598 research outputs found

    Smart Loads for Improving the Fault-Ride-Through Capability of Fixed-Speed Wind Generators in Microgrids

    No full text
    In this paper, the smart load formed by the back-to-back electric springs (ES-B2B) is evaluated for improving the fault-ride through (FRT) capability of the wind turbine generation system (WTGS) with fixed speed induction generator (FSIG) for the first time. The characteristic of the ES-B2B in providing fast reactive power compensation is found to be highly useful in recovering the rotor speed of FSIGs when a fault event occurs. This is a new function in addition to the original function of stabilizing mains voltage against renewable generations. A simple and yet effective controller is then developed for the ES-B2B in order to ensure fast response. The ES-B2B based smart load and the proposed control have been tested in Matlab/Simulink and Real-Time Digital Simulator (RTDS) for the evaluation of i) the reactive power compensation capability of ES-B2B, ii) the effectiveness of the proposed control of ES-B2B for FRT support, and iii) a comparison of distributed ES-B2Bs with centralized STATCOM in providing distributed FRT support in different grid topologies

    Evolution of microgrids with converter-interfaced generations: Challenges and opportunities

    Full text link
    © 2019 Elsevier Ltd Although microgrids facilitate the increased penetration of distributed generations (DGs) and improve the security of power supplies, they have some issues that need to be better understood and addressed before realising the full potential of microgrids. This paper presents a comprehensive list of challenges and opportunities supported by a literature review on the evolution of converter-based microgrids. The discussion in this paper presented with a view to establishing microgrids as distinct from the existing distribution systems. This is accomplished by, firstly, describing the challenges and benefits of using DG units in a distribution network and then those of microgrid ones. Also, the definitions, classifications and characteristics of microgrids are summarised to provide a sound basis for novice researchers to undertake ongoing research on microgrids

    Next-Generation Shipboard DC Power System: Introduction Smart Grid and dc Microgrid Technologies into Maritime Electrical Networks

    Get PDF
    In recent years, evidence has suggested that the global energy system is on the verge of a drastic revolution. The evolutionary development in power electronic technologies, the emergence of high-performance energy storage devices, and the ever-increasing penetration of renewable energy sources (RESs) are commonly recognized as the major driving forces of the revolution. The explosion in consumer electronics is also powering this change. In this context, dc power distribution technologies have made a comeback and keep gaining a commendable increase in research interest and industrial applications. In addition, the concept of flexible and smart distribution has also been proposed, which tends to exploit distributed generation and pack together the distributed RESs and local electrical loads as an independent and self-sustainable entity, namely a microgrid. At present, research in the area of dc microgrids has investigated and developed a series of advanced methods in control, management, and objective-oriented optimization that would establish the technical interface enabling future applications in multiple industrial areas, such as smart buildings, electric vehicles, aerospace/aircraft power systems, and maritime power systems

    Technical solutions for low-voltage microgrid concept

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    DC & Hybrid Micro-Grids

    Get PDF
    This book is a printed version of the papers published in the Special Issue “DC & Hybrid Microgrids” of Applied Sciences. This Special Issue, co-organized by the University of Pisa, Italy and Østfold University College in Norway, has collected nine papers and the editorial, from 28 submitted, with authors from Asia, North America and Europe. The published articles provide an overview of the most recent research advances in direct current (DC) and hybrid microgrids, exploiting the opportunities offered by the use of renewable energy sources, battery energy storage systems, power converters, innovative control and energy management strategies

    Development of Robust and Dynamic Control Solutions for Energy Storage Enabled Hybrid AC/DC Microgrids

    Get PDF
    Development of Robust and Dynamic Control Solutions for Energy Storage Enabled Hybrid AC/DC Microgrid

    Offshore Wind Farm-Grid Integration: A Review on Infrastructure, Challenges, and Grid Solutions

    Get PDF
    Recently, the penetration of renewable energy sources (RESs) into electrical power systems is witnessing a large attention due to their inexhaustibility, environmental benefits, storage capabilities, lower maintenance and stronger economy, etc. Among these RESs, offshore wind power plants (OWPP) are ones of the most widespread power plants that have emerged with regard to being competitive with other energy technologies. However, the application of power electronic converters (PECs), offshore transmission lines and large substation transformers result in considerable power quality (PQ) issues in grid connected OWPP. Moreover, due to the installation of filters for each OWPP, some other challenges such as voltage and frequency stability arise. In this regard, various customs power devices along with integration control methodologies have been implemented to deal with stated issues. Furthermore, for a smooth and reliable operation of the system, each country established various grid codes. Although various mitigation schemes and related standards for OWPP are documented separately, a comprehensive review covering these aspects has not yet addressed in the literature. The objective of this study is to compare and relate prior as well as latest developments on PQ and stability challenges and their solutions. Low voltage ride through (LVRT) schemes and associated grid codes prevalent for the interconnection of OWPP based power grid have been deliberated. In addition, various PQ issues and mitigation options such as FACTS based filters, DFIG based adaptive and conventional control algorithms, ESS based methods and LVRT requirements have been summarized and compared. Finally, recommendations and future trends for PQ improvement are highlighted at the end
    • 

    corecore