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Abstract: The accuracy of Human Activity Recognition is noticeably affected by the orientation of
smartphones during data collection. This study utilized a public domain dataset that was specifically
collected to include variations in smartphone positioning. Although the dataset contained records
from various sensors, only accelerometer data were used in this study; thus, the developed methodol-
ogy would preserve smartphone battery and incur low computation costs. A total of 175 different
features were extracted from the pre-processed data. Data stratification was conducted in three
ways to investigate the effect of information sharing between the training and testing datasets. After
data balancing using only the training dataset, ten-fold and LOSO cross-validation were performed
using several algorithms, including Support Vector Machine, XGBoost, Random Forest, Naïve Bayes,
KNN, and Neural Network. A very simple post-processing algorithm was developed to improve
the accuracy. The results reveal that XGBoost takes the least computation time while providing high
prediction accuracy. Although Neural Network outperforms XGBoost, XGBoost demonstrates better
accuracy with post-processing. The final detection accuracy ranges from 99.8% to 77.6% depending
on the level of information sharing. This strongly suggests that when reporting accuracy values, the
associated information sharing levels should be provided as well in order to allow the results to be
interpreted in the correct context.

Keywords: human activity recognition; machine learning; oversampling; random forest; smartphone

1. Introduction

Human Activity Recognition (HAR) is a hot research topic today wherein the identifi-
cation of different human activities is attempted with the help of sensor data [1–3]. With the
wide array of sensors built into modern smartphones as well as wearable devices such as
fitness trackers and smartwatches, the collection of activity-specific data has become very
convenient. The understanding of human behaviors by researchers leads to its application
in domains such as healthcare, fitness, and home automation [4].

The high penetration rate of smartphones and their profound impact on our daily
lives makes them an ideal candidate for context-aware data collection [5]. Sensors such
as accelerometers, GPS, gyroscopes, etc., provide a perfect opportunity to infer human
activities to an acceptable level using machine learning algorithms, attracting many re-
searchers to this work [6–9]. Several such studies have reported notable results by deducing
information using sensor data [10,11]. However, one aspect to be noted in such studies is
that the devices have been carried in a particular manner, mostly attached to various body
parts such as the waist or arm. Therefore, their remarkable results may be biased due to the
controlled environment used during data collection. Smartphone users cannot be assumed
to store their smartphones in a particular position, as smartphones can be stored or held in
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any orientation deemed comfortable or secure by their owners. Furthermore, they may be
in use during traveling, which complicates the activity recognition problem at hand.

While many public domain HAR datasets have been published, most of them are
marred by reliance on fixed smartphone positioning and orientation. The UCI HAR dataset
was gathered with the help of waist-mounted smartphones, capturing activities such as
lying down, sitting, standing, walking, walking downstairs, and walking upstairs [12]. With
SVM applied, the study reported higher than 90% detection accuracy. Similarly, another
popular HAR dataset collected as part of the WISDM (Wireless Sensor Data Mining) project
required respondents to carry their smartphones in the front pockets of their pants while
performing various tasks including sitting, standing, walking, jogging, ascending stairs,
and descending stairs [13].

In the literature, many studies have been conducted using these datasets. For instance,
one study drew a comparison among K-Nearest Neighbors (KNN), Principal Component
Analysis (PCA), Random Forest (RF), and Convolutional Neural Networks (CNN) [14]. The
study reported that the prediction ability of CNN is better than other algorithms present
in the comparison. The paper further investigated the impact of various algorithmic
parameters on the optimal settings for CNN. Likewise, another study proposed CNN for
addressing the HAR problem [15]. Furthermore, a group of researchers experimented
with a deep learning method, the Deep Belief Network (DBN) [16]. They compared and
concluded that the performance of the DBN is better than SVM. On the other hand, different
studies have explored the relative usefulness of various feature types used by machine
learning algorithms [17,18]. The results demonstrated that frequency-domain features
perform better than others in exploiting the hidden patterns in data, at least for algorithms
such as SVM and CNN.

