1,123 research outputs found

    A Review of the Open Educational Resources (OER) Movement: Achievements, Challenges, and New Opportunities

    Get PDF
    Examines the state of the foundation's efforts to improve educational opportunities worldwide through universal access to and use of high-quality academic content

    e-Science Infrastructure for the Social Sciences

    Get PDF
    When the term „e-Science“ became popular, it frequently was referred to as “enhanced science” or “electronic science”. More telling is the definition ‘e-Science is about global collaboration in key areas of science and the next generation of infrastructure that will enable it’ (Taylor, 2001). The question arises to what extent can the social sciences profit from recent developments in e- Science infrastructure? While computing, storage and network capacities so far were sufficient to accommodate and access social science data bases, new capacities and technologies support new types of research, e.g. linking and analysing transactional or audio-visual data. Increasingly collaborative working by researchers in distributed networks is efficiently supported and new resources are available for e-learning. Whether these new developments become transformative or just helpful will very much depend on whether their full potential is recognized and creatively integrated into new research designs by theoretically innovative scientists. Progress in e-Science was very much linked to the vision of the Grid as “a software infrastructure that enables flexible, secure, coordinated resource sharing among dynamic collections of individuals, institutions and resources’ and virtually unlimited computing capacities (Foster et al. 2000). In the Social Sciences there has been considerable progress in using modern IT- technologies for multilingual access to virtual distributed research databases across Europe and beyond (e.g. NESSTAR, CESSDA – Portal), data portals for access to statistical offices and for linking access to data, literature, project, expert and other data bases (e.g. Digital Libraries, VASCODA/SOWIPORT). Whether future developments will need GRID enabling of social science databases or can be further developed using WEB 2.0 support is currently an open question. The challenges here are seamless integration and interoperability of data bases, a requirement that is also stipulated by internationalisation and trans-disciplinary research. This goes along with the need for standards and harmonisation of data and metadata. Progress powered by e- infrastructure is, among others, dependent on regulatory frameworks and human capital well trained in both, data science and research methods. It is also dependent on sufficient critical mass of the institutional infrastructure to efficiently support a dynamic research community that wants to “take the lead without catching up”.

    The Federal Big Data Research and Development Strategic Plan

    Get PDF
    This document was developed through the contributions of the NITRD Big Data SSG members and staff. A special thanks and appreciation to the core team of editors, writers, and reviewers: Lida Beninson (NSF), Quincy Brown (NSF), Elizabeth Burrows (NSF), Dana Hunter (NSF), Craig Jolley (USAID), Meredith Lee (DHS), Nishal Mohan (NSF), Chloe Poston (NSF), Renata Rawlings-Goss (NSF), Carly Robinson (DOE Science), Alejandro Suarez (NSF), Martin Wiener (NSF), and Fen Zhao (NSF). A national Big Data1 innovation ecosystem is essential to enabling knowledge discovery from and confident action informed by the vast resource of new and diverse datasets that are rapidly becoming available in nearly every aspect of life. Big Data has the potential to radically improve the lives of all Americans. It is now possible to combine disparate, dynamic, and distributed datasets and enable everything from predicting the future behavior of complex systems to precise medical treatments, smart energy usage, and focused educational curricula. Government agency research and public-private partnerships, together with the education and training of future data scientists, will enable applications that directly benefit society and the economy of the Nation. To derive the greatest benefits from the many, rich sources of Big Data, the Administration announced a “Big Data Research and Development Initiative” on March 29, 2012.2 Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the Office of Science and Technology Policy, stated that the initiative “promises to transform our ability to use Big Data for scientific discovery, environmental and biomedical research, education, and national security.” The Federal Big Data Research and Development Strategic Plan (Plan) builds upon the promise and excitement of the myriad applications enabled by Big Data with the objective of guiding Federal agencies as they develop and expand their individual mission-driven programs and investments related to Big Data. The Plan is based on inputs from a series of Federal agency and public activities, and a shared vision: We envision a Big Data innovation ecosystem in which the ability to analyze, extract information from, and make decisions and discoveries based upon large, diverse, and real-time datasets enables new capabilities for Federal agencies and the Nation at large; accelerates the process of scientific discovery and innovation; leads to new fields of research and new areas of inquiry that would otherwise be impossible; educates the next generation of 21st century scientists and engineers; and promotes new economic growth. The Plan is built around seven strategies that represent key areas of importance for Big Data research and development (R&D). Priorities listed within each strategy highlight the intended outcomes that can be addressed by the missions and research funding of NITRD agencies. These include advancing human understanding in all branches of science, medicine, and security; ensuring the Nation’s continued leadership in research and development; and enhancing the Nation’s ability to address pressing societal and environmental issues facing the Nation and the world through research and development

