4 research outputs found

    Run-time analysis of PKCS#11 attacks

    Get PDF
    The goal of this paper is to report on the development of a tool aimed at the automatic detection of attacks against PKCS#11 devices. Instead of modifying or configuring the API, we propose a stateful run-time monitor which is able to track key usage over time, for the identification of operations that might result in the leakage of sensitive keys. We briefly report on the components developed for implementing the monitor and discuss new challenges and open issues

    Simple Key Enumeration (and Rank Estimation) using Histograms: an Integrated Approach

    Get PDF
    The main contribution of this paper, is a new key enumeration algorithm that combines the conceptual simplicity of the rank estimation algorithm of Glowacz et al. (from FSE 2015) and the parallelizability of the enumeration algorithm of Bogdanov et al. (SAC 2015) and Martin et al. (from ASIACRYPT 2015). Our new algorithm is based on histograms. It allows obtaining simple bounds on the (small) rounding errors that it introduces and leads to straightforward parallelization. We further show that it can minimize the bandwidth of distributed key testing by selecting parameters that maximize the factorization of the lists of key candidates produced by the enumeration, which can be highly beneficial, e.g. if these tests are performed by a hardware coprocessor. We also put forward that the conceptual simplicity of our algorithm translates into efficient implementations (that slightly improve the state-of-the-art). As an additional consolidating effort, we finally describe an open source implementation of this new enumeration algorithm, combined with the FSE 2015 rank estimation one, that we make available with the paper

    Constructing TI-Friendly Substitution Boxes Using Shift-Invariant Permutations

    Get PDF
    The threat posed by side channels requires ciphers that can be efficiently protected in both software and hardware against such attacks. In this paper, we proposed a novel Sbox construction based on iterations of shift-invariant quadratic permutations and linear diffusions. Owing to the selected quadratic permutations, all of our Sboxes enable uniform 3-share threshold implementations, which provide first order SCA protections without any fresh randomness. More importantly, because of the shift-invariant property, there are ample implementation trade-offs available, in software as well as hardware. We provide implementation results (software and hardware) for a four-bit and an eight-bit Sbox, which confirm that our constructions are competitive and can be easily adapted to various platforms as claimed. We have successfully verified their resistance to first order attacks based on real acquisitions. Because there are very few studies focusing on software-based threshold implementations, our software implementations might be of independent interest in this regard

    Bringing Theory Closer to Practice in Post-quantum and Leakage-resilient Cryptography

    Get PDF
    Modern cryptography pushed forward the need of having provable security. Whereas ancient cryptography was only relying on heuristic assumptions and the secrecy of the designs, nowadays researchers try to make the security of schemes to rely on mathematical problems which are believed hard to solve. When doing these proofs, the capabilities of potential adversaries are modeled formally. For instance, the black-box model assumes that an adversary does not learn anything from the inner-state of a construction. While this assumption makes sense in some practical scenarios, it was shown that one can sometimes learn some information by other means, e.g., by timing how long the computation take. In this thesis, we focus on two different areas of cryptography. In both parts, we take first a theoretical point of view to obtain a result. We try then to adapt our results so that they are easily usable for implementers and for researchers working in practical cryptography. In the first part of this thesis, we take a look at post-quantum cryptography, i.e., at cryptographic primitives that are believed secure even in the case (reasonably big) quantum computers are built. We introduce HELEN, a new public-key cryptosystem based on the hardness of the learning from parity with noise problem (LPN). To make our results more concrete, we suggest some practical instances which make the system easily implementable. As stated above, the design of cryptographic primitives usually relies on some well-studied hard problems. However, to suggest concrete parameters for these primitives, one needs to know the precise complexity of algorithms solving the underlying hard problem. In this thesis, we focus on two recent hard-problems that became very popular in post-quantum cryptography: the learning with error (LWE) and the learning with rounding problem (LWR). We introduce a new algorithm that solves both problems and provide a careful complexity analysis so that these problems can be used to construct practical cryptographic primitives. In the second part, we look at leakage-resilient cryptography which studies adversaries able to get some side-channel information from a cryptographic primitive. In the past, two main disjoint models were considered. The first one, the threshold probing model, assumes that the adversary can put a limited number of probes in a circuit. He then learns all the values going through these probes. This model was used mostly by theoreticians as it allows very elegant and convenient proofs. The second model, the noisy-leakage model, assumes that every component of the circuit leaks but that the observed signal is noisy. Typically, some Gaussian noise is added to it. According to experiments, this model depicts closely the real behaviour of circuits. Hence, this model is cherished by the practical cryptographic community. In this thesis, we show that making a proof in the first model implies a proof in the second model which unifies the two models and reconciles both communities. We then look at this result with a more practical point-of-view. We show how it can help in the process of evaluating the security of a chip based solely on the more standard mutual information metric
    corecore