Moreover, many other studies have collected datasets for research. For example, one
group collected data for nine different smartphone orientations when carried in a back-
pack [19]. The results showed that their developed SVM model outperformed algorithms
such as KNN, decision trees, and naïve Bayes. Similar results were reported in other works
which incorporated additional sensors, such as GPS and a magnetometer [20,21].

The above discussion shows that while HAR data collected in a controlled environment
might yield good prediction results, they are not a true representation of the randomness
associated with the data collection methodology. Therefore, this study incorporates a public
domain dataset specifically collected to replicate the uncertainty linked to smartphone
storage and use during data collection [22]. This dataset takes the methodology one step
closer to real-life implementation where the respondents are free to use their smartphones
as they please while data are being collected. Of course, this poses a challenge as sensor data
cannot be easily analyzed to learn the patterns when the coordinate system keeps changing
continuously. Moreover, as the data are collected in an urban setting, traffic congestion may
result in confusion while differentiating between walking/jogging and motorized transport.
This study takes on the daring task of analyzing such a dataset. Furthermore, the most
probable methodology to distinguish between trip and non-trip activity would be to use
GPS data, as departure from any point of interest can very easily be recognized. However,
GPS has its problems as well. Apart from accuracy issues, privacy concerns and battery use
make it difficult to adopt in a real-world application scenario. Under such circumstances,
discriminating among various trip and non-trip activities utilizing only accelerometer
data seems to be a difficult task. This paper tries to solve that very problem. Moreover,
the activity recognition methodology presented in this paper is developed stepwise such
that it provides useful insights to readers. Understanding how the algorithm works is
key to achieving good results, which is one of the aims of this study. Another aim is to
understand how training and testing datasets should be formed; this has a profound impact
on detection accuracy, as is demonstrated in this study.

The key contributions of this study can be summarized as follows:

• It takes on the challenging task of analyzing a dataset that is both realistic and difficult
to investigate
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• The developed methodology relies only on accelerometer data, which reduces data
collection and computation costs at the price of accuracy; this study tries to decrease
this loss in accuracy

• Various machine-learning algorithms reported in the literature are compared based on
their performance metrics, including computation time

• A comparative analysis of various methods in which data can be stratified is provided
• This paper establishes the data sharing level as a key variable to be provided when

classification results are reported
• A simple post-processing method is developed that can significantly improve detection

accuracy
• The study develops a low-cost methodology for Human Activity Recognition.

2. Proposed Methodology

The proposed approach comprises pre-processing and feature extraction, data stratifi-
cation, data balancing, classification, post-processing, and results analysis. We began by
accessing a public domain dataset for human activity recognition. The data were explored
and pre-processed before various features were extracted. To understand the impact of in-
formation sharing between training and testing datasets, three types of stratifications were
performed, i.e., random, trip-wise, and user-wise. Different data balancing approaches
were used for the training data only. This ensured that we had imbalanced test data
to predict. Classification was conducted using various supervised learning algorithms.
Where required, post-processing was performed in order to improve classification accuracy.
Lastly, the results were investigated and conclusions were drawn. Figure 1 summarizes the
proposed methodology.
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3. Pre-Processing and Feature Extraction
3.1. Study Data

The database used in this study is publicly available, and its collection process has
already been discussed in great detail [22]. This study only utilized the raw accelerometer
data present within the cited database. The reason for dropping the remaining sensor



Sensors 2022, 22, 2280 4 of 15

data was to make the methodology simpler. Only one sensor’s data means less data to
collect and analyze. This saves smartphone batteries from draining too quickly and lowers
computation costs. However, the detection accuracy is be compromised.

The sensor data was collected by 18 respondents capturing four activities, i.e., inactive,
active, walking and driving. “Inactive” and “active” both correspond to being confined
within a single point of interest and not travelling somewhere. The difference, however,
stems from the placement of the smartphone. If it is not carried by the respondent and
is placed somewhere, such as on the desk while the participant performs various tasks
without travelling to a different place such as cooking, shopping, or cleaning, it is classified
as “inactive”. On the contrary, if such tasks are performed while the smartphone is carried
by the individual, then it is recorded as “active”. Further, “walking” mode includes jogging
and running, and “driving” mode means travelling via any motorized means including a
car, motorbike, bus, train, etc.

