecutive patch points xi and
xi+1 in the computational domain Xc within a distance of hT of each other,∣∣∣∣∣∣∂π

∂x
(xi+1)− ∂πi+1

∂x
(xi+1)

∣∣∣∣∣∣ ≤ T‖xi+1 − xi‖d+1. (4.2)

where ∂πi+1

∂x (xi+1) denotes the computed gradient of the optimal cost at xi+1, computed
from the coefficients of the Taylor polynomial centered at the previous patch point.

12



Equivalently

‖τ i1‖ =
∣∣∣∣∣∣Ci+1

1 − φ1(Ci)
∣∣∣∣∣∣ ≤ T‖xi+1 − xi‖d+1.

It is helpful to think of the quantities fn and gn from (2.5), and the solution to
the quadratic equation z from (2.6) as functions of a nonzero vector w, so we define

fn(w) ≡ w

‖w‖ · f(xi+1)

gn(w) ≡ w

‖w‖ · g(xi+1)

z(w) ≡


− q(x

i+1)
fn(w) gn(w) = 0

fn(w)+

√
fn(w)2+2

q(xi+1)

r(xi+1)
gn(w)2

gn(w)2 r(xi+1) gn(w) 6= 0

(4.3)

As a consequence of the assumption that ∂π
∂x (x)ẋ < 0, fn(w) and gn(w) cannot

both be zero away from the origin if w is sufficiently close to ∂π
∂x (xi+1). Therefore,

z(w) is well defined. The difference between the true and computed first order partial
derivatives of π can be rewritten as

∂π

∂x
(xi+1)− ∂πi+1

∂x
(xi+1) =

∂π

∂x
(xi+1)− z(∂π̄∂x (xi+1))

‖∂π̄∂x (xi+1)‖
∂π̄

∂x
(xi+1)

and the main inequality (4.1) from the statement of Theorem 4.1 will follow from the
fact that

z(∂π̄∂x (xi+1))

‖∂π̄∂x (xi+1)‖ = 1 +O
(∣∣∣∣∣∣∂π

∂x
(xi+1)− ∂π̄

∂x
(xi+1)

∣∣∣∣∣∣) (4.4)

as long as the distance from xi+1 to the previous patch point is less than the maximum
consecutive patch point distance.

To prove (4.4), we define the helper function

R(t) ≡
z
(
∂π
∂x (xi+1) + t

(
∂π̄
∂x (xi+1)− ∂π

∂x (xi+1)
))

∣∣∣∣∣∣∂π∂x (xi+1) + t
(
∂π̄
∂x (xi+1)− ∂π

∂x (xi+1)
)∣∣∣∣∣∣ (4.5)

so that we can appeal to the mean value theorem, and rewrite the left-hand side of
(4.4) as 1 + dR

dt (ξ) for some 0 < ξ < 1. If R is differentiable, then its derivative is
bounded by∣∣∣dR

dt
(t)
∣∣∣ ≤(∣∣∣∣∣∣ ∂z
∂w

(∂π
∂x

(x) + t
(∂π̄
∂x

(x)− ∂π

∂x
(x)
))∣∣∣∣∣∣+

z
(
∂π
∂x (x) + t

(
∂π̄
∂x (x)− ∂π

∂x (x)
))

∣∣∣∣∣∣∂π∂x (x) + t
(
∂π̄
∂x (x)− ∂π

∂x (x)
)∣∣∣∣∣∣
)

×

∣∣∣∣∣∣∂π̄∂x (x)− ∂π
∂x (x)

∣∣∣∣∣∣∣∣∣∣∣∣∂π∂x (x) + t
(
∂π̄
∂x (x)− ∂π

∂x (x)
)∣∣∣∣∣∣ (4.6)
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Our assumption that the optimal cost is a strict Lyupanov function is the key fact
that guarantees that there exists a maximum consecutive patch point distance such
that dR

dt (t) is well defined for 0 ≤ t ≤ 1 and (4.4) holds. This is the main content of
Lemmas 4.3, 4.4, 4.5, and 4.6.

The next lemma guarantees that the denominators in the bound on dR
dt (t) (4.6)

are bounded away from zero.
Lemma 4.3. Let π̄ denote the Taylor polynomial centered at the previous patch

point. If π has continuous first order partial derivatives on Xc and is a strict Lyapunov
function on Xc, then there exists a maximum consecutive patch point distance h′ and
constant T ′, such that∣∣∣∣∣∣∂π∂x (x)− ∂π̄

∂x (x)
∣∣∣∣∣∣∣∣∣∣∣∣∂π∂x (x) + t

(
∂π
∂x (x)− ∂π̄

∂x (x)
)∣∣∣∣∣∣ ≤ T ′

∣∣∣∣∣∣∂π
∂x

(x)− ∂π̄

∂x
(x)
∣∣∣∣∣∣.

whenever 0 ≤ t ≤ 1 and the distance from x to the previous patch point is less than
h′.

Proof. We split the proof into two cases, depending on whether the previous
patch point is the origin or not. In either case, we will use the fact that if 0 ≤
‖∂π∂x (x)− ∂π̄

∂x (x)‖ < ‖∂π∂x (x)‖, then∣∣∣∣∣∣∂π∂x (x)− ∂π̄
∂x (x)

∣∣∣∣∣∣∣∣∣∣∣∣∂π∂x (x) + t
(
∂π
∂x (x)− ∂π̄

∂x (x)
)∣∣∣∣∣∣ ≤

∣∣∣∣∣∣∂π∂x (x)− ∂π̄
∂x (x)

∣∣∣∣∣∣
‖∂π∂x (x)‖ − ‖∂π∂x (x)− ∂π̄

∂x (x)‖

for all 0 ≤ t ≤ 1.
If the previous patch point is the origin, then we need establish the existence of a

deleted neighborhood of radius h′ centered at the origin such that∣∣∣∣∣∣∣∣∣∣∣∂π∂x (x)
∣∣∣∣∣∣− ∣∣∣∣∣∣∂π

∂x
(x)− ∂π̄

∂x
(x)
∣∣∣∣∣∣∣∣∣∣∣ > 0

for all x in the neighborhood. ∂π
∂x is nonzero away from the origin under the as-

sumption that π is a strict Lyapunov function on Xc, so we need to establish that
the difference between the gradients of π and π̄ goes to zero faster than the gradient
of π as x goes to zero. The assumption (§2.1, Assumption 2) that Q � 0 guaran-
tees that the leading order linear term of ∂π

∂x (x) is nonzero for all nonzero x. Thus

‖∂π∂x (x)− ∂π̄
∂x (x)‖/‖∂π∂x (x)‖ → 0 as x→ 0, so there is a radius h′ > 0 such that∣∣∣∣∣∣∂π

∂x
(x)− ∂π̄

∂x
(x)
∣∣∣∣∣∣ < ∣∣∣∣∣∣∂π

∂x
(x)
∣∣∣∣∣∣ for all x in 0 < ‖x‖ ≤ h′.

Since ∂π
∂x and ∂π̄

∂x (x) are continuous and r ≤ ‖x‖ ≤ h′ is compact, then for any r in
0 < r < h′,

sup
r≤‖x‖≤h′

∣∣∣∣∣∣∣∣∣∣∣∂π∂x (x)
∣∣∣∣∣∣− ∣∣∣∣∣∣∂π

∂x
(x)− ∂π̄

∂x
(x)
∣∣∣∣∣∣∣∣∣∣∣
−1

<∞.

Thus, the lemma holds if the previous patch point is the origin, and the distance from
xi+1 to the origin is no greater than h′.
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For this lemma to apply to the patchy method, the Al’brekht patch A must lie in
the neighborhood of the origin of radius h′, and the neighborhood of radius r must lie
completely inside the Al’brekht patch.

We now consider the case where the previous patch point xi is not the origin, so
its distance to the origin is at least r. ‖∂π∂x (x)‖ is bounded away from zero on Xc \ A,

and limx→xi‖∂π∂x (x)− ∂π̄
∂x (x)‖ = 0, so there exists an h′ such that

sup
Xc\A

‖x−xi‖≤h′

∣∣∣∣∣∣∣∣∣∣∣∂π∂x (x)
∣∣∣∣∣∣− ∣∣∣∣∣∣∂π

∂x
(x)− ∂π̄

∂x
(x)
∣∣∣∣∣∣∣∣∣∣∣
−1

<∞

and we have established the validity of the lemma when the previous patch point is not
the origin.

Our next task is to establish the existence ofM∆ so that z(∂π∂x (x)+∆)/‖∂π∂x (x)+∆‖
is uniformly bounded for all ‖∆‖ ≤M∆ and all x in Xc. This is the content of lemma
4.4.

Lemma 4.4.

sup
Xc\A
‖∆‖≤M∆

|z(∂π∂x (x) + ∆)|
‖∂π∂x (x) + ∆‖ <∞

for any nonzero M∆ satisfying

M∆ < inf
Xc\A

∣∣∣∣∣∣∂π
∂x

(x)
∣∣∣∣∣∣

M∆ <
infS |∂π∂x (x)f(x)|

supS‖f(x)‖

M∆ <
infSC |∂π∂x (x)g(x)|

supSC‖g(x)‖

(4.7)

where

S ≡
{
x ∈ Xc \ A

∣∣∣∣∣ ∣∣∣∂π∂x (x)g(x)
∣∣∣ ≤√1

2
inf
Xc\A

r(x) inf
Xc\A

∣∣∣∂π
∂x

(x)ẋ
∣∣∣}.

The assumption that π is a strict Lyupanov function and the definition of S
implies that both supS‖f(x)‖ and supSC‖g(x)‖ are strictly greater than zero, so M∆

is well defined.
Proof. Let w = ∂π

∂x (x) + ∆, if w · g(x) 6= 0, then by the formula for z(w) in (4.3),

z(w)

‖w‖ =
w · f(x) +

√
(w · f(x))2 + 2 q(x)

r(x) (w · g(x))2

(w · g(x))2
r(x) (4.8)

Since (∂π∂x (x) + ∆)g(x) appears in the denominator of (4.8), we split the proof into
the two cases where x is in S or its complement.

If x is in S, then by the definition of S and the assumption that π is a strict
Lyupanov function

∂π

∂x
(x)f(x) ≤ −1

2
inf
Xc\A

∣∣∣∂π
∂x

(x)ẋ
∣∣∣ < 0.
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Therefore, if M∆ satisfies the second condition in (4.7), then there is a strictly negative
uniform upper bound on (∂π∂x (x) + ∆)f(x) for all x in S and all ‖∆‖ ≤ M∆. It
follows that for all x in S, the square root term in (4.8) has the Taylor expansion with
remainder√

(w · f(x))2 + 2
q(x)

r(x)
(w · g(x))2 = −(w · f(x))

(
1 +

q(x)

r(x)

(w · g(x)

w · f(x)

)2 1√
1 + ξ

)

for some ξ ≥ 0. So, for all x in S and all ‖∆‖ ≤M∆

|z(∂π∂x (x) + ∆)|
‖∂π∂x (x) + ∆)‖ =

q(x)

(∂π∂x (x) + ∆)f(x)

1√
1 + ξ

≤ q(x)

(∂π∂x (x) + ∆)f(x)
(4.9)

which also holds in the case where (∂π∂x (x)+∆)g(x) = 0, and consequently z(∂π∂x (x)+∆)
solves a linear equation (2.6). The supremum of the right-hand side of (4.9) over S
and all ∆ ≤ M∆ is finite. The first two conditions on M∆ (4.7) guarantee that the
infimum of ‖(∂π∂x (x) + ∆)f(x)‖ is strictly greater than zero over S and all ∆ bounded

above by M∆ in norm. The function q is continuous on the compact set Xc \ A ⊇ S,
therefore its supremum over S is bounded.

We now turn to the case where x is in SC . In this case, the only way z(w)/‖w‖
(4.8) can become unbounded is if (∂π∂x (x) + ∆)g(x) can become arbitrarily small, but

this cannot happen. By the definition of S, the infimum of |∂π∂x (x)g(x)| over SC is

strictly positive, and the infimum of |(∂π∂x (x) + ∆)g(x)| over SC and all ∆ bounded
above in norm by M∆ is also strictly positive.

Our final task in establishing Theorem 4.1 is to show that there exists an M∆

such that the gradient of z(w) exists and is uniformly bounded over ∂π
∂x (Xc \ A) + ∆

for ‖∆‖ ≤M∆. This is the content of Lemmas 4.5 and 4.6 .

Lemma 4.5. Under the assumptions on the optimal control problem of §2.1, the
function z that solves (2.6) is continuously differentiable in a nonempty neighborhood
of every point in ∂π

∂x (Xc \ A).

Proof. By the implicit function theorem [8, ch. 9], a solution to ax2 +bx+c = 0 is
a continuously differentiable function of its coefficients in a neighborhood of a0, b0, and
c0 if x0 solves the quadratic equation with coefficients a0, b0, and c0, and 2a0x0 +b0 6=
0. To conclude that z(w) is continuously differentiable in a neighborhood of each point
in ∂π

∂x (Xc \ A), we must verify that − 1
r(x)gn(∂π∂x (x))2z(∂π∂x (x)) + fn(∂π∂x (x)) is nonzero

for every x in ∂π
∂x (Xc \ A).

