30,019 research outputs found

    Energy storage impact on light rail developments

    Get PDF
    – Smart cities imply a range of efficient mobility solutions for people and goods at the same time as minimising the environmental burden. This short paper focuses on Light Rail and particularly Tram systems as having advantages in responding to these needs and is the first stage on a longer project which will provide greater detail in due course. It further considers the alternatives for powering the system as an important component in the development of a clean, attractive and economic urban mass transit resource for the smart city. This leads to energy storage as a potential alternative to continuous energy supply such as overhead cables, and is followed by a comparison of various methods of on-board energy storage including batteries, supercapacitors and hydrogen. Interim conclusions are presented

    Exploring the potential of crowd sourced data to map commuter points of interest : a case study of Johannesburg

    Get PDF
    Abstract: Modern African cities are faced with various mobility and transportation challenges. In developing smart sustainable cities, city planners need to create a balance between supply and demand for public transportation. Development of multi-mobility mode models has contemporarily received a special interest in smart cities development. Globally, the use of bike sharing services to complete the first kilometre or last kilometre of the trip has been highly received, with commuters using either rail or road mobility modes for the middle section of their trip. Within the developing world context, the use of multi-mobility modes in daily commuting is still new, and little research has been done to guide this. Notwithstanding the influence of uncertainties and fragmentation over demand and supply in public transportation provision. In the South Africa context, various modes of public transportation have been developed which seek to be smart, sustainable and efficient such as the fast train (Gautrain), Bus rapid transport (Rea Vaya and Gaubus) and Bikes sharing platforms (Upcycles), however most of these modes are currently not spatially connected. Hence the researcher sought to develop a stepping stone in planning for future mobility demand. Using an explorative methodology, the authors collected quantitative and spatial data in the form of land-use data and crowd sourced data (from twitter) to map commuter points of interest in and around the city of Johannesburg. The results reveal hot and cold spots in the city. The hot spots reveal areas where commuters frequently travel to, and when overlaid with transportation data, we are able to identify potential locations to develop new transportation hubs as these will overtime become key points of interest

    Carbon Free Boston: Transportation Technical Report

    Get PDF
    Part of a series of reports that includes: Carbon Free Boston: Summary Report; Carbon Free Boston: Social Equity Report; Carbon Free Boston: Technical Summary; Carbon Free Boston: Buildings Technical Report; Carbon Free Boston: Waste Technical Report; Carbon Free Boston: Energy Technical Report; Carbon Free Boston: Offsets Technical ReportOVERVIEW: Transportation connects Boston’s workers, residents and tourists to their livelihoods, health care, education, recreation, culture, and other aspects of life quality. In cities, transit access is a critical factor determining upward mobility. Yet many urban transportation systems, including Boston’s, underserve some populations along one or more of those dimensions. Boston has the opportunity and means to expand mobility access to all residents, and at the same time reduce GHG emissions from transportation. This requires the transformation of the automobile-centric system that is fueled predominantly by gasoline and diesel fuel. The near elimination of fossil fuels—combined with more transit, walking, and biking—will curtail air pollution and crashes, and dramatically reduce the public health impact of transportation. The City embarks on this transition from a position of strength. Boston is consistently ranked as one of the most walkable and bikeable cities in the nation, and one in three commuters already take public transportation. There are three general strategies to reaching a carbon-neutral transportation system: ‱ Shift trips out of automobiles to transit, biking, and walking;1 ‱ Reduce automobile trips via land use planning that encourages denser development and affordable housing in transit-rich neighborhoods; ‱ Shift most automobiles, trucks, buses, and trains to zero-GHG electricity. Even with Boston’s strong transit foundation, a carbon-neutral transportation system requires a wholesale change in Boston’s transportation culture. Success depends on the intelligent adoption of new technologies, influencing behavior with strong, equitable, and clearly articulated planning and investment, and effective collaboration with state and regional partners.Published versio

    Keys to effective transit strategies for commuting

    Get PDF
    Commuting poses relevant challenges to cities\u2019 transport systems. Various studies have identified transit as a tool to enhance sustainability, efficiency and quality of the commute. The scope of this paper is to present strategies that increase public transport attractiveness and positively impact its modal share, looking at some case studies and underlining key success factors and possible elements of replica to be ultimately planned in some of the contexts of the Interreg project SMART-COMMUTING. The strategies analyzed in this paper concern prices and fares, service expansion, service improvements, usage of vehicle locators and other technology, changes to the built environment. Relevant gains in transit modal share are more easily achievable when considering integrations between various strategies, thus adapting and tailoring the planning process to the specific context