3.2. Pre-Processing of Data

The data showed varied levels of collection frequencies among different participants;
therefore, the entire dataset was scaled down to 1 Hz. Other than incorporating uniformity
in the data, the scaling down reduced the amount of data to be analyzed while retaining
the scale of the information to an extent. This step was directly linked to the one of the
objectives of this study, i.e., a low computation cost.

The data collection process was unique, as both the trips and sensor data pertaining to
activities performed without travelling to a new destination were recorded, and collected.
Due to this aspect, activities with fewer intervals were required to be included in the
analysis. This posed a computational challenge, as the smaller duration meant smaller
window sizes to be used for feature extraction. Nevertheless, a threshold of 30 s was
selected, which implied excluding seven activities out of a total of 341 from the dataset.

3.3. Feature Extraction

One primary base value and three secondary base values were calculated to start with,
as follows (Equations (1) and (2)):

Resultant Acc, accR =
√

accx2 + accy2 + accz2 (1)

Direction Cosine


cx = accx

/
accR

cy = accy
/
accR

cz = accz
/
accR

(2)

Using the calculated resultant acceleration (primary base value), outliers were identi-
fied (Figure 2) for the observed and removed activities (Figure 3). Other features, including
average, maximum, minimum, standard deviation, skewness, kurtosis, and percentiles
(5%, 10%, . . . , 90%, 95%) were extracted from each of the four base values, resulting in
175 features. Various sliding window sizes and overlap values were experimented with for
this extraction process, as discussed in the next section.

3.4. Window Size and Overlap

Initially, window sizes ranging from 30 s to 6 s were experimented with, with a 50%
overlap. A total of 90% of the data were randomly selected to train the algorithm, while
prediction was performed using the remaining 10% of the data. The results, as depicted in
Figure 4, reveal that the activity type “Inactive” was predicted with relatively high accuracy,
whereas the activity type “Walking” provided the lowest accuracy. Another observation
was that the accuracy generally continued to decrease as the window size was reduced.
Next, the impact of overlap was studied. For this purpose, three values, i.e., 25%, 50%, and
75% overlap, were experimented with, the results of which are summarized in Table 1. The
results suggested that 75% overlap provided better accuracy than the other two; hence, a
28 s sliding window with 75% overlap was used for the final feature extraction.
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Table 1. Detection accuracy with varying overlap values.

Window
Size

Overlap
(%)

Detection Accuracy (%)

Inactive Active Walking Driving Overall

28 s
25 97.22 92.13 77.55 84.81 91.16
50 98.24 93.29 82.78 88.90 93.34
75 99.02 95.81 87.24 92.92 95.47

24 s
25 98.43 90.67 80.88 86.88 92.19
50 98.48 92.50 84.27 88.32 93.23
75 99.07 94.61 87.60 93.66 95.37

20 s
25 98.17 93.17 79.02 87.92 92.57
50 98.18 92.46 80.76 87.17 92.38
75 98.56 95.45 88.11 92.91 95.35

16 s
25 97.57 91.01 77.85 85.60 91.03
50 98.38 91.69 82.03 89.01 92.73
75 98.66 94.23 86.29 92.51 94.77

12 s
25 97.88 89.43 78.21 85.95 90.89
50 98.10 90.46 78.47 87.81 91.77
75 98.63 93.61 85.48 90.45 94.17

8 s
25 97.89 87.87 76.61 84.65 90.09
50 97.79 90.09 80.08 86.15 91.30
75 98.60 92.23 84.60 89.86 93.49

3.5. Amount of Data

The final distribution of the data after pre-processing, cleaning, and feature extraction
is shown in Table 2.

Table 2. Amount of data with respect to activities.

Activity No. of Participants No. of Trips Amount of Data Percentage

Inactive 13 77 40,297 45.95
Active 9 65 22,516 25.67

Walking 14 119 12,417 14.16
Driving 12 73 12,471 14.22

4. Data Stratification

Three types of data stratifications were performed to investigate the effect of varying
levels of information sharing on prediction accuracy.