As a function of x, ∂π
∂x ẋ is continuous under the assumptions that f , g, r, and ∂π

∂x

are continuous on Xc \ A. Furthermore, ∂π
∂x ẋ is nonzero on Xc \ A by the assumption

that π is a strict Lyapunov function, so there is a nonzero uniform lower bound on
both |∂π∂x (x)ẋ| and ‖∂π∂x ‖ on Xc \ A. It then follows from the identity

− 1

r(x)
gn

(∂π
∂x

(x)
)2

z
(∂π
∂x

(x)
)

+ fn

(∂π
∂x

(x)
)

=
∂π
∂x (x)ẋ∣∣∣∣∣∣∂π∂x (x)

∣∣∣∣∣∣ ,
that − 1

r(x)gn(∂π∂x (x))2z(∂π∂x (x)) + fn(∂π∂x (x)) is nonzero for every x in ∂π
∂x (Xc \ A).

We now verify that there exists an M∆ > 0 such that ‖ ∂z∂w (∂π∂x (Xc \ A) + ∆)‖ is
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uniformly bounded for all ‖∆‖ ≤M∆.
Lemma 4.6. If M∆ satisfies the conditions of Lemma 4.4 in (4.7) in addition to

M∆ <
1

2
sup
Xc\A

(∣∣∣∣∣∣∂π
∂x

(x)
∣∣∣∣∣∣(‖f(x)‖2 + 2

q(x)

r(x)
‖g(x)‖2

)
+ ‖f(x)‖2 + ‖g(x)‖2

)
× inf
Xc\A

(∂π
∂x

(x)ẋ
)2

then

sup
Xc\A
‖∆‖≤M∆

∣∣∣∣∣
∣∣∣∣∣ ∂z∂w

(
∂π

∂x
(x) + ∆

)∣∣∣∣∣
∣∣∣∣∣ <∞.

Proof. Let w = ∂π
∂x (x) + ∆. By Lemma 4.5, ∂z

∂w exists in a neighborhood of ∂π
∂x (x)

for all x in Xc \ A, and an implicit formula for it is

∂z

∂w
(w) =

1

fn(w)− 1
r(x)gn(w)2z(w)

×
[( z(w)

‖w‖2

)2

gn(w)
(
‖w‖2g(x)− gn(w)w

)
+
z(w)

‖w‖2

(
gn(w)

w

‖w‖2
− f(x)

)]
(4.10)

Both f and g are uniformly bounded on Xc \ A. Since ∆ ≤ M∆ < inf
Xc\A‖

∂π
∂x (x)‖,

w is nonzero, and the terms fn(w) and gn(w) are both uniformly bounded on Xc \ A
for all ∆ ≤ M∆ by the supremums of f and g on Xc \ A. By Lemma 4.4, the term
z(w)/‖w‖ is bounded.

The only remaining term that can potentially become unbounded is (fn(w) −
1

r(x)gn(w)2z(w))−1. This quantity can be rewritten as(
fn(w)− gn(w)2

r(x)
z(w)

)2

= fn(w)2 + 2
q(x)

r(x)
gn(w)2 (4.11)

=
1

‖∂π∂x (x) + ∆‖2
((∂π

∂x
(x)ẋ

)2

+ E(x,∆)
)

(4.12)

Equation (4.11) follows from the fact that both sides of the equation are formulas
for the discriminant of the quadratic equation (2.6). If we solve the HJB equation
(1.3a) for q(x) in terms of ∂π

∂x (x) and the other problem data, and then substitute this
formula into (4.11), then we arrive at (4.12). We defined M∆ in the lemma statement
so that E(x,∆) = O(‖∆‖) and the infimum of (4.12) is strictly greater than zero over
Xc \ A and all ‖∆‖ ≤M∆.

5. φ1 satisfies the Lipschitz condition. Theorem 5.1. Under the assump-
tions on the optimal control problem of §2.1, there exists a maximum step size hL > 0,
maximum multiplier Mmax > 0, and Lipschitz constant L1 such that for all xi and
xi+1 in Xc \ A within a distance of hL of each other, and for all M ≤Mmax,

‖φ1(Ci)− φ1(Ĉi)‖ ≤ L1M‖xi+1 − xi‖d+1
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whenever

‖Cij − Ĉij‖ ≤M‖xi+1 − xi‖d+2−j for 0 ≤ j ≤ d+ 1

where Ci is the vector of exact partial derivatives up to order d+1 of the optimal cost
at xi. The theorem holds for any Mmax, hL pair that satisfy maximum consecutive
patch point distance multiplier condition of Definition 5.2.

Definition 5.2. The maximum consecutive patch point distance hL and the
maximum multiplier Mmax are said to satisfy the maximum consecutive patch point
distance multiplier condition if

hL > 0 Mmax > 0 hL ≤ hT (
√
nLinhMmax + T )hd+1

L ≤M∆

where Linh is defined in Lemma 3.4, hT and T are the maximum consecutive step size
and local truncation constant from Corollary 4.2 and M∆ satisfies the inequalities of
Theorem 4.1.

Proof. [Proof of Theorem 5.1] If w = ∂P
∂x (C, xi+1−xi) is nonzero and z is defined

at w, then φ1 can be expressed as

φ1(C) = z
(∂P
∂x

(C, xi+1 − xi)
) ∂P

∂x (C, xi+1 − xi)
‖∂P∂x (C, xi+1 − xi)‖

where P is the polynomial whose coefficients are held in C, and is defined in Lemma
3.4. We will show that there exists L′ such that, if the conditions of the theorem are
met, then∣∣∣∣∣

∣∣∣∣∣ ∂P
∂x (Ci, xi+1 − xi)
‖∂P∂x (Ci, xi+1 − xi)‖ −

∂P
∂x (Ĉi, xi+1 − xi)
‖∂P∂x (Ĉi, xi+1 − xi)‖

∣∣∣∣∣
∣∣∣∣∣ ≤ L′1M‖xi+1 − xi‖d+1 (5.1)

and ∣∣∣z(∂P∂x (Ci, xi+1 − xi)
)
− z
(
∂P
∂x (Ĉi, xi+1 − xi)

)∣∣∣ ≤ L′1M‖xi+1 − xi‖d+1 (5.2)

which implies the conclusion of the theorem.
We start with the inequality in (5.1). P and all its partial derivatives are linear

in its first argument. If∣∣∣∣∣∣∂P
∂x

(Ci, xi+1 − xi)− ∂P

∂x
(Ĉi, xi+1 − xi)

∣∣∣∣∣∣ < ∣∣∣∣∣∣∂P
∂x

(Ci, xi+1 − xi)
∣∣∣∣∣∣

then∣∣∣∣∣
∣∣∣∣∣ ∂P

∂x (Ci, xi+1 − xi)
‖∂P∂x (Ci, xi+1 − xi)‖ −

∂P
∂x (Ĉi, xi+1 − xi)
‖∂P∂x (Ĉi, xi+1 − xi)‖

∣∣∣∣∣
∣∣∣∣∣

≤ 2

∣∣∣∣∣∣∂P∂x (Ci − Ĉi, xi+1 − xi)
∣∣∣∣∣∣

‖∂P∂x (Ci, xi+1 − xi)‖ − ‖∂P∂x (Ci − Ĉi, xi+1 − xi)‖

≤ 2

√
nLinhM‖xi+1 − xi‖d+1

‖∂P∂x (Ci, xi+1 − xi)‖ − ‖∂P∂x (Ci − Ĉi, xi+1 − xi)‖
18



where the final inequality follows from Lemma 3.4. The inequality in (5.1) will follow
after we establish that for some ε,

0 < ε ≤
∣∣∣∣∣∣∣∣∣∣∣∂P∂x (Ci, xi+1 − xi)

∣∣∣∣∣∣− ∣∣∣∣∣∣∂P
∂x

(Ci − Ĉi, xi+1 − xi)
∣∣∣∣∣∣∣∣∣∣∣ (5.3)

(5.3) also guarantees that ∂P
∂x (Ĉi, xi+1 − xi) is nonzero. Ci holds the exact partial

derivatives of the optimal cost at xi, so P (Ci, x − xi) = π̄(x) where π̄ is the Taylor
polynomial centered at xi. By Corollary 4.2,∣∣∣∣∣∣∣∣∣∣∣∂π∂x (xi+1)

∣∣∣∣∣∣− ∣∣∣∣∣∣∂P
∂x

(Ci, xi+1 − xi)
∣∣∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∂π∂x (xi+1)− ∂P

∂x
(Ci, xi+1 − xi)

∣∣∣∣∣∣
≤ T‖xi+1 − xi‖d+1.

By Lemma 3.4∣∣∣∣∣∣∂P
∂x

(Ci, xi+1 − xi)− ∂P

∂x
(Ĉi, xi+1 − xi)

∣∣∣∣∣∣ ≤ √nLinhMmax‖xi+1 − xi‖

Inequality 5.3 follows from the final strict inequality in∣∣∣∣∣∣∣∣∣∣∣∂P∂x (Ci, xi+1 − xi)
∣∣∣∣∣∣− ∣∣∣∣∣∣∂P

∂x
(Ci − Ĉi, xi+1 − xi)

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∂π∂x (xi+1)
∣∣∣∣∣∣+

∣∣∣∣∣∣∂P
∂x

(Ci, xi+1 − xi)
∣∣∣∣∣∣

−
∣∣∣∣∣∣∂π
∂x

(xi+1)
∣∣∣∣∣∣− ∣∣∣∣∣∣∂P

∂x
(Ci − Ĉi, xi+1 − xi)

∣∣∣∣∣∣∣∣∣∣∣
≥ inf
Xc\A

∣∣∣∣∣∣∂π
∂x

(x)
∣∣∣∣∣∣− (

√
nLinhMmax + T )hd+1

L

> 0

The maximum patch point multiplier condition (Definition 5.2) was defined so the
last inequality is strict.

We now prove that the inequality (5.2) holds by applying the mean value theorem
to z(w). If ∣∣∣∣∣∣∂P

∂x
(Ci, xi+1 − xi)− ∂π

∂x
(xi+1)

∣∣∣∣∣∣ ≤M∆ (5.4)

and ∣∣∣∣∣∣∂P
∂x

(Ĉi, xi+1 − xi)− ∂π

∂x
(xi+1)

∣∣∣∣∣∣ ≤M∆ (5.5)

then for all τ in 0 ≤ τ ≤ 1,∣∣∣∣∣∣(1− τ)
∂P

∂x
(Ci, xi+1 − xi) + τ

∂P

∂x
(Ĉi, xi+1 − xi)− ∂π

∂x
(xi+1)

∣∣∣∣∣∣ ≤M∆
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meaning that every point on the line segment connecting ∂P
∂x (Ci, xi+1 − xi) and

∂P
∂x (Ĉi, xi+1−xi) is at most a distance of M∆ from ∂π

∂x (xi+1). Therefore, z is well de-
fined at the endpoints, and by Lemma 4.6 there is a uniform bound on the magnitude
of ∂z

∂w over all such lines. Inequality 5.2 will follow once we show that the conditions
of the theorem guarantee that inequalities 5.4 and 5.5 hold. By assumption, hL ≤ hT ,
so by Corollary 4.2 and Definition 5.2∣∣∣∣∣∣∂π

∂x
(xi+1)− ∂P

∂x
(Ci, xi+1 − xi)

∣∣∣∣∣∣ ≤ Thd+1
L ≤M∆

and∣∣∣∣∣∣∂π
∂x

(xi+1)− ∂P

∂x
(Ĉi, xi+1 − xi)

∣∣∣∣∣∣
≤
∣∣∣∣∣∣∂P
∂x

(Ci − Ĉi, xi+1 − xi)
∣∣∣∣∣∣+

∣∣∣∣∣∣∂π
∂x

(xi+1)− ∂P

∂x
(Ci, xi+1 − xi)

∣∣∣∣∣∣
≤ (
√
nLinhMmax + T )hd+1

L

≤M∆.

6. Local truncation error for second and higher order partial deriva-
tives . Theorem 6.1. Let Ci and Ci+1 denote vectors of exact partial derivatives
of the optimal cost at the consecutive patch points xi and xi+1 in the computational
domain Xc. If the optimal control problem satisfies the assumptions of §2.1 , then
there exists local truncation constant T2 < ∞ and maximum consecutive patch point
distance h > 0 such that for all 2 ≤ j ≤ d+ 1,

‖Ci+1
j − φj(Ci)‖ ≤ T‖xi+1 − xi‖d+2−j

2 whenever ‖xi+1 − xi‖ ≤ h

We delay the proof of Theorem 6.1 until after we have developed an overview of its
main ideas.