    The Federal Big Data Research and Development Strategic Plan

    Get PDF
    This document was developed through the contributions of the NITRD Big Data SSG members and staff. A special thanks and appreciation to the core team of editors, writers, and reviewers: Lida Beninson (NSF), Quincy Brown (NSF), Elizabeth Burrows (NSF), Dana Hunter (NSF), Craig Jolley (USAID), Meredith Lee (DHS), Nishal Mohan (NSF), Chloe Poston (NSF), Renata Rawlings-Goss (NSF), Carly Robinson (DOE Science), Alejandro Suarez (NSF), Martin Wiener (NSF), and Fen Zhao (NSF). A national Big Data1 innovation ecosystem is essential to enabling knowledge discovery from and confident action informed by the vast resource of new and diverse datasets that are rapidly becoming available in nearly every aspect of life. Big Data has the potential to radically improve the lives of all Americans. It is now possible to combine disparate, dynamic, and distributed datasets and enable everything from predicting the future behavior of complex systems to precise medical treatments, smart energy usage, and focused educational curricula. Government agency research and public-private partnerships, together with the education and training of future data scientists, will enable applications that directly benefit society and the economy of the Nation. To derive the greatest benefits from the many, rich sources of Big Data, the Administration announced a “Big Data Research and Development Initiative” on March 29, 2012.2 Dr. John P. Holdren, Assistant to the President for Science and Technology and Director of the Office of Science and Technology Policy, stated that the initiative “promises to transform our ability to use Big Data for scientific discovery, environmental and biomedical research, education, and national security.” The Federal Big Data Research and Development Strategic Plan (Plan) builds upon the promise and excitement of the myriad applications enabled by Big Data with the objective of guiding Federal agencies as they develop and expand their individual mission-driven programs and investments related to Big Data. The Plan is based on inputs from a series of Federal agency and public activities, and a shared vision: We envision a Big Data innovation ecosystem in which the ability to analyze, extract information from, and make decisions and discoveries based upon large, diverse, and real-time datasets enables new capabilities for Federal agencies and the Nation at large; accelerates the process of scientific discovery and innovation; leads to new fields of research and new areas of inquiry that would otherwise be impossible; educates the next generation of 21st century scientists and engineers; and promotes new economic growth. The Plan is built around seven strategies that represent key areas of importance for Big Data research and development (R&D). Priorities listed within each strategy highlight the intended outcomes that can be addressed by the missions and research funding of NITRD agencies. These include advancing human understanding in all branches of science, medicine, and security; ensuring the Nation’s continued leadership in research and development; and enhancing the Nation’s ability to address pressing societal and environmental issues facing the Nation and the world through research and development

    Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic

    Get PDF
    Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic (March 25 - 27, 2018 -- The University of New Hampshire) paired two of NSF\u27s 10 Big Ideas: Navigating the New Arctic and Growing Convergence Research at NSF. During this event, participants assessed economic, environmental, and social impacts of Arctic change on New England and established convergence research initiatives to prepare for, adapt to, and respond to these effects. Shipping routes through an ice-free Northwest Passage in combination with modifications to ocean circulation and regional climate patterns linked to Arctic ice melt will affect trade, fisheries, tourism, coastal ecology, air and water quality, animal migration, and demographics not only in the Arctic but also in lower latitude coastal regions such as New England. With profound changes on the horizon, this is a critical opportunity for New England to prepare for uncertain yet inevitable economic and environmental impacts of Arctic change