4.1. Random Stratification

The data were randomly stratified into ten parts based on the activities. Hence, each
part would have a 10% contribution from the data linked to each activity. As the data
points could not be divided equally among the ten parts, the tenth part consequently ended
up having slightly more or less data for each activity compared to the other nine parts.
Ten-fold cross-validation was performed.

4.2. Trip-Wise Stratification

The data contained 334 total trips comprising 65 active, 77 inactive, 119 walking, and
73 driving. These numbers were divided among ten folds, as shown in Figure 5. For each
fold, the number of trips pertaining to each activity were randomly selected without any
consideration of the amount of data within each trip. This led to increased unbalancing
among the activities. Again, ten-fold cross-validation was performed.
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4.3. User-Wise Stratification

Leave One Subject Out (LOSO) cross-validation was performed for these data; how-
ever, as several of the participants skipped one or more of the activities appropriate bands
were developed for this purpose, as shown in Table 3.

Table 3. Participant Bands for LOSO cross-validation.

Band Participant Inactive Active Walking Driving

1
1 666 0 0 153
6 0 2008 973 0

2
2 159 0 675 356
13 1407 495 86 0

3
3 20 876 1014 602
7 1214 0 906 1869

4 4 849 868 63 260

5
5 331 487 489 3499
14 152 0 204 0

6 8 29,865 1403 4216 1441

7
9 1724 0 2365 655
11 1013 12,134 618 1289

8
10 0 1859 279 1885
15 519 0 45 96

9 12 2378 2386 484 366

5. Data Balancing

Four different methods were applied to balance the data, as follows:

1. Downsampling: A number of samples equal to the minority class were randomly
selected from the majority classes

2. Oversampling: A number of duplications equal to the majority class were randomly
performed for the minority classes

3. Oversampling and Downsampling: Oversampling of minority classes and downsam-
pling of majority classes was performed to reach the mean value

4. SMOTE: Synthetic Minority Oversampling Technique was investigated
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It is worthwhile to note here that unlike many studies where data balancing is per-
formed before dividing the data into training and testing datasets, this study balanced only
the training data, which is more realistic.

6. Classification

Various machine learning algorithms were used to predict the activities included in the
data, including Support Vector Machine (SVM) [22,23], naïve Bayes (NB) [24,25], K-Nearest
Neighbor (KNN) [24,26], Random Forest (RF) [27,28], and Extreme Gradient Boosting
(XGBoost) [29,30]. The best-performing algorithm was later compared with Feed-forward
Neural Network (NN) [31]. These algorithms were selected based on their extensive use in
similar studies. A grid-wise analysis was performed for each algorithm in order to identify
the optimum values of the associated parameters.

7. Post-Processing

To further improve detection accuracy, a post-processing algorithm inspired by the
simple method reported by [27,32] was developed. Within each trip, a voting sequence was
generated whereby if the predicted value for the i-th instance is, for example, “walking”,
then one additional vote would be added to walking, and at the same time one vote each
would be deducted from the other three activities. This way, a matrix with rows = nrows
(test) and columns = 4 would be generated. The maximum vote activity for each instance
(row) would then be determined as the final prediction. The algorithm consisted of three
voting sequences. First, a forward sequence was carried out initiating from the start of
each trip to its end, followed by a backward sequence, and ending with a second forward
sequence. This is explained further along with an example in Table 4.

Table 4. Example of a forward and backward voting sequence.

Trip No. Actual Predicted Forward Voting
Sequence

Corrected
Prediction

Backward Voting
Sequence

Corrected
Prediction

1 Walking Walking 0, 0, 1, 0 Walking 0, 0, 8, 0 Walking
1 Walking Walking 0, 0, 2, 0 Walking 0, 0, 7, 0 Walking
1 Walking Walking 0, 0, 3, 0 Walking 0, 0, 6, 0 Walking
1 Walking Driving 0, 0, 2, 1 Walking 0, 0, 5, 0 Walking
1 Walking Driving 0, 0, 1, 2 Driving 0, 0, 4, 1 Walking
1 Walking Walking 0, 0, 2, 1 Walking 0, 0, 5, 0 Walking
1 Walking Walking 0, 0, 3, 0 Walking 0, 0, 4, 0 Walking
1 Walking Walking 0, 0, 4, 0 Walking 0, 0, 3, 0 Walking
1 Walking Walking 0, 0, 5, 0 Walking 0, 0, 2, 0 Walking
1 Walking Driving 0, 0, 4, 1 Walking 0, 0, 1, 0 Walking