Let ẋi+1 denote the computed optimal direction at the current patch point x =
xi+1. There are two changes of variables associated with the computed and exact
solutions at the current patch point. They are

x = xi+1 + V̂ ξ̂ V̂ 1 =
ẋi+1

‖ẋi+1‖ x = xi+1 + V ξ V 1 =
ẋ

‖ẋ‖ . (6.1)

We denote the computed and exact optimal cost and control under the changes of
variables as

π̂i+1(ξ̂) ≡ πi+1(xi+1 + V̂ ξ̂)

κ̂i+1(ξ̂) ≡ κi+1(xi+1 + V̂ ξ̂)

π̃(ξ) ≡ π(xi+1 + V ξ)

κ̃(ξ) ≡ κ(xi+1 + V ξ).
(6.2)

We defined the Kronecker derivative notation ∂
∂x ⊗ · · · ⊗ ∂

∂x in §2.6 and the
appendix, and it is merely a bookkeeping mechanism for mixed partial derivatives.
The patchy algorithm computes the kth order partial derivatives with respect to the
change of variables of the optimal cost, then recovers the partial derivatives with
respect to the original state space variables by the formula

∂

∂x
⊗ · · · ⊗ ∂

∂x
k times

[πi+1(x)]x=xi+1 =
∂

∂ξ̂
⊗ · · · ⊗ ∂

∂ξ̂
k times

[π̂i+1(ξ̂)]ξ=0V̂
T ⊗ · · · ⊗ V̂ T

k times
. (6.3)
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The exact kth order partial derivatives of the optimal cost with respect to the original
state space variables are recovered by

∂

∂x
⊗ · · · ⊗ ∂

∂x
k times

[π(x)]x=xi+1 =
∂

∂ξ
⊗ · · · ⊗ ∂

∂ξ
k times

[π̃(ξ)]ξ=0V
T ⊗ · · · ⊗ V T

k times
. (6.4)

There are two main ideas behind the proof of Theorem 6.1. The left hand side
of (6.4) is the same for any choice of orthogonal matrix V in the change of variables
x = xi+1 + V ξ. In the case of the computed partial derivatives of the optimal cost,
the entries in ∂

∂ξ̂
⊗ · · ·⊗ ∂

∂ξ̂
appearing on the right hand side of (6.3) are a mixture of

characteristic and non characteristic partial derivatives. Despite this, the computed
partial derivatives with respect to the original state space variables of the optimal
cost are invariant under any choice of orthonormal vectors {V̂ j}nj=1 in the change of

variables x = xi+1 + V̂ ξ̂ as long as V̂ 1 = ẋi+1/‖ẋi+1‖. This is the first main idea and
is the content of Lemma 6.2, Corollary 6.3, and Lemma 6.4.

The second idea is that there exist two convenient changes of variables that sim-
plify our task of establishing the desired bound on the difference between the partial
derivatives with respect to the original state space variables of the exact and computed
optimal cost by bounding the difference between the partial derivatives under the con-
venient changes of variables. The advantage of this approach is that we may treat
the case of bounding the difference between the computed and exact characteristic
partial derivatives independently of the non characteristic partial derivatives.

Once we have established these two facts, we will prove the theorem for the second
order partial derivatives of the optimal cost and proceed by induction.

The relevant interpretation of Lemma 6.2 is that, taken as a group, the charac-
teristic partial derivatives that the patchy algorithm computes at the current patch
point can be expressed as an orthogonal transformation of a vector that depends only
on partial derivatives of the problem data at the current patch point, and on partial
derivatives of the optimal cost that are of strictly lower order than the characteristic
partial derivatives being computed. Secondly, all these partial derivatives are with
respect to the original state space variables.

Lemma 6.2. Suppose V is an orthogonal matrix whose first column is the exact
normalized optimal direction, V 1 = ẋ/‖ẋ‖ at x = xi+1. Let π̃(ξ) denote the optimal
cost under the change of variables x = xi+1 + V ξ. Then, at x = xi+1, there exist row
vectors wp ∈ Rnp−1×1, independent of V 2, . . . , V n, such that the exact characteristic
partial derivatives of the optimal cost satisfy

∂

∂ξ

[ ∂π̃
∂ξ1

(ξ)
]
ξ=0

=
(
w2(xi+1)

)T
V

∂

∂ξ
⊗ ∂

∂ξ

[ ∂π̃
∂ξ1

(ξ)
]
ξ=0

=
(
w3(xi+1)

)T
V ⊗ V

...

∂

∂ξ
⊗ · · · ⊗ ∂

∂ξ

[ ∂π̃
∂ξ1

(ξ)
]
ξ=0

=
(
wp(xi+1)

)T
V ⊗ · · · ⊗ V

(6.5)

where wk(xi+1) depends only on partial derivatives of the problem data and partial
derivatives with respect to the original state space variables of the optimal cost of order
k − 1 and lower.
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An analogous statement is true for the computed characteristic partial derivatives
of the optimal cost.

Proof. To reduce the number of terms in some of the ensuing formulas, let F̃ and
˜̀ denote the dynamics and lagrangian as functions of the new coordinates.

F̃ (ξ) ≡ f̃(ξ) + g̃(ξ)κ̃(ξ) ˜̀(ξ) ≡ q̃(ξ) +
1

2
r̃(ξ)κ̃(ξ)2

where the tilde functions appearing on the right hand sides are defined by the change
of variables x = xi+1 + V ξ.

We will prove the lemma in the representative case of the third order characteristic
partial derivatives of the optimal cost. It follows from the HJB equations (2.8a) that a
formula for the exact third order characteristic partial derivatives of the optimal cost
is

∂3π̃

∂ξj1∂ξj2∂ξ1
(0) = − 1

‖ẋ‖

[
∂2π̃

∂ξj1∂ξ
(0)

∂F̃

∂ξj2
(0) +

∂2π̃

∂ξj2∂ξ
(0)

∂F̃

∂ξj1
(0)

+
∂π̃

∂ξ
(0)

∂2F̃

∂ξj1∂ξj2
(0) +

∂2 ˜̀

∂ξj1∂ξj2
(0)

]
. (6.6)

The right hand side of the formula (6.6) contains three distinctive types of terms
characterized by the order of the partial derivatives of π̃, F̃ , and ˜̀. The first type is
the product of a second order partial derivative of π̃ and a first order partial derivative
of F̃ , the second type is the product of a first order partial of π̃ and a second order
partial of F̃ , and the final type is a second order partial of `.

We will show that each type of term can be written as the product of a row vector
that depends only on the partial derivatives of both π(x) and F (x) at x = xi+1 and
the column vector V j1 ⊗ V j2 . We tackle the first type of term first. A formula for
∂2π̃

∂ξj1
∂ξ (0) ∂F̃∂ξj2

(0) is

∂2π̃

∂ξj1∂ξ
(0)

∂F̃

∂ξj2
(0) =

[
n∑
σ=1

( ∂
∂x

[ ∂π
∂xσ

(x)
]
x=xi+1

)
⊗
( ∂
∂x

[
Fσ(x)

]
x=xi+1

)]
V j1 ⊗ V j2 .

(6.7)
The quantity on the right hand side of (6.7) depends only on second order and lower
partial derivatives of π(x) and F (x) evaluated at xi+1. To derive a formula for
∂2π̃

∂ξj2
∂ξ (0) ∂F̃∂ξj1

(0) with the desired factor V j1⊗V j2 , we use the fact that for every permu-

tation (i1, i2) of (j1, j2), there exists a permutation matrix P , that depends only on the
permutation and not the choice of basis vectors, such that V i1 ⊗ V i2 = P (V j1 ⊗ V j2).
Therefore, a relevant formula is

∂2π̃

∂ξj2∂ξ
(0)

∂F̃

∂ξj1
(0) =[

n∑
σ=1

( ∂
∂x

[ ∂π
∂xσ

(x)
]
x=xi+1

)
⊗
( ∂
∂x

[
Fσ(x)

]
x=xi+1

)
PT

]
V j1 ⊗ V j2

Although tedious, we can derive formulas for the other terms in (6.6) that are
the product of a row vector that depends only on the second order and lower partial
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derivatives of the optimal cost and problem data with respect to the original state space
variables, and the column vector V j1 and V j2 . It follows that there exists w3(xi+1) ∈
Rn2×1 such that

∂π̃3

∂ξj1∂ξj2∂ξ1
(0) =

(
w3(xi+1)

)T
V j1 ⊗ V j2

so the formula for ∂
∂ξ ⊗ ∂

∂ξ

[
∂π̃
∂ξ1

(ξ)
]
ξ=0

in the theorem statement follows.

The proof for the computed characteristic partial derivatives is analogous.
The relevant interpretation of Corollary 6.3 is that, under two changes of variables

that share the normalized computed optimal direction at the current patch point as
their first basis vector, the two sets of computed characteristic partial derivatives of
the optimal cost at the current patch point are related to each other by an orthogonal
transformation.

Corollary 6.3. If Ṽ and V̂ are are orthogonal matrices whose first columns
are the normalized computed optimal direction at x = xi+1, that is Ṽ 1 = V̂ 1 =
ẋi+1/‖ẋi+1‖, then the approximate second and higher order approximate characteristic
partial derivatives of the optimal cost computed under the changes of variables

x = xi+1 + Ṽ ξ̃ x = xi+1 + V̂ ξ̂

are related by the orthogonal transformation

∂

∂ξ̃
⊗ · · · ⊗ ∂

∂ξ̃

[∂π̃i+1

∂ξ̃1
(ξ̃)
]
ξ̃=0

=
∂

∂ξ̂
⊗ · · · ⊗ ∂

∂ξ̂

[∂π̂i+1

∂ξ̂1
(ξ̂)
]
ξ̂=0

V̂ T Ṽ ⊗ · · · ⊗ V̂ T Ṽ .

Proof. The proof for the case of the approximate third order partials of the optimal
cost is representative. By Lemma 6.2, there exists a single vector wi+1 that depends
only on the previously computed lower order partial derivatives of πi+1(x) at x = xi+1

such that the characteristic partials under both coordinate transformations are given
by

∂

∂ξ̃
⊗ ∂

∂ξ̃

[∂π̃i+1

∂ξ̃1
(ξ̃)
]
ξ̃=0

=
(
wi+1

)T
Ṽ ⊗ Ṽ

and

∂

∂ξ̂
⊗ ∂

∂ξ̂

[∂π̂i+1

∂ξ̂1
(ξ̂)
]
ξ̂=0

=
(
wi+1

)T
V̂ ⊗ V̂ .

The conclusion of the corollary immediately follows from the identity(
wi+1

)T (
Ṽ ⊗ · · · ⊗ Ṽ

)
=
(
wi+1

)T (
V̂ ⊗ · · · ⊗ V̂

)(
V̂ T Ṽ ⊗ · · · ⊗ V̂ T Ṽ

)
.

The content of Lemma 6.4 is that, under two orthogonal changes of variables that
share the normalized computed optimal direction at the current patch point as their
first basis vector, the two sets of computed characteristic and non characteristic partial
derivatives are related by an orthogonal transformation. Thus, it follows immediately
from (6.3) that the computed partial derivatives of the optimal cost with respect to
the original state space variables at the current patch point are the same under two
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different orthogonal changes of variables as long as the changes of variables share the
normalized computed optimal direction as their first basis vector.

Lemma 6.4. If Ṽ and V̂ are orthogonal matrices whose first columns are the
normalized optimal direction at x = xi+1, that is Ṽ 1 = V̂ 1 = ẋi+1/‖ẋi+1‖, then the
approximate second and higher order approximate partial derivatives of the optimal
cost computed under the changes of variables

x = xi+1 + Ṽ ξ̃ x = xi+1 + V̂ ξ̂

are related to each other by

∂

∂ξ̃
⊗ · · · ⊗ ∂

∂ξ̃

[
π̃i+1(ξ̃)

]
ξ̃=0

(
Ṽ T ⊗ · · · ⊗ Ṽ T

)
=

∂

∂ξ̂
⊗ · · · ⊗ ∂

∂ξ̂

[
π̂i+1(ξ̂)

]
ξ̂=0

(
V̂ T ⊗ · · · ⊗ V̂ T

)
.

Proof. The conclusion of the theorem will follow once we establish that the quantity

∂

∂ξ̃
⊗ · · · ⊗ ∂

∂ξ̃

[
π̃i+1(ξ̃)

]
ξ̃=0

− ∂

∂ξ̂
⊗ · · · ⊗ ∂

∂ξ̂

[
π̂i+1(ξ̂)

]
ξ̂=0

(
V̂ T Ṽ ⊗ · · · ⊗ V̂ T Ṽ

)
(6.8)

is zero. We will prove the lemma for the third order partial derivatives of the computed
optimal cost, which is a representative case.

It follows immediately from the definition of the ∂
∂x ⊗ · · · ⊗ ∂

∂x notation that each
entry in the term appearing on the left of (6.8) can be extracted by multiplying by one

of the standard basis vectors. Any standard basis vector in Rn3

can be expressed as a
Kronecker product of three standard basis vectors in Rn, so

∂3π̃i+1

∂ξ̃j1∂ξ̃j2∂ξ̃j3
(0) =

∂

∂ξ̃
⊗ ∂

∂ξ̃
⊗ ∂

∂ξ̃

[
π̃i+1(ξ̃)

]
ξ̃=0

ej1 ⊗ ej2 ⊗ ej3 ,

where ej denotes the jth column of the identity matrix. We will establish that the
difference in (6.8) is zero by multiplying it by ej1 ⊗ ej2 ⊗ ej3 and showing that

∂3π̃i+1

∂ξ̃j1∂ξ̃j2∂ξ̃j3
(0)− ∂

∂ξ̂
⊗ ∂

∂ξ̂
⊗ ∂

∂ξ̂

[
π̂i+1(ξ̂)

]
ξ̂=0

(
V̂ T Ṽ j1 ⊗ V̂ T Ṽ j2 ⊗ V̂ T Ṽ j3

)
is zero for any 1 ≤ j1, j2, j3 ≤ n, which is equivalent to showing that

∂3π̃i+1

∂ξ̃j1∂ξ̃j2∂ξ̃j3
(0)

−
n∑

σ1=1

n∑
σ2=1

n∑
σ3=1

( ∂3π̂i+1

∂ξ̂σj1
∂ξ̂σj2

∂ξ̂σj3

(0)
(
V̂ σ1 · Ṽ j1

)(
V̂ σ2 · Ṽ j2

)(
V̂ σ3 · Ṽ j3

))
(6.9)

is zero.
The partial derivatives of π̃i+1(ξ̃) and π̂i+1(ξ̂) at ξ̃ = ξ̂ = 0 are computed by two

different methods depending on whether they are characteristic or non characteristic
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partial derivatives, so the proof that the quantity in (6.9) is zero naturally breaks up
into two cases. In the characteristic case, at least one of the coordinate indices j1, j2,
or j3 is one, and we may assume that j3 = 1 without a meaningful loss of generality.
The columns of Ṽ and V̂ are both orthonormal sets, and Ṽ 1 = V̂ 1 by assumption,
so V̂ σ3 · Ṽ 1 = δ1,σ3 , where δ1,σ3 is the Kronecker delta. Therefore for any j1, j2 in
1 ≤ j1, j2 ≤ n, the difference in (6.9) reduces to a quantity that depends only on
characteristic partial derivatives of the optimal cost

∂3π̃i+1

∂ξ̃j1∂ξ̃j2∂ξ̃1
(0)−

n∑
σ1=1

n∑
σ2=1

( ∂3π̂i+1

∂ξ̂σj1
∂ξ̂σj2

∂ξ̂1
(0)
(
V̂ σ1 · Ṽ j1

)(
V̂ σ2 · Ṽ j2

))
=

∂3π̃i+1

∂ξ̃j1∂ξ̃j2∂ξ̃1
(0)− ∂

∂ξ̂
⊗ ∂

∂ξ̂

[∂π̂i+1

∂ξ̂1
(ξ̂)
]
ξ̂=0

(
V̂ T Ṽ j1 ⊗ V̂ T Ṽ j2

)
= 0.

