868 research outputs found

    Smart Meter Privacy with an Energy Harvesting Device and Instantaneous Power Constraints

    Full text link
    A smart meter (SM) periodically measures end-user electricity consumption and reports it to a utility provider (UP). Despite the advantages of SMs, their use leads to serious concerns about consumer privacy. In this paper, SM privacy is studied by considering the presence of an energy harvesting device (EHD) as a means of masking the user's input load. The user can satisfy part or all of his/her energy needs from the EHD, and hence, less information can be leaked to the UP via the SM. The EHD is typically equipped with a rechargeable energy storage device, i.e., a battery, whose instantaneous energy content limits the user's capability in covering his/her energy usage. Privacy is measured by the information leaked about the user's real energy consumption when the UP observes the energy requested from the grid, which the SM reads and reports to the UP. The minimum information leakage rate is characterized as a computable information theoretic single-letter expression when the EHD battery capacity is either infinite or zero. Numerical results are presented for a discrete binary input load to illustrate the potential privacy gains from the existence of a storage device.Comment: To be published in IEEE ICC201

    Smart Meter Privacy with Renewable Energy and a Finite Capacity Battery

    Full text link
    We address the smart meter (SM) privacy problem by considering the availability of a renewable energy source (RES) and a battery which can be exploited by a consumer to partially hide the consumption pattern from the utility provider (UP). Privacy is measured by the mutual information rate between the consumer's energy consumption and the renewable energy generation process, and the energy received from the grid, where the latter is known by the UP through the SM readings, and the former two are to be kept private. By expressing the information leakage as an additive quantity, we cast the problem as a stochastic control problem, and formulate the corresponding Bellman equations.Comment: To appear in IEEE SPAWC 201

    Universal Privacy Gurantees for Smart Meters

    Get PDF
    Smart meters (SMs) provide advanced monitoring of consumer energy usage, thereby enabling optimized management and control of electricity distribution systems. Unfortunately, the data collected by SMs can reveal information about consumer activity, such as the times at which they run individual appliances. Two approaches have been proposed to tackle the privacy threat posed by such information leakage. One strategy involves manipulating user data before sending it to the utility provider (UP); this approach improves privacy at the cost of reducing the operational insight provided by the SM data to the UP. The alternative strategy employs rechargeable batteries or local energy sources at each consumer site to try decouple energy usage from energy requests. This thesis investigates the latter approach. Understanding the privacy implications of any strategy requires an appropriate privacy metric. A variety of metrics are used to study privacy in energy distribution systems. These include statistical distance metrics, differential privacy, distortion metrics, maximal leakage, maximal α\alpha-leakage and information measures like mutual information. We here use mutual information to measure privacy both because its well understood fundamental properties and because it provides a useful bridge to adjacent fields such as hypothesis testing, estimation, and statistical or machine learning. Privacy leakage under mutual information measures has been studied under a variety of assumptions on the energy consumption of the user with a strong focus on i.i.d. and some exploration of markov processes. Since user energy consumption may be non-stationary, here we seek privacy guarantees that apply for general random process models of energy consumption. Moreover, we impose finite capacity bounds on batteries and include the price of the energy requested from the grid, thus minimizing the information leakage subject to a bound on the resulting energy bill. To that aim we model the energy management unit (EMU) as a deterministic finite-state channel, and adapt the Ahlswede-Kaspi coding strategy proposed for permuting channels to the SM privacy setting. Within this setting, we derive battery policies providing privacy guarantees that hold for any bounded process modelling the energy consumption of the user, including non-ergodic and non-stationary processes. These guarantees are also presented for bounded processes with a known expected average consumption. The optimality of the battery policy is characterized by presenting the probability law of a random process that is tight with respect to the upper bound. Moreover, we derive single letter bounds characterizing the privacy-cost trade off in the presence of variable market price. Finally it is shown that the provided results hold for mutual information, maximal leakage, maximal-alpha leakage and the Arimoto and Sibson channel capacity

    Privacy-preserving energy management techniques and delay-sensitive transmission strategies for smart grids