2 Inactive Active 0, 1, 0, 0 Active 4, 1, 0, 0 Inactive
2 Inactive Inactive 1, 0, 0, 0 Inactive 5, 0, 0, 0 Inactive
2 Inactive Inactive 2, 0, 0, 0 Inactive 4, 0, 0, 0 Inactive
2 Inactive Inactive 3, 0, 0, 0 Inactive 3, 0, 0, 0 Inactive
2 Inactive Inactive 4, 0, 0, 0 Inactive 2, 0, 0, 0 Inactive
2 Inactive Active 3, 1, 0, 0 Inactive 1, 0, 0, 0 Inactive

8. Evaluation and Analysis
8.1. Evaluation Measures

The evaluation measures used in this study are provided as follows (Equations (3)–(6)),
supported by Figure 6.

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)
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F − Score = 2 × Precision × Recall
Precision + Recall

(6)
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8.2. Random Stratification Results

The classification results for random stratified data are shown in Table 5. The maxi-
mum values are marked as bold. Values within brackets supply standard deviations.

Table 5. Classification results for random stratified data.

Algorithm Measure Inactive Active Walking Driving

XGB

Precision 0.978
(0.023)

0.807
(0.135)

0.869
(0.112)

0.876
(0.066)

Recall 0.929
(0.111)

0.877
(0.102)

0.819
(0.127)

0.884
(0.065)

F-Score 0.95
(0.07)

0.835
(0.107)

0.84
(0.11)

0.878
(0.051)

RF

Precision 0.975
(0.029)

0.771
(0.219)

0.873
(0.107)

0.825
(0.181)

Recall 0.933
(0.106)

0.818
(0.243)

0.811
(0.141)

0.861
(0.095)

F-Score 0.951
(0.068)

0.788
(0.224)

0.836
(0.117)

0.835
(0.146)

SVM

Precision 0.959
(0.023)

0.816
(0.125)

0.868
(0.107)

0.856
(0.07)

Recall 0.947
(0.097)

0.829
(0.114)

0.816
(0.125)

0.859
(0.093)

F-Score 0.951
(0.058)

0.814
(0.096)

0.834
(0.1)

0.853
(0.063)

NB

Precision 0.934
(0.063)

0.707
(0.25)

0.703
(0.185)

0.588
(0.142)

Recall 0.974
(0.051)

0.476
(0.222)

0.705
(0.275)

0.815
(0.107)

F-Score 0.952
(0.049)

0.555
(0.219)

0.685
(0.231)

0.674
(0.115)

KNN

Precision 0.943
(0.024)

0.788
(0.128)

0.781
(0.117)

0.812
(0.09)

Recall 0.937
(0.108)

0.761
(0.136)

0.781
(0.13)

0.834
(0.088)

F-Score 0.937
(0.064)

0.766
(0.113)

0.777
(0.116)

0.819
(0.069)

It is evident that XGBoost provides better results most of the time. However, these
measures are not enough to draw a solid conclusion. The accuracy and computation time
for each algorithm are provided in Table 6. This table completes the picture; it can be seen
that SVM closely follows XGB, which in turn is closely followed by RF. Nevertheless, the
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computation times vary greatly. XGB performs the computation in 2.64 min, whereas for
RF and SVM the computation time increases by more than 750% and 7500%, respectively.
As this study has as one objective to develop a low-cost methodology, XGB was selected to
proceed further.

Table 6. Accuracy and computation time for randomly stratified data.

Algorithm Accuracy Computation Time (min)

XGB 0.894
(0.075) 2.64

RF 0.876
(0.114) 22.86

SVM 0.886
(0.062) 208.13

NB 0.786
(0.095) 5.85

KNN 0.855
(0.069) 295.02

Next, the effect of data balancing was investigated. Table 7 provides accuracy results
by applying various data balancing methods, as discussed in Section 5. From the table, it
is clear that a simple oversampling method performs slightly better than SMOTE, and is
much quicker.