    Common Data and Technological Partnership - The Foundation for the Development of Smart Cities - Poznań Case Study

    Get PDF
    Over the recent years communities have been working towards changing the paradigm of city development into the so-called smart approaches. While various revolutionary solutions have been deployed to make the cities smarter, we believe that a more evolutionary path makes it easier for the cities to change into smart ecosystems. Such an evolutionary path is possible with the right foundation. In this paper we discuss such a foundation that has been making the city of Poznań, Poland, smarter over the last 20 years, and opens opportunities for employing the Citizen Science model of smart city development. This foundation relates to the combination of the creation of a common data space, and the technological partnership with a research and development center and research cyberinfrastructure operator such as the Poznań Supercomputing and Networking Center

    From SpaceStat to CyberGIS: Twenty Years of Spatial Data Analysis Software

    Get PDF
    This essay assesses the evolution of the way in which spatial data analytical methods have been incorporated into software tools over the past two decades. It is part retrospective and prospective, going beyond a historical review to outline some ideas about important factors that drove the software development, such as methodological advances, the open source movement and the advent of the internet and cyberinfrastructure. The review highlights activities carried out by the author and his collaborators and uses SpaceStat, GeoDa, PySAL and recent spatial analytical web services developed at the ASU GeoDa Center as illustrative examples. It outlines a vision for a spatial econometrics workbench as an example of the incorporation of spatial analytical functionality in a cyberGIS.

    Cyberinfrastructure For Knowledge Sharing

    Get PDF
    Knowledge sharing is at the root of scholarship and science. A hypothesis is formulated, research performed, experimental materials designed or acquired, tests run, data obtained and analysed, and finally a publication. The scholar writes a document outlining the work for dissemination in a scholarly journal. If it passes the litmus test of peer review, the research enters the canon of the discipline. Over time, it may become a classic with hundreds of citations. Or, more likely, it will join the vast majority of research, with less than two citations over its lifetime, its asserted contributions to the canon increasingly difficult to find – because, in our current world, citations are the best measure of relevance-based search available. But no matter the fate of an individual publication, the system of publishing is a system of sharing knowledge. We publish as scholars and scientists to share our discoveries with the world (and, of course, to be credited with those discoveries through additional research funding, tenure, and more). And this system has served science extraordinarily well over the more than three hundred years since scholarly journals were birthed in France and England

    Balancing Access to Data And Privacy. A review of the issues and approaches for the future

    Get PDF
    Access to sensitive micro data should be provided using remote access data enclaves. These enclaves should be built to facilitate the productive, high-quality usage of microdata. In other words, they should support a collaborative environment that facilitates the development and exchange of knowledge about data among data producers and consumers. The experience of the physical and life sciences has shown that it is possible to develop a research community and a knowledge infrastructure around both research questions and the different types of data necessary to answer policy questions. In sum, establishing a virtual organization approach would provided the research community with the ability to move away from individual, or artisan, science, towards the more generally accepted community based approach. Enclave should include a number of features: metadata documentation capacity so that knowledge about data can be shared; capacity to add data so that the data infrastructure can be augmented; communication capacity, such as wikis, blogs and discussion groups so that knowledge about the data can be deepened and incentives for information sharing so that a community of practice can be built. The opportunity to transform micro-data based research through such a organizational infrastructure could potentially be as far-reaching as the changes that have taken place in the biological and astronomical sciences. It is, however, an open research question how such an organization should be established: whether the approach should be centralized or decentralized. Similarly, it is an open research question as to the appropriate metrics of success, and the best incentives to put in place to achieve success.Methodology for Collecting, Estimating, Organizing Microeconomic Data
    corecore