1,922 research outputs found

    An Exploratory Study of Patient Falls

    Get PDF
    Debate continues between the contribution of education level and clinical expertise in the nursing practice environment. Research suggests a link between Baccalaureate of Science in Nursing (BSN) nurses and positive patient outcomes such as lower mortality, decreased falls, and fewer medication errors. Purpose: To examine if there a negative correlation between patient falls and the level of nurse education at an urban hospital located in Midwest Illinois during the years 2010-2014? Methods: A retrospective crosssectional cohort analysis was conducted using data from the National Database of Nursing Quality Indicators (NDNQI) from the years 2010-2014. Sample: Inpatients aged ≥ 18 years who experienced a unintentional sudden descent, with or without injury that resulted in the patient striking the floor or object and occurred on inpatient nursing units. Results: The regression model was constructed with annual patient falls as the dependent variable and formal education and a log transformed variable for percentage of certified nurses as the independent variables. The model overall is a good fit, F (2,22) = 9.014, p = .001, adj. R2 = .40. Conclusion: Annual patient falls will decrease by increasing the number of nurses with baccalaureate degrees and/or certifications from a professional nursing board-governing body

    An ensemble model for predictive energy performance:Closing the gap between actual and predicted energy use in residential buildings

    Get PDF
    The design stage of a building plays a pivotal role in influencing its life cycle and overall performance. Accurate predictions of a building's performance are crucial for informed decision-making, particularly in terms of energy performance, given the escalating global awareness of climate change and the imperative to enhance energy efficiency in buildings. However, a well-documented energy performance gap persists between actual and predicted energy consumption, primarily attributed to the unpredictable nature of occupant behavior.Existing methodologies for predicting and simulating occupant behavior in buildings frequently neglect or exclusively concentrate on particular behaviors, resulting in uncertainties in energy performance predictions. Machine learning approaches have exhibited increased accuracy in predicting occupant energy behavior, yet the majority of extant studies focus on specific behavior types rather than investigating the interactions among all contributing factors. This dissertation delves into the building energy performance gap, with a particular emphasis on the influence of occupants on energy performance. A comprehensive literature review scrutinizes machine learning models employed for predicting occupants' behavior in buildings and assesses their performance. The review uncovers knowledge gaps, as most studies are case-specific and lack a consolidated database to examine diverse behaviors across various building types.An ensemble model integrating occupant behavior parameters is devised to enhance the accuracy of energy performance predictions in residential buildings. Multiple algorithms are examined, with the selection of algorithms contingent upon evaluation metrics. The ensemble model is validated through a case study that compares actual energy consumption with the predictions of the ensemble model and an EnergyPlus simulation that takes occupant behavior factors into account.The findings demonstrate that the ensemble model provides considerably more accurate predictions of actual energy consumption compared to the EnergyPlus simulation. This dissertation also addresses the research limitations, including the reusability of the model and the requirement for additional datasets to bolster confidence in the model's applicability across diverse building types and occupant behavior patterns.In summary, this dissertation presents an ensemble model that endeavors to bridge the gap between actual and predicted energy usage in residential buildings by incorporating occupant behavior parameters, leading to more precise energy performance predictions and promoting superior energy management strategies

    Online monitoring and control of voltage stability margin via machine learning-based adaptive approaches

    Get PDF
    Voltage instability or voltage collapse, observed in many blackout events, poses a significant threat to power system reliability. To prevent voltage collapse, the countermeasures suggested by the post analyses of the blackouts usually include the adoption of better online voltage stability monitoring and control tools. Recently, the variability and uncertainty imposed by the increasing penetration of renewable energy further magnifies this need. This work investigates the methodologies for online voltage stability margin (VSM) monitoring and control in the new era of smart grid and big data. It unleashes the value of online measurements and leverages the fruitful results in machine learning and demand response. An online VSM monitoring approach based on local regression and adaptive database is proposed. Considering the increasing variability and uncertainty of power system operation, this approach utilizes the locality of underlying pattern between VSM and reactive power reserve (RPR), and can adapt to the changing condition of system. LASSO (Least Absolute Shrinkage and Selection Operator) is tailored to solve the local regression problem so as to mitigate the curse of dimensionality for large-scale system. Along with the VSM prediction, its prediction interval is also estimated simultaneously in a simple but effective way, and utilized as an evidence to trigger the database updating. IEEE 30-bus system and a 60,000-bus large system are used to test and demonstrate the proposed approach. The results show that the proposed approach can be successfully employed in online voltage stability monitoring for real size systems, and the adaptivity of model and data endows the proposed approach with the advantage in the circumstances where large and unforeseen changes of system condition are inevitable. In case degenerative system conditions are identified, a control strategy is needed to steer the system back to security. A model predictive control (MPC) based framework is proposed to maintain VSM in near-real-time while minimizing the control cost. VSM is locally modeled as a linear function of RPRs based on the VSM monitoring tool, which convexifies the intricate VSM-constrained optimization problem. Thermostatically controlled loads (TCLs) are utilized through a demand response (DR) aggregator as the efficient measure to enhance voltage stability. For such an advanced application of the energy management system (EMS), plug-and-play is a necessary feature that makes the new controller really applicable in a cooperative operating environment. In this work, the cooperation is realized by a predictive interface strategy, which predicts the behaviors of relevant controllers using the simple models declared and updated by those controllers. In particular, the customer dissatisfaction, defined as the cumulative discomfort caused by DR, is explicitly constrained in respect of customers\u27 interests. This constraint maintains the applicability of the control. IEEE 30-bus system is used to demonstrate the proposed control strategy. Adaptivity and proactivity lie at the heart of the proposed approach. By making full use of real-time information, the proposed approach is competent at the task of VSM monitoring and control in a non-stationary and uncertain operating environment
    • …
    corecore