Table 7. Accuracy values after data balancing for randomly stratified data.

Balancing Method Accuracy

Downsampling 0.983
(0.002)

Oversampling 0.998
(0.0003)

Both 0.995
(0.001)

SMOTE 0.997
(0.0002)

8.3. Trip-Wise Stratification Results

Trip-wise stratification results are provided in Table 8. The results reveal that no
substantial improvement is obtained by balancing the training datasets. Nevertheless,
downsampling was adopted because it could yield comparable accuracy to others while
the amount of training data could be decreased, reducing the overall cost. One important
aspect to note here is that the accuracy with trip-wise stratification (87.7%) is significantly
lower than that achieved by random stratification (99.8%).
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Table 8. Results for trip-wise stratified data.

Balancing
Method Measure Inactive Active Walking Driving Accuracy

None

Precision 0.935
(0.105)

0.785
(0.212)

0.729
(0.2)

0.8
(0.161)

0.868
(0.084)Recall 0.966

(0.042)
0.677

(0.212)
0.798

(0.101)
0.913

(0.082)

F-Score 0.948
(0.073)

0.693
(0.2)

0.735
(0.127)

0.846
(0.123)

Downsampling

Precision 0.961
(0.054)

0.8
(0.231)

0.727
(0.205)

0.793
(0.158)

0.877
(0.067)Recall 0.952

(0.047)
0.694

(0.199)
0.844

(0.083)
0.909
(0.1)

F-Score 0.956
(0.041)

0.709
(0.203)

0.759
(0.146)

0.841
(0.126)

Oversampling

Precision 0.971
(0.034)

0.84
(0.126)

0.654
(0.135)

0.773
(0.215)

0.871
(0.054)Recall 0.966

(0.035)
0.726

(0.234)
0.822

(0.151)
0.838

(0.146)

F-Score 0.968
(0.018)

0.751
(0.173)

0.712
(0.102)

0.775
(0.16)

8.4. User-Wise Stratification Results

The results yielded by user-wise stratification, the final step in this comparative study,
are shown in Table 9. Here, a comparison is made with the state-of-the-art Forward-feed
Neural Network. The Neural Network results in better accuracy compared to XGBoost;
however, when post-processing is applied after XGBoost, its accuracy experiences a con-
siderable jump, slightly surpassing the Neural Network. In terms of computation time,
XGBoost with postprocessing has an even greater edge.

Table 9. Results for user-wise stratified data.

Algorithm Measure Inactive Active Walking Driving Accuracy Time (min)

XGB

Precision 0.878
(0.152)

0.68
(0.367)

0.554
(0.254)

0.635
(0.26) 0.695

(0.175) 3.03

Recall 0.908
(0.172)

0.467
(0.337)

0.791
(0.195)

0.646
(0.281)

F-Score 0.878
(0.148)

0.486
(0.279)

0.59
(0.202)

0.563
(0.244)

NN

Precision 0.697
(0.275)

0.62
(0.238)

0.62
(0.231)

0.814
(0.171) 0.731

(0.091) 14.16

Recall 0.711
(0.228)

0.609
(0.275)

0.763
(0.204)

0.848
(0.142)

F-Score 0.639
(0.208)

0.529
(0.232)

0.649
(0.205)

0.819
(0.136)

XGB with
Postprocessing

Precision 0.969
(0.06)

0.81
(0.311)

0.675
(0.355)

0.836
(0.274) 0.766

(0.21) 3.2

Recall 0.975
(0.047)

0.508
(0.45)

0.858
(0.21)

0.772
(0.274)

F-Score 0.97
(0.04)

0.665
(0.324)

0.66
(0.296)

0.744
(0.357)
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9. Discussion
9.1. Window Size and Overlap

While a larger window size results in a smoother dataset, it causes the data points to be
reduced. However, a smaller window size produces a larger dataset that is more sensitive
to variations in data trends. This is the reason for the overfitting of the algorithm for shorter
window sizes that bring about reduced detection accuracy, even though the amount of
data is relatively greater. Further, the detection accuracy among the activities is directly
dependent upon its share in the parent dataset. Figure 4 suggests that the activity “Inactive”
shows the highest accuracy, followed by “Active”, “Driving”, and lastly “Walking”.