    Get PDF
    The smart grid (SG) is the enhancement of the traditional electricity grid that allows bidirectional flow of electricity and information through the integration of advanced monitoring, communication and control technologies. In this thesis, we focus on important design problems affecting particularly two critical enabling components of the SG infrastructure : smart meters (SMs) and wireless sensor networks (WSNs). SMs measure the energy consumption of the users and transmit their readings to the utility provider in almost real-time. SM readings enable real-time optimization of load management. However, possible misuse of SM readings raises serious privacy concerns for the users. The challenge is thus to design techniques that can increase the privacy of the users while maintaining the monitoring capabilities SMs provide. Demand-side energy management (EM), achieved thanks to the utilization of storage units and alternative energy sources, has emerged as a potential technique to tackle this challenge. WSNs consist of a large number of low power sensors, which monitor physical parameters and transmit their measurements to control centers (CCs) over wireless links. CCs utilize these measurements to reconstruct the system state. For the reliable management of the SG, near real-time and accurate reconstruction of the system state at the CC is crucial. Thus, low complexity delay-constrained transmission strategies, which enable sensors to accurately transmit their measurements to CCs, should be investigated rigorously. To address these challenges, this dissertation investigates and designs privacy-preserving EM techniques for SMs and delay-constrained transmission strategies for WSNs. The proposed EM techniques provide privacy to SM users while maintaining the operational benefits SMs provide. On the other hand, the proposed transmission strategies enable WSNs to meet low latency transmission requirements, which in turn, facilitate real-time and accurate state reconstruction; and hence, the efficient and robust management of the SG. First, we consider an SM system with energy harvesting and storage units. Representing the system with a discrete-time finite state model, we study stochastic EM policies from a privacy-energy efficiency trade-off perspective, where privacy is measured by information leakage rate and energy efficiency is measured by wasted energy rate. We propose EM policies that take stochastic output load decisions based on the harvested energy, the input load and the state of the battery. For the proposed policies, we characterize the fundamental trade-off between user's privacy and energy efficiency. Second, we consider an SM system with a storage unit. Considering a discrete-time power consumption and pricing model, we study EM policies from a privacy-cost trade-off perspective, where privacy is measured by the load variance as well as mutual information. Assuming non-causal knowledge of the power demand profile and prices, we characterize the optimal EM policy based on the solution of an optimization problem. Then, assuming that the power demand profile is known only causally, we obtain the optimal EM policy based on dynamic programming, and also propose a low complexity heuristic policy. For the proposed policies, we characterize the trade-off between user's privacy and energy cost. Finally, we study the delay-constrained linear transmission (LT) of composite Gaussian measurements from a sensor to a CC over a point-to-point fading channel. Assuming that the channel state information (CSI) is known by both the encoder and decoder, we propose the optimal LT strategy in terms of the average mean-square error (MSE) distortion under a strict delay constraint, and two LT strategies under general delay constraints. Assuming that the CSI is known only by the decoder, we propose the optimal LT strategy in terms of the average MSE distortion under a strict delay constraint.La red de energía inteligente (SG) es la mejora de la red eléctrica tradicional. En esta tesis, nos enfocamos en las problemáticas asociadas al diseño de dos de los componentes más críticos de la infraestructura de la SG : los medidores inteligentes (SMs) y las redes de sensores inalámbricos (WSNs). Los SMs miden el consumo de energía de los usuarios y transmiten sus medidas al proveedor de servicio casi en tiempo real. Las medidas de SM permiten la optimización en tiempo real de la gestión de carga en la red. Sin embargo, el posible mal uso de estas medidas plantea preocupaciones graves en cuanto a la privacidad de los usuarios. El desafío es, por lo tanto, diseñar técnicas que puedan aumentar la privacidad de los usuarios manteniendo las capacidades de supervisión que proveen los SMs. Una solución tecnológica es el diseño de sistemas de gestión de energía (EM) inteligentes compuestos por dispositivos de almacenamiento y generación alternativa de energía. Las WSNs se componen de un gran número de sensores, que miden parámetros físicos y transmiten sus mediciones a los centros de control (CCs) mediante enlaces inalámbricos. Los CCs utilizan estas mediciones para estimar el estado del sistema. Para una gestión fiable de la SG, una buena reconstrucción del estado del sistema en tiempo real es crucial. Por ello, es preciso investigar estrategias de transmisión con estrictos requisitos de complejidad y limitaciones de latencia. Para afrontar estos desafíos, esta tesis investiga y diseña técnicas de EM para preservar la privacidad de los usuarios de SM y estrategias de transmisión para WSNs con limitaciones de latencia. Las técnicas de EM propuestas proporcionan privacidad a los consumidores de energía manteniendo los beneficios operacionales para la SG. Las estrategias de transmisión propuestas permiten a las WSNs satisfacer los requisitos de baja latencia necesarios para la reconstrucción precisa del estado en tiempo real; y por lo