(6.10)

The first equality follows from the definition of the ∂
∂x ⊗ · · · ⊗ ∂

∂x , and the second
equality follows from Corollary 6.3. Therefore the quantity in (6.9) is zero whenever

∂3π̃i+1

∂ξ̃j1
∂ξ̃j2

∂ξ̃j3
(0) is a characteristic partial derivative.

We now show that the difference in (6.9) is zero in the non characteristic partial
derivative case, that is, when none of the coordinate indices j1, j2, or j3 are one. By
a standard argument

∂3π̃i+1

∂ξ̃j1∂ξ̃j2∂ξ̃j3
(0) =

[ ∂
∂x
⊗ ∂

∂x
⊗ ∂

∂x

[
πi(x)

]
x=xi+1

(
V̂ ⊗ V̂ ⊗ V̂

)][
V̂ T Ṽ j1 ⊗ V̂ T Ṽ j2 ⊗ V̂ T Ṽ j3

]
The right hand side of the previous equation is the product of a row and column vector.
Since none of j1, j2, or j3 is one, the previous equation can be rewritten as

∂3

∂ξ̃j1∂ξ̃j2∂ξ̃j3

[
π̃i+1(ξ̃)

]
ξ̃=0

=

n∑
σ1=2

n∑
σ2=2

n∑
σ3=2

( ∂
∂x
⊗ ∂

∂x
⊗ ∂

∂x

[
πi(x)

]
x=xi+1

(
V̂ σ1 ⊗ V̂ σ2 ⊗ V̂ σ3

))
×
((
V̂ σ1 · Ṽ j1

)(
V̂ σ2 · Ṽ j2

)(
V̂ σ3 · Ṽ j3

))
(6.11)

where the summations all start at two because V̂ 1 · Ṽ j1 = V̂ 1 · Ṽ j2 = V̂ 1 · Ṽ j3 = 0.
Thus, the sum on the right hand side of (6.11) depends only on non characteristic

partial derivatives of π̂i+1(ξ̂) at ξ̂ = 0. Therefore when j1, j2, j3 6= 1, ∂3π̃i+1

∂ξ̃j∂ξ̃k∂ξ̃`
(0) can

be expressed as a linear transformation of ∂
∂ξ̂
⊗ · · · ⊗ ∂

∂ξ̂
[π̂i+1(ξ̂)]ξ̂=0, whose entries

are composed of both characteristic and non characteristic partial derivatives. The
conclusion of the theorem follows from the fact that (6.10) and (6.11) cover all of
(6.9).

We now turn to the task of constructing two convenient changes of variables,
meaning we can pick V and V̂ in (6.1) such that V and V̂ T are almost inverses of
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each other. This is the content of Lemma 6.5, which in turn relies on Lemma 6.6, and
Corollaries 6.7 and 6.8.

Lemma 6.5. Let ẋi+1 denote the optimal direction at x = xi+1 computed by the
patchy algorithm from the exact partial derivatives of the optimal cost at the previous
patch point. If the optimal cost π(x) is a strict Lyapunov function and the distance
between the current and previous patch point is less than the maximum consecutive
patch point distance h > 0, then there exists a constant B < ∞ and orthogonal
matrices V and V̂ such that

V 1 =
ẋ

‖ẋ‖ V̂ 1 =
ẋi+1

‖ẋi+1‖

and

‖V̂ TV − I‖ ≤ B‖xi+1 − xi‖d+1

where the degree of the approximate optimal cost polynomial πi+1 is d+ 1.
Proof. By Theorem 4.1, there is a constant T < ∞ and a maximum consecutive

patch point distance h > 0 such that∣∣∣∣∣∣∂π
∂x

(xi+1)− ∂πi+1

∂x
(xi+1)

∣∣∣∣∣∣ ≤ T‖xi+1 − xi‖d+1.

Therefore, there exists an ε > 0 such that, for any xi+1 in Xc \ A within a radius of
h of the previous patch point

‖ẋ− ẋi+1‖ = O
(
‖xi+1 − xi‖d+1

)
and 0 < ε ≤ ‖ẋ‖ − ‖ẋ− ẋi+1‖

The result of the lemma follows from Lemma 6.6 where V and V̂ are constructed, and
Corollaries 6.7 and 6.8 where the bound on ‖V̂ TV − I‖ in the lemma statement is
established.

We construct orthogonal matrices V and V̂ associated with the changes of vari-
ables for the exact and computed optimal cost such that V̂ T and V are almost inverses
of each other. This is the content of Lemma 6.6, which is mostly a restatement of [10,
pg. 73] in terms relevant to our problem.

Lemma 6.6. Suppose v and v̂ are nonzero vectors in Rn such that v · v̂ > 0, then
there exist orthonormal bases {V 1, . . . , V n} and {V̂ 1, . . . , V̂ n} with the properties

1. V 1 = v/‖v‖ and V̂ 1 = v̂/‖v̂‖
2.
∑n
j=2

(
V 1 · V̂ j

)2
=
∑n
j=2

(
V̂ 1 · V j

)2
= 1−

(
V 1 · V̂ 1

)2
3. The sets {V 2, . . . , V n} and {V̂ 2, . . . , V̂ n} satisfy the orthogonality condition(

V j · V̂ k
)

= 0 whenever j 6= k and V 1 · V̂ 1 ≤ V j · V̂ j ≤ 1 for 2 ≤ j ≤ n
Proof. The first property from the lemma statement is trivially achieved by setting

V 1 and V̂ 1 to the unit vectors in the direction of v and v̂.
Let W be any n× n− 1 matrix whose columns are orthogonal to V 1, and define

Ŵ analogously. Let M and M̂ be the orthogonal matrices

M ≡
[
V 1 W

]
M̂ ≡

[
V̂ 1 Ŵ

]
then M̂TM is orthogonal. The second statement of the lemma is just a restatement
of the fact that the first row and column of M̂TM both have unit two-norm.
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The third statement in the lemma statement requires a special choice of bases for
the subspaces orthogonal to V 1 and V̂ 1. Let ŴTW have the singular value decompo-
sition

ŴTW = ÛΣUT

where Σ is an n−1×n−1 diagonal matrix. If we take the sets {V j}nj=2 and {V̂ j}nj=2

to be the columns of WU and Ŵ Û , then {V j}nj=2 and {V̂ j}nj=2 are orthonormal bases

for the span of the spaces orthogonal to V 1 and V̂ 1. Furthermore, it follows from the
fact that (Ŵ Û)TWU = Σ that {V j}nj=2 and {V̂ j}nj=2 are biorthogonal and V j · V̂ j is

a singular value of ŴTW when 2 ≤ j ≤ n.
Finally, we must verify that V 1 · V̂ 1 ≤ V j · V̂ j ≤ 1 for 2 ≤ j ≤ n. Let N and N̂

be the orthogonal matrices

N ≡
[
V 1 WU

]
N̂ ≡

[
V̂ 1 Ŵ Û

]
Their product has the form

N̂TN =

[
〈V̂ 1, V 1〉 (V̂ 1)T (WU)

(Ŵ Û)TV 1 Σ

]
.

Each column of of N̂TN has unit norm, in particular the last column contains σmin(ŴTW ),
the smallest singular value of ŴTW , and thus satisfies

1 ≤ σmin(ŴTW )2 + ‖(V̂ 1)TWU‖2

= min
j

(
V j · V̂ j

)2
+ ‖(V̂ 1)TWU‖2

≤ min
j

(
V j · V̂j

)2
+ 1−

(
V 1 · V̂ 1

)2
.

It then follows from the final inequality and the assumption that
(
V 1 · V̂ 1

)
> 0 that

V j · V̂ j ≥ V 1 · V̂ 1 for 2 ≤ j ≤ n.
Corollaries 6.7 and 6.8 establish a bound on ‖V̂ TV − I‖ in terms of the difference

between the true and computed optimal directions at the current patch point.
Corollary 6.7. Let V and V̂ denote the orthogonal matrices whose columns

are {V j}nj=1 and {V̂ j}nj=1 from Lemma 6.6, then

‖I − V̂ TV ‖2 ≤ 2
√

2

√
1− V1 · V̂1

Proof. Partition the matrices V and V̂ as

V =
[
V1 W

]
V̂ =

[
V̂1 Ŵ

]
.

W and Ŵ were constructed so that their columns have unit norm and satisfy W j ·
Ŵ k = 0 whenever j 6= k. Let Σ = ŴTW , where Σ is diagonal and its diagonal entries
are Ŵj ·Wj. I − V̂ V can be expressed as

I − V̂ TV =

[
1− V1 · V̂1 0

0 I − Σ

]
+

[
0 V̂ T1 W

ŴTV1 0

]
. (6.12)
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By Lemma 6.6, Σj,j = Ŵj ·Wj ≥ V̂1 ·V1, so the norm of the diagonal matrix appearing
in the right hand side of (6.12) is bounded by∥∥∥∥[1− V1 · V̂1 0

0 I − Σ

]∥∥∥∥
2

≤ 1− V̂1 · V1 (6.13)

Let x be a unit column vector partitioned as x = [x1 x2]T , then the following bound
on the norm of the second matrix in (6.12) follows from the fact that ‖V̂ T1 W‖2 =
‖ŴTV1‖2 = 1− V̂1 · V 2

1∥∥∥∥[ 0 V̂ T1 W

ŴTV1 0

] [
x1

x2

]∥∥∥∥2

2

= ‖V̂ T1 Wx2‖2 + ‖ŴTV1x1‖2

≤ ‖V̂ T1 W‖2‖x2‖2 + ‖ŴTV1‖2(1− ‖x2‖2)

≤ 2
(
1− V̂1 · V1

) (6.14)

The conclusion of the lemma follows from (6.13) and (6.14).
Corollary 6.8. Suppose v is a nonzero vector, and ‖v− v̂‖2 < ‖v‖2, then there

exist orthogonal matrices V and V̂ such that their first columns are

V 1 =
v

‖v‖ V̂ 1 =
v̂

‖v̂‖

and

‖I − V̂ TV ‖ ≤ 4
‖v − v̂‖

‖v‖ − ‖v − v̂‖

Proof. The corollary follows from Corollary 6.7 and the fact that∣∣∣∣∣∣ v‖v‖ − v̂

‖v̂‖
∣∣∣∣∣∣ ≤ 2

‖v − v̂‖
‖v‖ − ‖v − v̂‖ whenever ‖v − v̂‖ < ‖v‖.

The relevant interpretation of Lemma 6.9 for the purpose of proving Theorem 6.1
is that V̂ TV and the repeated Kronecker product V̂ TV of the orthogonal matrices
from the convenient changes of coordinates are both perturbations of the identity
of the same order. This fact is useful for bounding the difference between partial
derivatives of the same function under the two changes of coordinates.

Lemma 6.9. If A and B are matrices such that AB is in Rn×n and ‖AB−In‖2 ≤
1, then

‖
(
AB ⊗ · · · ⊗AB

)
− Ink‖2 ≤ (2k − 1)‖AB − In‖2

where the Kronecker product on the left hand side of the inequality is repeated k times,
and In and Ink denote the identity matrices in Rn×n and Rnp×np

.
Proof. The proof of the lemma rests on the fact that for any two matrices C and

D, ‖C⊗D‖2 = ‖C‖2‖D‖2. A standard induction argument establishes the conclusion
of the lemma.

