143 research outputs found

    Investigating the impact of information sharing in human activity recognition

    Get PDF
    The accuracy of Human Activity Recognition is noticeably affected by the orientation of smartphones during data collection. This study utilized a public domain dataset that was specifically collected to include variations in smartphone positioning. Although the dataset contained records from various sensors, only accelerometer data were used in this study; thus, the developed methodology would preserve smartphone battery and incur low computation costs. A total of 175 different features were extracted from the pre-processed data. Data stratification was conducted in three ways to investigate the effect of information sharing between the training and testing datasets. After data balancing using only the training dataset, ten-fold and LOSO cross-validation were performed using several algorithms, including Support Vector Machine, XGBoost, Random Forest, Naïve Bayes, KNN, and Neural Network. A very simple post-processing algorithm was developed to improve the accuracy. The results reveal that XGBoost takes the least computation time while providing high prediction accuracy. Although Neural Network outperforms XGBoost, XGBoost demonstrates better accuracy with post-processing. The final detection accuracy ranges from 99.8% to 77.6% depending on the level of information sharing. This strongly suggests that when reporting accuracy values, the associated information sharing levels should be provided as well in order to allow the results to be interpreted in the correct context.This work was supported by the Severo Ochoa Center of Excellence (2019–2023) under the grant CEX2018-000797-S funded by MCIN/AEI/10.13039/501100011033.Peer ReviewedPostprint (published version

    Real-time geophysical applications with Android GNSS raw measurements

    Get PDF
    The number of Android devices enabling access to raw GNSS (Global Navigation Satellite System) measurements is rapidly increasing, thanks to the dedicated Google APIs. In this study, the Xiaomi Mi8, the first GNSS dual-frequency smartphone embedded with the Broadcom BCM47755 GNSS chipset, was employed by leveraging the features of L5/E5a observations in addition to the traditional L1/E1 observations. The aim of this paper is to present two different smartphone applications in Geoscience, both based on the variometric approach and able to work in real time. In particular, tests using both VADASE (Variometric Approach for Displacement Analysis Stand-alone Engine) to retrieve the 3D velocity of a stand-alone receiver in real-time, and VARION (Variometric Approach for Real-Time Ionosphere Observations) algorithms, able to reconstruct real-time sTEC (slant total electron content) variations, were carried out. The results demonstrate the contribution that mass-market devices can offer to the geosciences. In detail, the noise level obtained with VADASE in a static scenario-few mm/s for the horizontal components and around 1 cm/s for the vertical component-underlines the possibility, confirmed from kinematic tests, of detecting fast movements such as periodic oscillations caused by earthquakes. VARION results indicate that the noise level can be brought back to that of geodetic receivers, making the Xiaomi Mi8 suitable for real-time ionosphere monitoring

    Observation Quality Assessment and Performance of GNSS Standalone Positioning with Code Pseudoranges of Dual-Frequency Android Smartphones

    Get PDF
    The new generation of Android smartphones is equipped with GNSS chips capable of tracking multi-frequency and multi-constellation data. In this work, we evaluate the positioning performance and analyze the quality of observations collected by three recent smartphones, namely Xiaomi Mi 8, Xiaomi Mi 9, and Huawei P30 pro that take advantage of such chips. The analysis of the GNSS observation quality implies that the commonly employed elevation-dependent function is not optimal for smartphone GNSS observation weighting and suggests an application of the C/N0-dependent one. Regarding smartphone code signals on L5 and E5a frequency bands, we found that they are characterized with noticeably lower noise as compared to E1 and L1 ones. The single point positioning results confirm an improvement in the performance when the weights are a function of the C/N0-rather than those dependent on the satellite elevation and that a smartphone positioning with E5a code observations significantly outperforms that with E1 signals. The latter is expressed by a drop of the horizontal RMS from 8.44 m to 3.17 m for Galileo E1 and E5a solutions of Xiaomi Mi 9 P30, respectively. The best positioning accuracy of multi-GNSS single-frequency (L1/E1/B1/G1) solution was obtained by Huawei P30 with a horizontal RMS of 3.24 m. Xiaomi Mi 8 and Xiaomi Mi 9 show a horizontal RMS error of 4.14 m and 4.90 m, respectively

    Single-Baseline RTK Positioning Using Dual-Frequency GNSS Receivers Inside Smartphones

    Get PDF
    Global Navigation Satellite System (GNSS) positioning is currently a common practice thanks to the development of mobile devices such as smartphones and tablets. The possibility to obtain raw GNSS measurements, such as pseudoranges and carrier-phase, from these instruments has opened new windows towards precise positioning using smart devices. This work aims to demonstrate the positioning performances in the case of a typical single-base Real-Time Kinematic (RTK) positioning while considering two different kinds of multi-frequency and multi-constellation master stations: a typical geodetic receiver and a smartphone device. The results have shown impressive performances in terms of precision in both cases: with a geodetic receiver as the master station, the reachable precisions are several mm for all 3D components while if a smartphone is used as the master station, the best results can be obtained considering the GPS+Galileo constellations, with a precision of about 2 cm both for 2D and Up components in the case of L1+L5 frequencies, or 3 cm for 2D components and 2 cm for the Up, in the case of an L1 frequency. Moreover, it has been demonstrated that it is not feasible to reach the phase ambiguities fixing: despite this, the precisions are still good and also the obtained 3D accuracies of positioning solutions are less than 1 m. So, it is possible to affirm that these results are very promising in the direction of cooperative positioning using smartphone devices

    Implementation and Evaluation of a Cooperative Vehicle-to-Pedestrian Safety Application

    Full text link
    While the development of Vehicle-to-Vehicle (V2V) safety applications based on Dedicated Short-Range Communications (DSRC) has been extensively undergoing standardization for more than a decade, such applications are extremely missing for Vulnerable Road Users (VRUs). Nonexistence of collaborative systems between VRUs and vehicles was the main reason for this lack of attention. Recent developments in Wi-Fi Direct and DSRC-enabled smartphones are changing this perspective. Leveraging the existing V2V platforms, we propose a new framework using a DSRC-enabled smartphone to extend safety benefits to VRUs. The interoperability of applications between vehicles and portable DSRC enabled devices is achieved through the SAE J2735 Personal Safety Message (PSM). However, considering the fact that VRU movement dynamics, response times, and crash scenarios are fundamentally different from vehicles, a specific framework should be designed for VRU safety applications to study their performance. In this article, we first propose an end-to-end Vehicle-to-Pedestrian (V2P) framework to provide situational awareness and hazard detection based on the most common and injury-prone crash scenarios. The details of our VRU safety module, including target classification and collision detection algorithms, are explained next. Furthermore, we propose and evaluate a mitigating solution for congestion and power consumption issues in such systems. Finally, the whole system is implemented and analyzed for realistic crash scenarios

    WIRELESS POSITIONING SYSTEM BERBASIS SINGLE ACCESS POINT LOCALIZATION-BASED

    Get PDF
    In the past several years, smartphone positioning are became a real needs, many technology has been applied toincrease it’s accuracy. SAIL (Single Access Point Localization-Based) area on of the positioning methods, usingtrygonometry formula which based on wind direction, usually called dead-reckoning. In this reasearch, we build androidsmartphone application that implementing SAIL methods while utilizing accelerometer and magnetometer (compass).The goal of this reasearch is to analyze the parameters that affect the positioning accuracy of the application
    • …
    corecore