tanto, la gestión eficiente y robusta de la SG. En primer lugar, consideramos el diseño de un sistema de SM con una unidad de almacenamiento y generación de energía renovable. Representando el sistema con un modelo de estados finitos y de tiempo discreto, proponemos políticas estocásticas de EM. Para las políticas propuestas, caracterizamos la relación fundamental existente entre la privacidad y la eficiencia de energía del usuario, donde la privacidad se mide mediante la tasa de fuga de información y la eficiencia de energía se mide mediante la tasa de energía perdida. En segundo lugar, consideramos el diseño de un sistema de SM con una unidad de almacenamiento. Considerando un modelo de tiempo discreto, estudiamos la relación existente entre la privacidad y el coste de la energía, donde la privacidad se mide por la variación de la carga, así como la información mutua. Suponiendo que el perfil de la demanda de energía y los precios son conocidos de antemano, caracterizamos la política de EM óptima. Suponiendo que la demanda de energía es conocida sólo para el tiempo actual, obtenemos la política de EM óptima mediante programación dinámica, y proponemos una política heurística de baja complejidad. Para las políticas propuestas, caracterizamos la relación existente entre la privacidad y el coste de energía del usuario. Finalmente, consideramos el diseño de estrategias de transmisión lineal (LT) de mediciones Gaussianas compuestas desde un sensor a un CC sobre un canal punto a punto con desvanecimientos. Suponiendo que la información del estado del canal (CSI) es conocida tanto por el trasmisor como por el receptor, proponemos la estrategia de LT óptima en términos de la distorsión de error cuadrático medio (MSE) bajo una restricción de latencia estricta y dos estrategias de LT para restricciones de latencia arbitrarias. Suponiendo que la CSI es conocida sólo en el receptor, proponemos la estrategia de LT óptima en términos de la distorsión de MSE bajo una restricción de latencia estricta.La xarxa d'energia intel·ligent (SG) és la millora de la xarxa elèctrica tradicional. En aquesta tesi, ens enfoquem en les problemàtiques associades al disseny de dos dels components més crítics de la infraestructura de la SG : els mesuradors de consum intel·ligents(SMs) i les xarxes de sensors sense fils (WSNs).Els SMs mesuren el consum d'energia dels usuaris i transmeten les seves mesures al proveïdor de servei gairebé en temps real. Les mesures de SM permeten l'optimització en temps real de la gestió de càrrega a la xarxa. No obstant això, el possible mal ús d'aquestes mesures planteja preocupacions greus en quant a la privacitat dels usuaris. El desafiament és, per tant, dissenyar tècniques que puguin augmentar la privadesa dels usuaris mantenint les capacitats de supervisió que proveeixen els SMs. Una solució tecnològica és el disseny de sistemes de gestió d'energia (EM) intel·ligents compostos per dispositius d'emmagatzematge i generació alternativa d'energia.Les WSNs es componen d'un gran nombre de sensors, que mesuren paràmetres físics i transmeten les seves mesures als centres de control (CCs) mitjançant enllaços sense fils. Els CCs utilitzen aquestes mesures per estimar l'estat del sistema. Per a una gestió fiable de la SG, una bona reconstrucció de l'estat del sistema en temps real és crucial. Per això, cal investigar estratègies de transmissió amb estrictes requisits de complexitat i limitacions de latència. Per d'afrontar aquests desafiaments, aquesta tesi investiga i dissenya tècniques d'EM per preservar la privacitat dels usuaris de SM i estratègies de transmissió per WSNs amb limitacions de latència. Les tècniques d'EM propostes proporcionen privacitats als consumidors d'energia mantenint els beneficis operacionals per la SG. Les estratègies de transmissió proposades permeten a les WSNs satisfer els requisits de baixa latència necessaris per a la reconstrucció precisa de l'estat en temps real; i per tant, la gestió eficient i robusta de la SG.En primer lloc, considerem el disseny d'un sistema de SM amb una unitat d'emmagatzematge i generació d'energia renovable. Representant el sistema amb un model d'estats finits i de temps discret, proposem polítiques estocàstiques d'EM. Per a les polítiques propostes, caracteritzem la relació fonamental existent entre la privadesa i l'eficiència d'energia de l'usuari, on la privacitat es mesura mitjançant la taxa de fugida d'informació i l'eficiència d'energia es mesura mitjançant la taxa d'energia perduda.En segon lloc, considerem el disseny d'un sistema de SM amb una unitat d'emmagatzematge. Considerant un model de temps discret, estudiem la relació existent entre la privacitat el cost de l'energia, on la privacitat es mesura per la variació de la càrrega, així com mitjançant la informació mútua. Suposant que la corba de la demanda d'energia i els preus són coneguts per endavant, caracteritzem la política d'EM òptima. Suposant que la demanda d'energia és coneguda només per al temps actual, obtenim la política d'EM òptima mitjançant programació dinàmica, i proposem una política heurística de baixa complexitat. Per a les polítiques propostes, caracteritzem la relació existent entre la privacitat i el cost d'energia de l'usuari.Finalment, considerem el disseny d'estratègies de transmissió lineal (LT) de mesures Gaussianes compostes des d'un sensor a un CC sobre un canal punt a punt amb esvaïments. Suposant que la informació de l'estat del canal (CSI) és coneguda tant pel transmissor com pel receptor, proposem l'estratègia de LT òptima en termes de la distorsió d'error quadràtic mitjà (MSE) sota una restricció de latència estricta. A més, proposem dues estratègies de LT per a restriccions de latència arbitràries. Finalment, suposant que la CSI és coneguda només en el receptor, proposem l'estratègia de LT òptima en termes de la distorsió de MSE sota una restricció de latència estricta