We now turn back to the task of bounding the difference between an exact and
computed partial derivative of the optimal cost with respect to the original state space
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variables at the current patch point. This difference is given by the formula

∂kπ

∂xj1 · · · ∂xjk
(xi+1)− ∂pπi+1

∂xj1 · · · ∂xjk
(xi+1) =[

∂

∂ξ
⊗ · · · ⊗ ∂

∂ξ
[π̃(ξ)]ξ=0 −

∂

∂ξ̂
⊗ · · · ⊗ ∂

∂ξ̂
[π̂i+1(ξ̂)]ξ̂=0

− ∂

∂ξ
⊗ · · · ⊗ ∂

∂ξ
[π̃(ξ)]ξ=0

(
V T V̂ ⊗ · · · ⊗ V T V̂ − I

)]
V̂ T ej1 ⊗ · · · ⊗ V̂ T ejk . (6.15)

There are a few things to note about the right hand side of (6.15). The first is that
it is the product of a row vector on the left and column vector on the right, where
the column vector V̂ T ej1 ⊗ · · · ⊗ V̂ T ejk has unit norm since it is the column of an
orthogonal matrix. It follows from the Cauchy-Schwarz inequality that the the right
hand side of (6.15) is bounded by the norm of the row vector. This row vector has two
terms, the first is the difference between the exact and computed partial derivatives
of the optimal cost with respect to the changes of variables. The second is involves a
vector composed of partial derivatives of the exact solution times a small perturbation
of the identity. It follows from assumption that the optimal cost is smooth on the
compact computational domain and by Lemma 6.5 that there exist T ′ <∞ such that,
whenever the current patch point is within a radius of the maximum consecutive patch
point distance of the previous patch point, this term is bounded by∣∣∣∣∣∣ ∂

∂ξ
⊗ · · · ⊗ ∂

∂ξ
[π̃(ξ)]ξ=0

(
V T V̂ ⊗ · · · ⊗ V T V̂ − I

)∣∣∣∣∣∣
≤
(
2k − 1

)
sup
Xc\A

∣∣∣∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[π(x)]

∣∣∣∣∣∣‖V T V̂ − I‖
≤ T ′‖xi+1 − xi‖d+1.

(6.16)

This bound is independent of p, the order of the partial derivative, when p ≥ 2. The
remaining work is in establishing the existence of some T ′′ <∞, such that under the
convenient changes of variables∣∣∣∣∣∣ ∂

∂ξ
⊗ · · · ⊗ ∂

∂ξ
[π̃(ξ)]ξ=0 −

∂

∂ξ̂
⊗ · · · ⊗ ∂

∂ξ̂
[π̂i+1(ξ̂)]ξ̂=0

∣∣∣∣∣∣
2

≤ T ′′‖xi+1 − xi‖d+2−k (6.17)

whenever the distance between the current and previous patch point is less than the
maximum consecutive patch point distance. We will bound the left hand side of
(6.17) by bounding each of its entries by considering two cases, depending on whether
the entry is the difference of exact and computed characteristic or non characteristic
partial derivatives of the optimal cost.

With this approach in mind, we will need a bound on the partial derivatives of
the problem data with respect to two changes of variables. This is the content of
Lemma 6.10.

Lemma 6.10. Suppose all partial derivatives of s : Rn → R up to order k exist
and are continuous in a neighborhood of x̄ in Rn. If Ṽ and V̂ are orthogonal matrices
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and s̃ and ŝ are defined as

s̃(ξ̃) ≡ s(x̄+ Ṽ ξ̃) ŝ(ξ̂) ≡ s(x̄+ V̂ ξ̂)

then

∣∣∣ ∂ks̃

∂ξ̃j1 · · · ∂ξ̃jk
(0)− ∂kŝ

∂ξ̂j1 · · · ∂ξ̂jk
(0)
∣∣∣ ≤

(
2k − 1

)∣∣∣∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[s(x)]x=x̄

∣∣∣∣∣∣
2
‖V̂ T Ṽ − I‖2

If the components of G : Rn → Rn all have partial derivatives up to order p in a
neighborhood of x̄ in Rn, and G̃ and Ĝ are defined as

G̃(ξ̃) ≡ Ṽ TG(x̄+ Ṽ ξ̃) Ĝ(ξ̂) ≡ V̂ TG(x̄+ V̂ ξ̂)

then

∣∣∣∣∣∣ ∂kG̃

∂ξ̃j1 · · · ∂ξ̃jk
(0)− ∂kĜ

∂ξ̂j1 · · · ∂ξ̂jk
(0)
∣∣∣∣∣∣ ≤

2kn1/2 max
`

∣∣∣∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[G`(x)]x=x̄

∣∣∣∣∣∣
2
‖V̂ T Ṽ − I‖2.

Proof. A kth order partial derivative of s̃ can be expressed in Kronecker notation
as

∂ks̃

∂ξ̃j1 · · · ∂ξ̃jk
(0) =

∂

∂x
⊗ · · · ⊗ ∂

∂x
[s(x)]x=x̄(Ṽ ⊗ · · · ⊗ Ṽ )(ej1 ⊗ · · · ⊗ ejk)

so after a sequence of algebraic manipulations, the difference between the partial
derivatives of s̃ and ŝ is

∣∣∣ ∂ks̃

∂ξ̃j1 · · · ∂ξ̃jk
(0)− ∂kŝ

∂ξ̂j1 · · · ∂ξ̂jk
(0)
∣∣∣

=
∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[s]x=x̄

(
V V̂ T ⊗ · · · ⊗ V V̂ T − I

)(
V̂ j1 ⊗ · · · ⊗ V̂ jk

)∣∣∣
≤
(
2k − 1

)∣∣∣∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[s(x)]x=x̄

∣∣∣∣∣∣
2
‖Ṽ V̂ T − I‖2.

The last inequality follows from the Cauchy-Schwarz inequality, Lemma 6.9, and the
facts that V̂ j1 ⊗ · · · ⊗ V̂ jk has unit norm and ‖Ṽ V̂ T − I‖2 = ‖V̂ T Ṽ − I‖2.

The difference between the partial derivatives of G under the two changes of vari-
ables is bounded by

∣∣∣∣∣∣ ∂k

∂ξ̃j1 · · · ∂ξ̃jk
[G(x̄+ Ṽ ξ̃)]ξ̃=0 −

∂k

∂ξ̂j1 · · · ∂ξ̂jk
[G(x̄+ V̂ ξ̂)]ξ̂=0

∣∣∣∣∣∣
2

≤
(
2k − 1

)
n1/2 max

`

∣∣∣∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[G`(x)]x=x̄

∣∣∣∣∣∣
2
‖Ṽ V̂ T − I‖2.
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This bound is derived by using the result of the first half of the lemma to bound the
infinity norm of the difference between the partial derivatives. The second result of
the lemma follows from the previous bound and the identity

G̃(ξ̃)− Ĝ(ξ̂) = V̂ T
[
G(x̄+ Ṽ ξ̃)−G(x̄+ V̂ ξ̂) + (V̂ Ṽ T − I)G(x̄+ Ṽ ξ̃)

]
.

The next corollary differs from the previous lemma in that it bounds the difference
in partial derivatives of two different functions with respect to two changes of variables.

Corollary 6.11. Suppose all partial derivatives of s, s̄ : Rn → R up to order
k exist and are continuous in a neighborhood of x̄ in Rn. If Ṽ and V̂ are orthogonal
matrices and s̃ and ŝ are defined as

s̃(ξ̃) ≡ s(x̄+ Ṽ ξ̃) ŝ(ξ̂) ≡ s̄(x̄+ V̂ ξ̂)

then∣∣∣ ∂ks̃

∂ξ̃j1 · · · ∂ξ̃jk
(0)− ∂kŝ

∂ξ̂j1 · · · ∂ξ̂jk
(0)
∣∣∣ ≤∣∣∣∣∣∣ ∂

∂x
⊗ · · · ⊗ ∂

∂x
[s(x)− s̄(x)]x=x̄

∣∣∣∣∣∣
2

+
(
2k − 1

)∣∣∣∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[s(x)]x=x̄

∣∣∣∣∣∣
2
‖V̂ T Ṽ − I‖2

Proof.∣∣∣ ∂ks̃

∂ξ̃j1 · · · ∂ξ̃jk
(0)− ∂kŝ

∂ξ̂j1 · · · ∂ξ̂jk
(0)
∣∣∣

=
∣∣∣( ∂
∂x
⊗ · · · ⊗ ∂

∂x
[s(x)− s̄(x)]x=x̄

)(
V̂ j1 ⊗ · · · ⊗ V̂ jk

)
+

∂

∂x
⊗ · · · ⊗ ∂

∂x
[s(x)]x=x̄

(
V̂ T Ṽ ⊗ · · · ⊗ V̂ T Ṽ

)
(ej1 ⊗ · · · ⊗ ejk)

∣∣∣
≤
∣∣∣∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[s(x)− s̄(x)]x=x̄

∣∣∣∣∣∣
2

+
(
2k − 1

)∣∣∣∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[s(x)]x=x̄

∣∣∣∣∣∣
2
‖V̂ T Ṽ − I‖2

We now have all the ingredients necessary to prove Theorem 6.1.
Proof. [Proof of Theorem 6.1] We denote the problem data under the two changes

of variables in (6.1) as

f̃(ξ) ≡ V T f(xi+1 + V ξ)

g̃(ξ) ≡ V T g(xi+1 + V ξ)

q̃(ξ) ≡ q(xi+1 + V ξ)

r̃(ξ) ≡ r(xi+1 + V ξ)

f̂(ξ̂) ≡ V̂ T f(xi+1 + V̂ ξ̂)

ĝ(ξ̂) ≡ V̂ T g(xi+1 + V̂ ξ̂)

q̂(ξ̂) ≡ q̂(xi+1 + V̂ ξ̂)

r̂(ξ̂) ≡ r̂(xi+1 + V̂ ξ̂)

(6.18)

We first consider the case of the second order partial derivatives of the optimal cost, so
we must verify that the left hand side of (6.17) is O(‖xi+1−xi‖d). The characteristic
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second order partial derivatives of the optimal cost are given by (2.11) and the com-
puted optimal control is given by (2.13). The exact second order partial derivatives
of the optimal const and the optimal control satisfy the equations

∂2π̃

∂ξj∂ξ1
(0) = − 1

‖ẋ‖

[
∂π̃

∂ξ
(0)
( ∂f̃
∂ξj

(0) +
∂g̃

∂ξj
(0)κ̃(0)

+
∂q̃

∂ξj
(0) +

1

2

∂r̃

∂ξj
(0)κ̃(0)2

)]
(6.19)

and

κ̃(0) = − 1

r̃(0)

(∂π̃
∂ξ

(0)g̃(0)
)

(6.20)

The difference between ∂2π̂i+1

∂ξ̂j∂ξ̂1
(0) and ∂2π̃

∂ξj∂ξ1
(0) can be bounded in terms of two types

of differences. The first type involves terms that are the difference between the partial
derivatives with respect to the two changes of variables of the problem data.

∂f̃

∂ξ
(0)− ∂f̂

∂ξ̂
(0)

∂q̃

∂ξ
(0)− ∂q̂

∂ξ̂
(0)

∂g̃

∂ξ
(0)− ∂ĝ

∂ξ̂
(0)

∂r̃

∂ξ
(0)− ∂r̂

∂ξ̂
(0)

(6.21)

If the distance between the current and previous patch point is less than the maximum
consecutive patch point distance h, then by Lemmas 6.5 and 6.10, there is a single
bound that is proportional to ‖xi+1 − xi‖d+1 that bounds each difference in (6.21).

The second type of difference involves terms that are the difference between exact
and computed values of derivatives with respect to the changes of coordinates of the
optimal cost. These terms are

∂π̃

∂ξ
(0)− ∂π̂i+1

∂ξ̂
(0) κ̃(0)− κ̂i+1(0)

1

‖ẋi+1‖ −
1

‖ẋ‖ (6.22)

By Theorem 4.1, the difference between the computed and exact first order partial
derivatives of the optimal cost is bounded by∣∣∣∣∣∣∂π

∂x
(xi+1)− ∂πi+1

∂x
(xi+1)

∣∣∣∣∣∣ ≤ T ′‖xi+1 − xi‖d+1 (6.23)

for some T ′ <∞ and by Lemma 6.5, there exists B <∞ such that

‖V̂ TV − I‖ ≤ B‖xi+1 − xi‖d+1. (6.24)

Each difference in (6.22) shares a single upper bound that is a linear combination
of the right hand sides of (6.23) and (6.24). The first difference is bounded by∣∣∣∣∣∣∂π̃

∂ξ
(0)− ∂π̂i+1

∂ξ̂
(0)
∣∣∣∣∣∣ =

∣∣∣∣∣∣[∂π
∂x

(xi+1)− ∂πi+1

∂x
(xi+1) +

∂π

∂x
(xi+1)(V V̂ T − I)

]
V̂
∣∣∣∣∣∣

≤
(
T ′ +B sup

Xc\A

∣∣∣∣∣∣∂π
∂x

(x)
∣∣∣∣∣∣)‖xi+1 − xi‖d+1
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and the second difference obeys

‖κ̃(0)− κ̂i+1(0)‖ ≤
(
T ′ sup

Xc\A

‖g(x)‖
r(x)

)
‖xi+1 − xi‖d+1.

