5 research outputs found

    Light Auditor: Power Measurement Can Tell Private Data Leakage Through IoT Covert Channels

    Get PDF
    Despite many conveniences of using IoT devices, they have suffered from various attacks due to their weak security. Besides well-known botnet attacks, IoT devices are vulnerable to recent covert-channel attacks. However, no study to date has considered these IoT covert-channel attacks. Among these attacks, researchers have demonstrated exfiltrating users\u27 private data by exploiting the smart bulb\u27s capability of infrared emission. In this paper, we propose a power-auditing-based system that defends the data exfiltration attack on the smart bulb as a case study. We first implement this infrared-based attack in a lab environment. With a newly-collected power consumption dataset, we pre-process the data and transform them into two-dimensional images through Continous Wavelet Transformation (CWT). Next, we design a two-dimensional convolutional neural network (2D-CNN) model to identify the CWT images generated by malicious behavior. Our experiment results show that the proposed design is efficient in identifying infrared-based anomalies: 1) With much fewer parameters than transfer-learning classifiers, it achieves an accuracy of 88% in identifying the attacks, including unseen patterns. The results are similarly accurate as the sophisticated transfer-learning CNNs, such as AlexNet and GoogLeNet; 2) We validate that our system can classify the CWT images in real time

    Learning-Based Ubiquitous Sensing For Solving Real-World Problems

    Get PDF
    Recently, as the Internet of Things (IoT) technology has become smaller and cheaper, ubiquitous sensing ability within these devices has become increasingly accessible. Learning methods have also become more complex in the field of computer science ac- cordingly. However, there remains a gap between these learning approaches and many problems in other disciplinary fields. In this dissertation, I investigate four different learning-based studies via ubiquitous sensing for solving real-world problems, such as in IoT security, athletics, and healthcare. First, I designed an online intrusion detection system for IoT devices via power auditing. To realize the real-time system, I created a lightweight power auditing device. With this device, I developed a distributed Convolutional Neural Network (CNN) for online inference. I demonstrated that the distributed system design is secure, lightweight, accurate, real-time, and scalable. Furthermore, I characterized potential Information-stealer attacks via power auditing. To defend against this potential exfiltration attack, a prototype system was built on top of the botnet detection system. In a testbed environment, I defined and deployed an IoT Information-stealer attack. Then, I designed a detection classifier. Altogether, the proposed system is able to identify malicious behavior on endpoint IoT devices via power auditing. Next, I enhanced athletic performance via ubiquitous sensing and machine learning techniques. I first designed a metric called LAX-Score to quantify a collegiate lacrosse team’s athletic performance. To derive this metric, I utilized feature selection and weighted regression. Then, the proposed metric was statistically validated on over 700 games from the last three seasons of NCAA Division I women’s lacrosse. I also exam- ined the biometric sensing dataset obtained from a collegiate team’s athletes over the course of a season. I then identified the practice features that are most correlated with high-performance games. Experimental results indicate that LAX-Score provides insight into athletic performance quality beyond wins and losses. Finally, I studied the data of patients with Parkinson’s Disease. I secured the Inertial Measurement Unit (IMU) sensing data of 30 patients while they conducted pre-defined activities. Using this dataset, I measured tremor events during drawing activities for more convenient tremor screening. Our preliminary analysis demonstrates that IMU sensing data can identify potential tremor events in daily drawing or writing activities. For future work, deep learning-based techniques will be used to extract features of the tremor in real-time. Overall, I designed and applied learning-based methods across different fields to solve real-world problems. The results show that combining learning methods with domain knowledge enables the formation of solutions

    Smart Home Survey on Security and Privacy

    No full text
    Smart homes are a special use-case of the Internet-of-Things (IoT) paradigm. Security and privacy are two prime concern in smart home networks. A threat-prone smart home can reveal lifestyle and behavior of the occupants, which may be a significant concern. This article shows security requirements and threats to a smart home and focuses on a privacy-preserving security model. We classify smart home services based on the spatial and temporal properties of the underlying device-to-device and owner-to-cloud interaction. We present ways to adapt existing security solutions such as distance-bounding protocols, ISO-KE, SIGMA, TLS, Schnorr, Okamoto Identification Scheme (IS), Pedersen commitment scheme for achieving security and privacy in a cloud-assisted home area network

    Smart Home Survey on Security and Privacy

    No full text
    corecore