This corresponds well with the amount of data provided in Table 2. Hence, all other
activities are relatively more misclassified as “Inactive” due to the overlearning of this
activity type owing to its huge proportion. This is especially evident from the fact that as
the window size continues to decrease, the detection accuracies for all activity types fall
except for “Inactive”.

A greater overlap means more data points; this is the reason for increased detection
accuracy with the same window size. As each window size was kept constant for the three
overlap values tested, the resulting smoothness of the extracted features remained the same.
Keeping the extent of detail constant, more data points meant more data for the algorithm
to train on, hence making it more efficient.

9.2. Classification Results

The most important observation is that prediction accuracy continues to decrease
from 99.8% (random stratification), to 87.7% (trip-wise stratification), to 76.6% (user-wise
stratification). The reason behind this drop is the decreasing level of information sharing.
In random stratification, information sharing is present at three levels. First, the features
are extracted by sliding windows, and every data point shares 75% of information with the
previous one as well as providing 75% of information to the next one. Thus, a randomly
selected unknown data point can very easily be predicted by its neighboring known points
(Figure 7). Second, every individual trip has a specific trend. If a part of that trend is
known, there is high probability of accurately predicting the remaining unknown part
(Figure 8). Third, each individual participant has predictable movement patterns. Hence, if
the algorithm learns a walking trip for a specific participant, it can predict another walking
trip for the same individual with relative ease. Figure 9 shows data from two walking trips
by Participant 7 and a single walking trip by Participant 2. It is clear from the Figure that
an algorithm trained on one of the trips by Participant 7 would predict the other trip by the
same participant with relatively ease compared to the trip made by Participant 2. When
trip-wise stratification is performed, the first two types of information sharing scenarios
are eliminated, and the third scenario of information sharing is removed as well when
user-wise stratification is performed.
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The relatively moderate final accuracy (user-wise stratification) reported in this study
may be due to the following reasons.

• The data used in this study are quite unusual. First, they were not collected in a
controlled environment where the smartphone positioning is fixed. This includes
greater variability in the data. Second, they cover motorized transport captured in an
urban setting. This is challenging, as it is difficult to differentiate between a person
jogging and a person in a slow-moving car, especially when smartphone positioning
is not fixed. Third, this study only takes into account accelerometer data, in order to
make the approach more cost efficient.

• The complete removal of information sharing, which has a considerable impact on
detection accuracy.

• Efforts to reduce the overall computation cost of the developed methodology take a
toll on the accuracy.

10. Conclusions and Future Work

This study provides a low-cost methodology for human activity recognition as well
as a comparative analysis of the level of information sharing between training and testing
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datasets and its impact on the prediction accuracy. Below are the main conclusions that can
be drawn from this study:

• A larger window size tends to provide better accuracy; however, due to the limitations
of the data used and the need to include non-trip activities, the upper threshold was
not detected.

• Greater overlap results in both a greater number of data points and higher information
sharing among those data points. This may be the reason for the increased prediction
accuracy.

• Among the tested conventional machine-learning algorithms XGBoost outperforms all
the others, yielding high prediction accuracy while requiring low computation time.

• Simpler methods of data balancing work equally well when compared with SMOTE,
and require a relatively short time for computation.

• Decreasing information sharing between the training and testing datasets drastically
decreases accuracy, from 99.8% to 77.6%. Therefore, researchers should report the
level of information sharing associated with their results in order to allow them to be
interpreted in their proper context.

• The Neural Network demonstrates better prediction accuracy than XGBoost; however,
the gap can be closed with a simple post-processing step. More importantly, the
computation time is relatively low for XGBoost (3.2 min vs. 14.16 min), making it a
better option than Neural Network.

It is expected that cost-efficient deep learning algorithms might be able to improve the
classification, and it is intended that such a study shall be conducted in the future.
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