By assumption, the distance between xi and xi+1 is less than the maximum consec-
utive patch point distance h of Corollary 4.2 , so

sup
Xc\A

‖xi+1−xi‖≤h

(
‖ẋ‖(‖ẋ‖ − ‖ẋ− ẋi+1‖)

)−1
<∞ (6.25)

and the third difference in (6.22) is bounded by∣∣∣ 1

‖ẋ‖ −
1

‖ẋi+1‖
∣∣∣ ≤ (T ′ sup

Xc\A
‖xi+1−xi‖≤h

‖g(x)‖2
r(x)

(
‖ẋ‖(‖ẋ‖ − ‖ẋ− ẋi+1‖)

))‖xi+1 − xi‖d+1

Our next task is to demonstrate the contribution from the second order non
characteristic partial derivatives to (6.17) is O(‖xi+1−xi‖d). Let π̂i+1(ξ̂) ≡ π̄(xi+1 +

V̂ ξ̂) where π̄ denotes the Taylor polynomial of the optimal cost centered at x = xi.
If neither j1 nor j2 are one, then by Corollary 6.11, the difference between the non
characteristic partial derivatives is bounded by∣∣∣ ∂2π̃

∂ξj1∂ξj2
(0)− ∂2π̂i+1

∂ξ̂j1∂ξ̂j2
(0)
∣∣∣ ≤ (22 − 1

)∣∣∣∣∣∣ ∂
∂x
⊗ ∂

∂x
[π(x)]x=xi+1

∣∣∣∣∣∣‖V T V̂ − I‖
+
(
22 − 1

)∣∣∣∣∣∣ ∂
∂x
⊗ ∂

∂x
[π(x)− π̄(x)]x=xi+1

∣∣∣∣∣∣ (6.26)

The first term on the right hand side of the inequality (6.26) is O(‖xi+1 − xi‖d+1)
by the assumption that π is smooth on the compact computational domain, and
(6.24). Since π̄ is the Taylor polynomial of π centered at xi, then each entry in
∂
∂x ⊗ ∂

∂x [π(x)− π̄(x)]x=xi+1 is bounded by RT ‖xi+1−xi‖d, so the second term on the
right hand side of the inequality in (6.26) is O(‖xi+1 − xi‖d).

We can conclude that the bound in (6.17) holds for k = 2, so the conclusion of
the theorem holds in the case of the second order partial derivatives of the optimal
cost.

By the formula for ∂κ̂i+1

∂ξ̂j
(0) in (2.13) and the same reasoning we just employed,

we can conclude that the difference between ∂κ̂i+1

∂ξ̂j
(0) and ∂κ̃

∂ξ̂j
(0) is O(‖xi+1 − xi‖d).

The proof that the higher order partial derivatives satisfy the inequality in (6.17)
is analogous to the second order case. We outline the proof of the third order case,
which is representative of the higher order cases. The computed third order charac-
teristic partial derivatives with respect to the change of variables of the optimal cost
is calculated from the formula in §9.2, and the exact characteristic partial derivatives
have an analogous formula. As in the case of the second order characteristic par-
tial derivatives of the optimal cost, the bound on the difference between the exact
and computed third order characteristic partial derivatives depends linearly on two
types of differences. The first type of difference is the difference between the partial
derivatives of problem data functions with respect to the two changes of variables,
and each one of these differences is O(‖xi+1 − xi‖d−1). The other type of difference
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is the difference between the exact and computed partial derivatives with respect to
the two changes of variables of the solution. These differences are

1

‖ẋ‖ −
1

‖ẋi+1‖
∂π̃

∂ξ
(0)− ∂π̂i+1

∂ξ̂
(0)

∂2π̃

∂ξj∂ξ
(0)− ∂2π̂i+1

∂ξ̂j∂ξ̂
(0)

κ̃(0)− κ̂i+1(0)

∂κ̃

∂ξj
(0)− ∂κ̂i+1

∂ξ̂j
(0)

(6.27)

Each one of these differences was treated in the second order case and is O(‖xi+1 −
xi‖d−1).

In the case of bounding the non characteristic partial derivatives, if none of the
coordinate indices j1, j2, nor j3 are one, then we may apply Corollary 6.11 to the
difference between the non characteristic partial derivatives

∣∣∣ ∂3π̃

∂ξj1∂ξj2∂ξj3
(0)− ∂2π̂i+1

∂ξ̂j1∂ξ̂j2∂ξ̂j3
(0)
∣∣∣

≤
(
23 − 1

)∣∣∣∣∣∣ ∂
∂x
⊗ ∂

∂x
⊗ ∂

∂x
[π(x)]x=xi+1

∣∣∣∣∣∣‖V T V̂ − I‖
+
(
23 − 1

)∣∣∣∣∣∣ ∂
∂x
⊗ ∂

∂x
⊗ ∂

∂x
[π(x)− π̄(x)]x=xi+1

∣∣∣∣∣∣ (6.28)

The first term on the right hand side of the inequality in (6.28) is O(‖xi+1 − xi‖d+1)
by the assumption that π is smooth on the compact computational domain, and
(6.24). Since π̄ is the Taylor polynomial of π centered at xi, then each entry in
∂
∂x ⊗ ∂

∂x ⊗ ∂
∂x [π(x)− π̄(x)]x=xi+1 is bounded by RT ‖xi+1−xi‖d−1, so the second term

on the right hand side of the inequality in (6.28) is O(‖xi+1 − xi‖d−1).

7. Lipschitz condition for second and higher order partial derivatives.
In this section we prove that φj satisfies the Lipschitz condition when j ≥ 2 under the
conditions on the optimal control problem in §2.1, most importantly that the optimal
cost is a strict Lyupanov function.

Theorem 7.1. Under the conditions on the optimal control problem in §2.1, there
exists a maximum step size hL > 0, maximum multiplier Mmax > 0, and Lipschitz
constant L2 such that for all xi and xi+1 in Xc \ A within a distance of hL of each
other, and for all M ≤Mmax,

‖φk(Ci)− φk(Ĉi)‖ ≤ L2M‖xi+1 − xi‖d+2−k for 2 ≤ k ≤ d+ 1 (7.1)

whenever

‖Cij − Ĉij‖ ≤M‖xi+1 − xi‖d+2−j for 0 ≤ j ≤ d+ 1

where Ci is the vector of exact partial derivatives up to order d+1 of the optimal cost
at xi.

The proof mirrors the proof of the local truncation error result of Theorem 6.1. We
will delay the proof of the theorem until after we have introduced some notation and
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established some relevant bounds. We denote the two approximate optimal directions
at xi+1 computed from Ci and Ĉi as

ẋi+1
c ≡ f(xi+1)− φ1(Ci) · g(xi+1)

r(xi+1)
g(xi+1)

and

ẋi+1
ĉ ≡ f(xi+1)− φ1(Ĉi) · g(xi+1)

r(xi+1)
g(xi+1)

As in the case of the local truncation error result, we will work with two changes
of variables that we choose to be convenient. These changes of coordinates are

x = xi+1 + Ṽ ξ̃ Ṽ 1 =
ẋi+1
c

‖ẋi+1
c ‖

(7.2)

and

x = xi+1 + V̂ ξ̂ V̂ 1 =
ẋi+1
ĉ

‖ẋi+1
ĉ ‖

(7.3)

We denote the approximate optimal cost and optimal control polynomials under the
two changes of variables as

π̃i+1(ξ̃) π̂i+1(ξ̂)

κ̃i+1(ξ̃) κ̂i+1(ξ̂)

and we denote the problem data functions under the two changes of variables as

f̃(ξ̃) ≡ Ṽ T f(xi+1 + Ṽ ξ̃)

g̃(ξ̃) ≡ Ṽ T g(xi+1 + Ṽ ξ̃)

q̃(ξ̃) ≡ q(xi+1 + Ṽ ξ̃)

r̃(ξ̃) ≡ r(xi+1 + Ṽ ξ̃)

f̂(ξ̂) ≡ V̂ T f(xi+1 + V̂ ξ̂)

ĝ(ξ̂) ≡ V̂ T g(xi+1 + V̂ ξ̂)

q̂(ξ̂) ≡ q(xi+1 + V̂ ξ̂)

r̂(ξ̂) ≡ r(xi+1 + V̂ ξ̂)

(7.4)

In the course of proving Theorem 7.1, we will need a guarantee that certain
quantities depending on the computed solution are finite. Lemma 7.2 provides this
guarantee.

Lemma 7.2. If the optimal control problem satisfies the assumptions of §2.1, then
there exists an Mmax > 0 and a maximum consecutive patch point distance h2 > 0
such that, for all M ≤Mmax and for all xi and xi+1 in Xc \ A,

inf‖ẋi+1
c ‖ > 0

inf
(
‖ẋi+1

c ‖ − ‖ẋi+1
c − ẋi+1

ĉ ‖
)
> 0

(7.5)

whenever

‖xi+1 − xi‖ ≤ h2 and ‖Cij − Ĉij‖ ≤M‖xi+1 − xi‖d+2−j for 0 ≤ j ≤ d+ 1

35



where the infimums are taken over all M ≤ Mmax and all xi+1 in Xc \ A such that
xi+1 − xi ≤ h2. Ci holds the exact partial derivatives of π at xi ∈ Xc \ A.

Proof. The exact optimal direction at xi+1 is ẋ = f(xi+1) + g(xi+1)κ(xi+1). Ci

holds the exact partial derivatives of the optimal cost at xi up to order d + 1, so by
Theorem 4.1,

lim
xi+1→xi

(
(f(xi+1) + g(xi+1)κ(xi+1))− ẋi+1

c

)
= 0. (7.6)

The assumption that π is a strict Lyapunov function guarantees that the infimum over
Xc \ A of ‖ẋ‖ is strictly greater than zero. The limit in (7.6) is uniform, so for all ε1
in 0 < ε1 < 1, there exists a δ1 > 0 independent of xi and xi+1 such that

‖f(xi+1) + g(xi+1)κ(xi+1)− ẋi+1
c ‖ ≤ ε1 inf

Xc\A
‖ẋ‖

Therefore

‖ẋi+1
c ‖ ≥ ‖f(xi+1) + g(xi+1)κ(xi+1)‖ − ‖f(xi+1) + g(xi+1)κ(xi+1)− ẋi+1

c ‖
≥ (1− ε1) inf

Xc\A
‖ẋ‖

> 0

Thus we have established the first inequality of the lemma statement.
We will assume for the rest of the proof that M ≤ Mmax. By Theorem 5.1, if

‖Cij − Ĉij‖ ≤M‖xi+1 − xi‖d+2−j for 0 ≤ j ≤ d+ 1, then

lim
xi+1→xi

ẋi+1
c − ẋi+1

ĉ = 0. (7.7)

The limit in (7.7) is uniform, so for all ε2 in 0 < ε2 < 1, there exists a δ2 > 0
independent of xi and xi+1 such that

‖ẋi+1
c − ẋi+1

ĉ ‖ ≤ ε2 inf
Xc\A

‖ẋ‖

whenever

‖xi+1 − xi‖ ≤ δ2 and ‖Cij − Ĉij‖ ≤M‖xi+1 − xi‖d+2−j for 0 ≤ j ≤ d+ 1.

Therefore, if ‖ẋi+1
c ‖ ≥ (1− ε1) inf

Xc\A‖ẋ‖ where 0 < ε1 < 1, then

‖ẋi+1
c ‖ − ‖ẋi+1

c − ẋi+1
ĉ ‖ ≥ (1− ε1) inf

Xc\A
‖ẋ‖ − ε2(1− ε1) inf

Xc\A
‖ẋ‖

= (1− ε1)(1− ε2) inf
Xc\A

‖ẋ‖

> 0

whenever

‖xi+1 − xi‖ ≤ δ1 and ‖Cij − Ĉij‖ ≤M‖xi+1 − xi‖d+2−j for 0 ≤ j ≤ d+ 1

so the second infimum of the lemma statement has been established. We take h2 to be
the smaller of δ1 and δ2.
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Corollary 7.3 provides a guarantee that any term depending on the difference
between the normalized optimal directions at xi+1 computed from Ci and Ĉi does
not affect the order of the main bound (7.1) in Theorem 7.1.

Corollary 7.3. If the optimal cost π is a strict Lyapunov function on the com-
putational domain Xc, then there exists a Lipschitz constant L′, maximum multiplier
Mmax > 0 and a maximum consecutive patch point distance h2 > 0 such that for all
xi and xi+1 in Xc \ A within a distance of h2 of each other, and for all M ≤Mmax,∣∣∣∣∣

∣∣∣∣∣ ẋi+1
c

‖ẋi+1
c ‖

− ẋi+1
ĉ

‖ẋi+1
ĉ ‖

∣∣∣∣∣
∣∣∣∣∣ ≤ L′M‖xi+1 − xi‖d+1

whenever

‖Cij − Ĉij‖ ≤M‖xi+1 − xi‖d+2−j for 0 ≤ j ≤ d+ 1

where Ci holds the exact partial derivatives of π at xi ∈ Xc \ A.
Proof. The bound in the corollary statement follows from the Lemma 7.2 and the

inequality ∣∣∣∣∣
∣∣∣∣∣ ẋi+1

c

‖ẋi+1
c ‖

− ẋi+1
ĉ

‖ẋi+1
ĉ ‖

∣∣∣∣∣
∣∣∣∣∣ ≤ ‖ẋi+1

c − ẋi+1
ĉ ‖

‖ẋi+1
c ‖ − ‖ẋi+1

c − ẋi+1
ĉ ‖

.

As in the case of proving the local truncation error result of Theorem 6.1, we will
pick the changes of coordinates in (7.2) and (7.3) so that the orthogonal matrices Ṽ
and V̂ are almost inverses of each other. This is the content of Corollary 7.4.