    Urban Goods Movement and Local Climate Action Plans: Assessing Strategies to Reduce Greenhouse Gas Emissions from Urban Freight Transportation

    Get PDF
    This report examines how freight transport/goods movement has been addressed in U.S. city climate action planning. Transportation generally is a major contributor of greenhouse gas (GHG) emissions, and freight transport represents a growing component of transportation’s share. Almost all climate action plans (CAPs) address transportation generally, but we wished to focus on efforts to reduce GHG emissions from freight transport specifically. We analyzed 27 advanced local CAPs to determine the degree to which freight transport was targeted in goals and strategies to reduce GHG emissions. We found only six CAPs that included direct measures or programs to reduce freight emissions. Many of the CAPs mentioned general transportation objectives such as lowering vehicle miles traveled or reducing emissions from city-owned vehicle fleets, but most did not include strategies or actions that explicitly targeted freight transport. We identified the specific strategies and actions that cities are taking to address GHG emissions from freight transport, such as working with the freight community to promote anti-idling and encourage transitions to electric and alternative fuel delivery vehicles. We also analyzed freight transport plans relevant for the same cities, and found that most do not explicitly mention reducing GHG emissions. Most of the freight plans are focused on improving reliability and efficiency of freight movement, which would likely have the ancillary benefit of reducing GHG emissions, but that goal was not explicitly targeted in most of these plans. Based on our findings, we recommend that cities specifically target freight transport goals and strategies in their CAPs and better coordinate with planners developing freight transport plans to identify GHG emission reduction approaches

    Transport and traffic analytics in smart cities

    Get PDF
    Vast generation of high resolution spatial and temporal data, particularly in urban settings, started revolution in mobility and human behavior related research. However, after initial wave of first data oriented insights their integration into ongoing, and traditionally used, planning and decision making processes seems to be hindered by still opened challenges. These challenges suggest need for stronger integration between data analytics and dedicated domain knowledge. Special session on Transport and Traffic Analytics in Smart Cities tackles these challenges from transport planners’ point of view. Collection of papers aims at identifying the existing gaps and bridging between related disciplines with aspiration to foster faster integration of data driven insights into smart cities’ dedicated planning

    Motion Hub, the implementation of an integrated end-to-end journey planner

    Get PDF
    © AET 2018 and contributorsThe term “eMobility” and been brought into use partly to encourage use of electric vehicles but more especially to focus on the transformation from electric vehicles as products to electrified personal transport as a service. Under the wider umbrella of Mobility-as-a-Service (MaaS) this has accompanied the growth of car clubs in general. The Motion Hub project has taken this concept a step further to include not just the car journey but the end-to-end journey. The booking of multifaceted journeys is well established in the leisure and business travel industries, where flights, car hire and hotels are regularly booked with a single transaction on a website. To complete an end-to-end scenario Motion Hub provides integration of public transport with electric vehicle and electric bike use. Building on a previous InnovateUK funded project that reviewed the feasibility of an integrated journey management system, the Motion Hub project has brought together a Car Club, a University, and EV infrastructure company, a bicycle hire company with electric bicycle capabilities and a municipality to implement a scheme and test it on the ground. At the heart of the project has been the development of a website that integrates the public transport booking with the hire of electric vehicles or bicycles. Taking the implementation to a fully working system accessible to members of the public presents a number of significant challenges. This paper identifies those challenges, details the progress and success of the Motion Hub and sets out the lessons learnt about end-to-end travel. The project was fortunate to have as its municipal partner the Council of a sizeable South East England town, Southend-on-Sea. With a population of 174,800 residents with good road, rail and air links there is considerable traffic in and out of the town. The Council has already shown its commitment to sustainable transport. In the previous six years it had installed a number of electric vehicle charging points for use by the public and latterly had trialled car club activity. An early challenge in the project was the location of physical infrastructure in an already crowded municipal space in order to provide the local ‘spokes’ of the system. In addition to its existing charging points, Southend now has four locations where electric cars can be hired, five where electric bikes are available and the local resources to maintain these assets. Combining a number of web-based services and amalgamating their financial transactions is relatively straightforward. However, introducing the potential for public transport ticketing as well raises additional security, scale and financial constraints. The project has engaged with major players and regulators across the public transport industry.Peer reviewe
    • 

    corecore