    The design and optimization of cooperative mobile edge

    Get PDF
    As the world is charging towards the Internet of Things (IoT) era, an enormous amount of sensors will be rapidly empowered with internet connectivity. Besides the fact that the end devices are getting more diverse, some of them are also becoming more powerful, such that they can function as standalone mobile computing units with multiple wireless network interfaces. At the network end, various facilities are also pushed to the mobile edge to foster internet connections. Distributed small scale cloud resources and green energy harvesters can be directly attached to the deployed heterogeneous base stations. Different from the traditional wireless access networks, where the only dynamics come from the user mobility, the evolving mobile edge will be operated in the constantly changing and volatile environment. The harvested green energy will be highly dependent on the available energy sources, and the dense deployment of a variety of wireless access networks will result in intense radio resource contention. Consequently, the wireless networks are facing great challenges in terms of capacity, latency, energy/spectrum efficiency, and security. Equivalently, balancing the dynamic network resource demand and supply is essential to the smooth network operation. Leveraging the broadcasting nature of wireless data transmission, network nodes can cooperate with each other by either allowing users to connect with multiple base stations simultaneously or offloading user workloads to neighboring base stations. Moreover, grid facilitated and radio frequency signal enabled renewable energy sharing among network nodes are introduced in this dissertation. In particular, the smart grid can transfer the green energy harvested by each individual network node from one place to another. The network node can also transmit energy from one to another using radio frequency energy transfer. This dissertation addresses the cooperative network resource management to improve the energy efficiency of the mobile edge. First, the energy efficient cooperative data transmission scheme is designed to cooperatively allocate the radio resources of the wireless networks, including spectrum and power, to the mobile users. Then, the cooperative data transmission and wireless energy sharing scheme is designed to optimize both the energy and data transmission in the network. Finally, the cooperative data transmission and wired energy sharing scheme is designed to optimize the energy flow within the smart grid and the data transmission in the network. As future work, how to motivate multiple parties to cooperate and how to guarantee the security of the cooperative mobile edge is discussed. On one hand, the incentive scheme for each individual network node with distributed storage and computing resources is designed to improve network performance in terms of latency. On the other hand, how to leverage network cooperation to balance the tradeoff between efficiency (energy efficiency and latency) and security (confidentiality and privacy) is expounded
    corecore