Corollary 7.4. If the optimal cost π is a strict Lyapunov function on the com-
putational domain Xc, then there exists a Lipschitz constant L′, maximum multiplier
Mmax > 0 and a maximum consecutive patch point distance h2 > 0, and orthogonal
matrices V̂ and Ṽ such that their first columns are

Ṽ 1 =
ẋi+1
c

‖ẋi+1
c ‖

V̂ 1 =
ẋi+1
ĉ

‖ẋi+1
ĉ ‖

so that for all xi and xi+1 in Xc \ A within a distance of h2 of each other and all
M ≤Mmax,

‖V̂ T Ṽ − I‖ ≤ L′M‖xi+1 − xi‖d+1

whenever

‖Cij − Ĉij‖ ≤M‖xi+1 − xi‖d+2−j for 0 ≤ j ≤ d+ 1

where Ci holds the exact partial derivatives of π at xi ∈ Xc \ A, then
Proof. For a sufficiently small maximum consecutive patch point distance h2,

Lemma 7.2 guarantees ẋi+1
c and ẋi+1

ĉ are close enough so that Lemma 6.6, and Corol-

laries 6.7 and 6.8 imply the bound on V̂ T Ṽ − I of the corollary statement.
As in the proof of Theorem 6.1, we bound the differences between the computed

partial derivatives of the optimal cost with respect to the two changes of coordinates,
and then show that the order of this bound does not change after recovering the two
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sets of partial derivatives with respect to the original state space coordinates and
compare their differences. Lemma 7.5 provides a bound on the difference between the
characteristic partial derivatives, which are computed by inheritance.

Lemma 7.5. Suppose the orthogonal matrices Ṽ and V̂ from the changes of
coordinates in (7.2) and (7.3) are the ones from Corollary 7.4. If the optimal cost
π is a strict Lyapunov function on the computational domain Xc, then there exists
a Lipschitz constant L′inh < ∞, Mmax > 0 and a maximum consecutive patch point
distance h2 > 0 such that the partial derivatives computed by inheritance satisfy

∣∣∣ ∂kπ̃i+1

∂ξ̃j1 · · · ∂ξ̃jk
(0)− ∂kπ̂i+1

∂ξ̂j1 · · · ∂ξ̂jk
(0)
∣∣∣ ≤ L′inh‖xi+1 − xi‖d+2−k

whenever

‖xi+1 − xi‖ ≤ h2 and ‖Cij − Ĉij‖ ≤M‖xi+1 − xi‖d+2−j for 0 ≤ j ≤ d+ 1

Proof. P is linear in its first argument, and ∂
∂x ⊗ · · ·⊗ ∂

∂x is linear, so by Lemma
3.4

∣∣∣∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[P (Ci, x− xi)]x=xi+1

− ∂

∂x
⊗ · · · ⊗ ∂

∂x
[P (Ĉi, x− xi)]x=xi+1

∣∣∣∣∣∣
=
∣∣∣∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[P (Ci − Ĉi, x)]x=xi+1−xi

∣∣∣∣∣∣
≤ nk/2LinhM‖xi+1 − xi‖d+2−k

where ∂
∂x ⊗ · · · ⊗ ∂

∂x is repeated k times.

It follows from the local truncation error result of Theorems 4.1 and 6.1 that there
is some T <∞ such that

∣∣∣∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[P (Ci, x− xi)− π(x) + π(x)]x=xi+1

∣∣∣∣∣∣
≤ T‖xi+1 − xi‖d+2−k + sup

Xc\A

∣∣∣∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[π(x)]x=xi+1

∣∣∣∣∣∣
where the supremum is finite since π is smooth by assumption on the compact com-
putational domain. It follows from Corollary 7.4 and Lemma 6.9 that

∣∣∣∣∣∣Ṽ V̂ T ⊗ · · · ⊗ Ṽ V̂ T − I∣∣∣∣∣∣ ≤ (2k − 1)L′1M‖xi+1 − xi‖d+1

The conclusion of the lemma follows by applying the previous three inequalities to
the following bound on the difference between the two computed characteristic partial
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derivatives of the optimal cost.∣∣∣ ∂kπ̃i+1

∂ξ̃j1 · · · ∂ξ̃jk
(0)− ∂kπ̂i+1

∂ξ̂j1 · · · ∂ξ̂jk
(0)
∣∣∣

=
∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[P (Ci, x)]x=xi+1 Ṽ j1 ⊗ · · · ⊗ Ṽ jk

− ∂

∂x
⊗ · · · ⊗ ∂

∂x
[P (Ĉi, x)]x=xi+1 V̂ j1 ⊗ · · · ⊗ V̂ jk

∣∣∣
≤
∣∣∣∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[P (Ci − Ĉi, x)]x=xi+1

∣∣∣∣∣∣
+
∣∣∣∣∣∣ ∂
∂x
⊗ · · · ⊗ ∂

∂x
[P (Ci, x)]x=xi+1

(
Ṽ V̂ T ⊗ · · · ⊗ Ṽ V̂ T − I

)∣∣∣∣∣∣
We are now in a position to prove Theorem 7.1.
Proof. [Proof of Theorem 7.1] The proof of the theorem mirrors the proof of the

local truncation error result in Theorem 6.1. We may assume that the orthogonal
matrices Ṽ and V̂ appearing in the changes of coordinates of (7.2) and (7.3) are
convenient, that is they are taken from Corollary 7.4. Starting with the computed
second order partial derivatives, we will show that the main bound (7.1) of the theorem
holds, by bounding the individual entries of φk(Ci)−φk(Ĉi). We do this by considering
the cases of the computed characteristic and non characteristic partial derivatives of
the optimal cost independently, and then proceed by induction for the higher order
partial derivatives.

We denote the computed optimal cost polynomials computed from the coefficient
sets Ci and Ĉi and centered at xi+1 as πi+1

c and πi+1
ĉ . They are given by the formulas

πi+1
c (x) ≡ P (φ(Ci), x− xi+1) πi+1

ĉ (x) ≡ P (φ(Ĉi), x− xi+1)

At xi+1, the difference between a pth order partial derivative of the two computed
optimal cost polynomials is bounded by

∣∣∣ ∂pπi+1
c

∂xj1 · · · ∂xjp
(xi+1)− ∂pπi+1

ĉ

∂xj1 · · · ∂xjp
(xi+1)

∣∣∣
≤
∣∣∣∣∣∣ ∂
∂ξ̃
⊗ · · · ⊗ ∂

∂ξ̃
[π̃i+1(ξ̃)]ξ̃=0

∣∣∣∣∣∣ ∣∣∣∣∣∣Ṽ V̂ T ⊗ · · · ⊗ Ṽ V̂ T − I∣∣∣∣∣∣
+
∣∣∣∣∣∣ ∂
∂ξ̃
⊗ · · · ⊗ ∂

∂ξ̃
[π̃i+1(ξ̃)]ξ̃=0 −

∂

∂ξ̂
⊗ · · · ⊗ ∂

∂ξ̂
[π̂i+1(ξ̂)]ξ̂=0

∣∣∣∣∣∣ (7.8)

The following two inequalities will imply that the first term on the right hand side of
(7.8) has an upper bound that is proportional to M‖xi+1 − xi‖d+2−k for any k ≥ 2.
Since π̃i+1 is computed from the set of coefficients that are exact at the previous patch
point, it follows from Theorem 6.1 that there is some T <∞ such that∣∣∣∣∣∣ ∂
∂ξ̃
⊗· · ·⊗ ∂

∂ξ̃
[π̃i+1(ξ̃)]ξ̃=0

∣∣∣∣∣∣ ≤ sup
Xc\A

∣∣∣∣∣∣ ∂
∂x
⊗· · ·⊗ ∂

∂x
[π(x)]

∣∣∣∣∣∣+T‖xi+1−xi‖d+2−k. (7.9)

By Corollary 7.4 and Lemma 6.9,∣∣∣∣∣∣Ṽ V̂ T ⊗ · · · ⊗ Ṽ V̂ T − I∣∣∣∣∣∣ ≤ (2k − 1)L′1M‖xi+1 − xi‖d+1. (7.10)

39



We now prove that the second term on the right hand side of (7.8) has an upper
bound that is proportional to M‖xi+1 − xi‖d+1. Each entry in

∂

∂ξ̃
⊗ · · · ⊗ ∂

∂ξ̃
[π̃i+1(ξ̃)]ξ̃=0 −

∂

∂ξ̂
⊗ · · · ⊗ ∂

∂ξ̂
[π̂i+1(ξ̂)]ξ̂=0

is either the difference between characteristic or non characteristic partial derivatives.
In the case of the non characteristic partial derivatives, Lemma 7.5 guarantees that
the difference is at most∣∣∣ ∂kπ̃i+1

∂ξ̃j1 · · · ∂ξ̃jk
(0)− ∂kπ̂i+1

∂ξ̂j1 · · · ∂ξ̂jk
(0)
∣∣∣ ≤ L′inhM‖xi+1 − xi‖d+2−k

so the non characteristic partials make a contribution to the right hand side of (7.8)
that is at most L′inhM‖xi+1 − xi‖d+2−k. We now consider the contribution to (7.8)
from the characteristic partial derivatives. We start with the second order partial
derivatives and proceed by induction. At xi+1, a characteristic partial derivative of
the optimal cost is calculated from the coefficients held in Ci from the formula

∂2π̃

∂ξj∂ξ1
(0) = − 1

‖ẋi+1
c ‖

[
∂π̃i+1

∂ξ̃
(0)
( ∂f̃
∂ξ̃j

(0) +
∂g̃

∂ξ̃j
(0)κ̃i+1(0)

+
∂q̃

∂ξ̃j
(0) +

1

2

∂r̃

∂ξ̃j
(0)κ̃i+1(0)2

)]
(7.11)

and the corresponding characteristic partial derivative computed from the coefficients
in Ĉi are computed by an analogous formula. The task of showing that the differ-
ence between the second order computed characteristic partial derivatives makes no
more than an O(M‖xi+1 − xi‖d) contribution to the right hand side of (7.8) reduces
to showing that the difference between the partial derivatives of the problem data
functions with respect to the two changes of variables

∂f̃

∂ξ̃
(0)− ∂f̂

∂ξ̂
(0)

∂q̃

∂ξ̃
(0)− ∂q̂

∂ξ̂
(0)

∂g̃

∂ξ̃
(0)− ∂ĝ

∂ξ̂
(0)

∂r̃

∂ξ̃
(0)− ∂r̂

∂ξ̂
(0)

(7.12)

and the difference between each of the computed quantities

∂π̃i+1

∂ξ̃
(0)− ∂π̂i+1

∂ξ̂
(0) κ̃i+1(0)− κ̂i+1(0)

1

‖ẋi+1
c ‖

− 1

‖ẋi+1
ĉ ‖

(7.13)

are all proportional to M‖xi+1 − xi‖d or higher. In fact, they are all proportional to
M‖xi+1 − xi‖d+1. Lemma 6.10 bounds the difference between the partial derivatives
of the problem data functions in terms of V̂ T Ṽ − I. Corollary 7.4 then implies that
for some Lipschitz constant L <∞∣∣∣∣∣∣∂g̃

∂ξ̃
(0)− ∂ĝ

∂ξ̂
(0)
∣∣∣∣∣∣ ≤ LM‖xi+1 − xi‖d+1

and and the same bound bounds the other differences in (7.12).
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We now show that there is some Lipschitz constant L > 0 such that each difference
in (7.13) is bounded by LM‖xi+1 − xi‖d+1. By Theorem 5.1, there exists an L such
that ∣∣∣∣∣∣∂πi+1

c

∂x
(xi+1)− ∂πi+1

ĉ

∂x
(xi+1)

∣∣∣∣∣∣ ≤ LM‖xi+1 − xi‖d+1

and by the inequalities (7.9) and (7.10), there is some other L∣∣∣∣∣∣∂πi+1
c

∂x
(xi+1)(Ṽ V̂ T − I)

∣∣∣∣∣∣ ≤ LM‖xi+1 − xi‖d+1.

It then follows from∣∣∣∣∣∣∂π̃i+1

∂ξ̃
(0)− ∂π̂i+1

∂ξ̂
(0)
∣∣∣∣∣∣ =

∣∣∣∣∣∣∂πi+1
c

∂x
(xi+1)Ṽ − ∂πi+1

ĉ

∂x
(xi+1)V̂

∣∣∣∣∣∣
≤
∣∣∣∣∣∣∂πi+1

c

∂x
(xi+1)− ∂πi+1

ĉ

∂x
(xi+1)

∣∣∣∣∣∣
+
∣∣∣∣∣∣∂πi+1

c

∂x
(xi+1)(Ṽ V̂ T − I)

∣∣∣∣∣∣
that for some L <∞,∣∣∣∣∣∣∂π̃i+1

∂ξ̃
(0)− ∂π̂i+1

∂ξ̂
(0)
∣∣∣∣∣∣ ≤ LM‖xi+1 − xi‖d+1. (7.14)

The differences between the computed optimal controls is at most

|κ̃i+1(0)− κ̂i+1(0)| = 1

r(xi+1)

∣∣∣(∂πi+1
c

∂x
(xi+1)− ∂πi+1

ĉ

∂x
(xi+1)

)
g(xi+1)

∣∣∣
≤ sup
Xc\A

‖g(x)‖
r(x)

∣∣∣∣∣∣∂πi+1
c

∂x
(xi+1)− ∂πi+1

ĉ

∂x
(xi+1)

∣∣∣∣∣∣
≤ sup
Xc\A

‖g(x)‖
r(x)

LM‖xi+1 − xi‖d+1

(7.15)

Lemma 7.2 guarantees that for all xi and xi+1 in Xc \ A,

inf
‖xi+1−xi‖≤h2

‖ẋi+1
c ‖(‖ẋi+1

c ‖ − ‖ẋi+1
c − ẋi+1

ĉ ‖) > 0 (7.16)

whenever

‖xi+1 − xi‖ ≤ h2 and ‖Cik − Ĉik‖ ≤M‖xi+1 − xi‖d+2−k for 0 ≤ k ≤ d+ 1

Therefore, for some L, the final difference in (7.13) is bounded by∣∣∣ 1

‖ẋi+1
c ‖

− 1

‖ẋi+1
ĉ ‖

∣∣∣
≤ sup‖g(x)‖2/r(x)

inf
(
‖ẋi+1

c ‖(‖ẋi+1
c ‖ − ‖ẋi+1

c − ẋi+1
ĉ ‖)

) ∣∣∣∣∣∣∂πi+1
c

∂x
(xi+1)− ∂πi+1

ĉ

∂x
(xi+1)

∣∣∣∣∣∣
≤ LM‖xi+1 − xi‖d+1

(7.17)
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where the supremum is taken over Xc \ A, and the infimum is taken over all xi and
xi+1 in Xc \ A within a distance of h2 of each other. Their ratio is then absorbed into
L.

The proof that the difference between every corresponding characteristic partial
derivatives of order k > 2 shares a single upper bound that is proportional toM‖xi+1−
xi‖d+2−k proceeds by induction and follows the same form as the k = 2 case.

8. Numerical results. We tested the patchy algorithm on the following non-
linear test problem.

Find

π(x0) = min
u

1

2

∫ ∞
0

(
sin2(x1) +

(
x2 −

1

3
x3

1

)2

+ u2
)
dt

subject to the dynamics

ẋ1 =
(
x2 −

1

3
x3

1

)
sec(x1)

ẋ2 =
(
x2

1x2 −
1

3
x5

1

)
sec(x1) + u

For any integer k, the optimal dynamics have a rest point at (x1, x2) = (kπ, 1
3 (kπ)3),

and the optimal cost is zero, and the presence of sec(x1) makes ẋ blow up near
x1 = −π/2 and x1 = π/2.

Under a change of coordinates, the test problem is the linear-quadratic regulator
problem

Find

π(y0) = min
u

1

2

∫ ∞
0

(
yT y + u2

)
dt

subject to the dynamics

ẏ1 = y2

ẏ2 = u

and the change of variables is

y1 = sin(x1)

y2 = x2 −
1

3
x3

1.
(8.1)

We chose this nonlinear test problem because we can calculate the exact solution
to the linear-quadratic regulator problem exactly by solving the associated algebraic
Riccati matrix equation [7, p. 252]. We can then calculate the exact solution to the
nonlinear test problem by applying the change of coordinates to the solution of the
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linear-quadratic regulator problem. Doing so gives us the solution to the nonlinear
optimal control problem

π(x) =

√
3

2

[(
sin(x1) +

(
x2 −

1

3
x3

1

))2

+
2

3

(
x2 −

1

3
x3

1

)2]
The problem data functions f , g, q, and r and the solution π are all smooth on
{(x1, x2)

∣∣−π/2 < x1 < π/2,−∞ < x2 < ∞}. Furthermore, π is a strict Lyapunov
function on this set. If we denote the change of variables (8.1) y = T (x), and if the
matrix ∂T

∂x (x) is invertible at x, then ∂π
∂x (x)ẋ reduces to the following quadratic form

in T (x)

∂π

∂x
(x)ẋ = T (x)T

[ −1 0

−
√

3 −2

]
T (x),

which is negative definite. Therefore, the computed solutions πi obey the error bound
of Theorem 3.6.

We computed the patchy solution on 73 patches including the Al’brekht patch.
The maximum consecutive patch point distance was h ≈ .54. The degree of the
computed optimal cost and optimal control polynomials was four and three. To
compute the absolute error, we created a 100 × 100 grid of equally spaced points in
the square −1 ≤ x1, x2 ≤ 1, and then computed the difference between the exact
and computed optimal cost at each grid point that fell inside a patch. The maximum
absolute error at a grid point was approximately 5 × 10−3. The theoretical absolute

error bound grows along a sequence of consecutive patch points as K(L
i−1
L−1 + 1)h5 ≈

K(L
i−1
L−1 + 1)(4.6× 10−2). The computed and exact solutions are displayed in Figure

8.1. The absolute error is displayed in Figure 8.2.
To verify the validity of the analytical error bound, we computed the patchy

solution on five concentric level sets of the computed cost. We doubled the number
of patch points on each level set, starting with eight points on the boundary of the
Al’brekht patch. We then computed the absolute error of optimal cost at each patch
point and then found the sequence of patch points that terminates with the greatest
absolute error. The level sets of the optimal cost behave badly near the singularities
at x1 = ±π/2, which limited the size of the computational domain for this test

problem. In this case, h ≈ .5, so the absolute error bound grows as K(L
i−1
L−1 + 1)h5 ≈

K(L
i−1
L−1 +1)(3.1×10−2). The absolute error and the sequence of patch points yielding

the worst case error are shown in Figure 8.3.
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(a) Patchy Optimal Cost

(b) Exact Optimal Cost

Fig. 8.1. Patchy and exact optimal costs
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Fig. 8.2. Absolute Error π(x) − πi(x)
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Fig. 8.3. Optimal cost absolute error at sequences of patch points. h ≈ .5
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9. Appendix.

9.1. Kronecker derivative notation. Definition 9.1. Let s : Rn → R1×m

s(x) =
[
s1(x) s2(x) · · · sm(x)

]
,

The differential operator is ∂
∂x ⊗ s(x) is shorthand for the 1×mn row vector

∂

∂x
⊗ s(x) ≡

[
∂s
∂x1

(x) ∂s
∂x2

(x) · · · ∂s
∂xn

(x)
]

The higher order operator ∂
∂x ⊗ · · · ⊗ ∂

∂x is defined recursively in the natural way. In

the special case where s : R2 → R, then ∂s
∂x : R2 → R1×2, and

∂

∂x
[s(x)] =

[
∂s
∂x1

(x) ∂s
∂x2

(x)
]

∂

∂x
⊗ ∂

∂x
[s(x)] ≡

[
∂2s
∂x2

1
(x) ∂2s

∂x1∂x2
(x) ∂2s

∂x2∂x1
(x) ∂2s

∂x2
2
(x)
]

∂

∂x
⊗ ∂

∂x
⊗ ∂

∂x
[s(x)] ≡

[
∂3s
∂x3

1
(x) ∂3s

∂x2
1∂x2

(x) ∂3s
∂x2

1∂x2
(x) ∂3s

∂x1∂x
2
2
(x) · · ·

∂3s
∂x2

1∂x2
(x) ∂3s

∂x1∂x
2
2
(x) ∂3s

∂x1∂x
2
2
(x) ∂3s

∂x2∂x1
(x) · · ·

∂3s
∂x3

2
(x)
]

...

9.2. Partial derivative formulas for the optimal control and character-
istic partial derivatives of the optimal cost.

∂3π̂i+1

∂ξ̂j1∂ξ̂j2∂ξ̂1
(0) = − 1

‖ẋi+1‖

[
∂2π̂i+1

∂ξ̂j1∂ξ̂
(0)
( ∂f̂
∂ξ̂j2

(0) +
∂ĝ

∂ξ̂j2
(0)κ̂i+1(0)

)
+
∂2π̂i+1

∂ξ̂j2∂ξ̂
(0)
( ∂f̂
∂ξ̂j1

(0) +
∂ĝ

∂ξ̂j1
(0)κ̂i+1(0)

)
+
∂π̂i+1

∂ξ̂
(0)
( ∂2f̂

∂ξ̂j1∂ξ̂j2
(0) +

∂2ĝ

∂ξ̂j1∂ξ̂j2
(0)κ̂i+1(0)

)
+

∂2q̂

∂ξ̂j1∂ξ̂j2
(0) +

1

2

∂2r̂

∂ξ̂j1∂ξ̂j2
(0)κ̂i+1(0)2

− ∂κ̂

∂ξ̂j1
(0)

∂κ̂

∂ξ̂j2
(0)

]
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∂2κ̂i+1

∂ξ̂j1∂ξ̂j2
(0) = − 1

r̂(0)

[
∂3π̂i+1

∂ξ̂j1∂ξ̂j2∂ξ̂
(0)ĝ(0) +

∂2π̂i+1

∂ξ̂j1∂ξ̂
(0)

∂ĝ

∂ξ̂j2
(0)

+
∂2π̂i+1

∂ξ̂j2∂ξ̂
(0)

∂ĝ

∂ξ̂j1
(0)

+
∂π̂i+1

∂ξ̂
(0)

∂2ĝ

∂ξ̂j1∂ξ̂j2
(0) +

∂2r

∂ξ̂j1∂ξ̂j2
(0)κ̂i+1(0)

+
∂r̂

∂ξ̂j1
(0)κ̂i+1(0)

+
∂r̂

∂ξ̂j1
(0)

∂κ̂i+1

∂ξ̂j2
(0) +

∂r̂

∂ξ̂j2
(0)

∂κ̂i+1

∂ξ̂j1
(0)

]

∂4π̂i+1

∂ξ̂j1∂ξ̂j2∂ξ̂j3∂ξ̂1
(0) =

− 1

‖ẋi+1‖

[
∂3π̂i+1

∂ξ̂j1∂ξ̂j2∂ξ̂
(0)
( ∂f̂
∂ξ̂j3

(0) +
∂ĝ

∂ξ̂j3
(0)κ̂i+1(0)

)
+

∂3π̂i+1

∂ξ̂j1∂ξ̂j2∂ξ̂
(0)
( ∂f̂
∂ξ̂j3

(0) +
∂ĝ

∂ξ̂j3
(0)κ̂i+1(0) + ĝ(0)

∂κ̂i+1

∂ξ̂j2
(0)
)

+
∂2π̂i+1

∂ξ̂j1∂ξ̂
(0)
( ∂2f̂

∂ξ̂j2∂ξ̂j3
(0) +

∂2ĝ

∂ξ̂j2∂ξ̂j3
(0)κ̂i+1(0) +

∂ĝ

∂ξ̂j3
(0)

∂κ̂i+1

∂ξ̂j2
(0)

+ ĝ(0)
∂2κ̂i+1

∂ξ̂j2∂ξ̂j3
(0)
)

+
∂2π̂i+1

∂ξ̂j3∂ξ̂
(0)
( ∂2f̂

∂ξ̂j1∂ξ̂j2
(0) +

∂2ĝ

∂ξ̂j1∂ξ̂j2
(0)κ̂i+1(0)

)
+
∂2π̂i+1

∂ξ̂j2∂ξ̂
(0)
( ∂2f̂

∂ξ̂j1∂ξ̂j3
(0) +

∂2ĝ

∂ξ̂j1∂ξ̂j3
(0)κ̂i+1(0)

)
+
∂π̂i+1

∂ξ̂
(0)
( ∂3f̂

∂ξ̂j1∂ξ̂j2∂ξ̂j3
(0) +

∂3ĝ

∂ξ̂j1∂ξ̂j2∂ξ̂j2
(0)κ̂i+1(0)

)
+

∂3q̂

∂ξ̂j1∂ξ̂j2∂ξ̂j3
(0) +

1

2

∂3r̂

∂ξ̂j1∂ξ̂j2∂ξ̂j3
(0)
(
κ̂i+1(0)

)2
+

∂2r̂

∂ξ̂j1∂ξ̂j2
(0)κ̂i+1(0)

∂κ̂i+1

∂ξ̂j3
(0) +

∂r̂

∂ξ̂j3
(0)

∂κ̂i+1

∂ξ̂j1
(0)

∂κ̂i+1

∂ξ̂j2
(0)

− r̂(0)
∂2κ̂i+1

∂ξ̂j1∂ξ̂j3
(0)

∂κ̂i+1

∂ξ̂j2
(0)− r̂(0)

∂κ̂i+1

∂ξ̂j1
(0)

∂2κ̂i+1

∂ξ̂j2∂ξ̂j3
(0)

−
( ∂r̂

∂ξ̂j2
(0)

∂κ̂i+1

∂ξ̂j1
(0) + r̂(0)

∂2κ̂i+1

∂ξ̂j1∂ξ̂j2
(0)

∂κi+1

∂ξ̂j3
(0)
)]
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∂3κ̂i+1

∂ξ̂j1∂ξ̂j2∂ξ̂j3
(0) =

− 1

r̂(0)

[
∂4π̂i+1

∂ξ̂j1∂ξ̂j2∂ξ̂j3∂ξ̂j4
(0)ĝ(0)

+
∂3π̂i+1

∂ξ̂j1∂ξ̂j2∂ξ̂
(0)

∂ĝ

∂ξ̂j3
(0) +

∂3π̂i+1

∂ξ̂j1∂ξ̂j3∂ξ̂
(0)

∂ĝ

∂ξ̂j2
(0)

+
∂2π̂i+1

∂ξ̂j1∂ξ̂
(0)

∂2ĝ

∂ξ̂j2∂ξ̂j3
(0) +

∂2π̂i+1

∂ξ̂j3∂ξ̂
(0)

∂2ĝ

∂ξ̂j1∂ξ̂j2
(0)

+
∂π̂i+1

∂ξ̂
(0)

∂3ĝ

∂ξ̂j1∂ξ̂j2∂ξ̂j3
(0)

+
∂2r̂

∂ξ̂j2∂ξ̂j3
(0)

∂κ̂i+1

∂ξ̂j1
(0) +

∂r̂

∂ξ̂j2
(0)

∂2κ̂i+1

∂ξ̂j2∂ξ̂j3
(0) +

∂r̂

∂ξ̂j3
(0)

∂2κ̂i+1

∂ξ̂j1∂ξ̂j2
(0)

+ r̂(0)
∂3κ̂i+1

∂ξ̂j1∂ξ̂j2∂ξ̂j3
(0)

]
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