
Run-time analysis of PKCS#11 attacks

Gianluca Caiazza, Riccardo Focardi and Marco Squarcina

Dipartimento di Scienze Ambientali, Informatica e Statistica,
Università Ca’ Foscari, Venezia, Italy

Abstract

The goal of this paper is to report on the development of a tool aimed at the automatic
detection of attacks against PKCS#11 devices. Instead of modifying or configuring the
API, we propose a stateful run-time monitor which is able to track key usage over time,
for the identification of operations that might result in the leakage of sensitive keys. We
briefly report on the components developed for implementing the monitor and discuss new
challenges and open issues.

1 Introduction

Cryptography is one of the dominant technologies to provide security in various settings and
cryptographic hardware and services are becoming more and more pervasive in everyday ap-
plications. The interfaces to cryptographic devices and services are implemented as Security
APIs that allow untrusted code to access resources in a secure way. These APIs provide various
functionalities such as: the creation or deletion of keys; the encryption, decryption, signing
and verification of data under some key; the import and export of sensitive keys, i.e., keys
that should never be revealed as plaintext outside a smart card or hardware security modules
(HSMs).

In the last decade a multitude of attacks has been found both on HSMs and smart cards
(see, e.g., [1, 3, 4, 8]). Some attacks are related to the key wrapping operation: For example,
attacks on the IBM CCA interface are related to the improper bound, provided by the XOR
function, between the attributes of a wrapping key and the usage rules [3], and attacks on the
PKCS#11 security tokens can be mounted by assigning particular sets of attributes to the keys,
and by performing particular sequences of (legal) API calls [4]. Other attacks, e.g., the ones on
PIN processing APIs, are based on formats used for message encryption [10], or on the lack of
integrity of user data [6].

In the literature, there are many results about the analysis of existing security APIs and
the development of new, secure APIs (see, e.g. [5, 7, 11, 12, 14, 15]). In this paper we explore
a different approach. Instead of fixing the API or proposing a new secure one, we study how to
detect (and possibly prevent) attacks using a stateful run-time monitor. The idea is to track
how keys are used so to detect possible conflicting operations that might lead to the leakage
of a sensitive key value. For example, by keeping the information that a certain key has been
used to wrap other sensitive keys we are able to detect if this key will be successively used to
decrypt ciphertexts, detecting the so-called wrap/decrypt attack [9].

A stateful monitor presents many challenges. In particular it should (i) track the usage of a
key without exposing its value; (ii) never break applications unless it is certain that the detected
sequence is an attack; (iii) work across many devices to prevent attacks where “conflicting”
operations are performed on different devices sharing sensitive keys, (iv) be hard to bypass,
even when the host where the application is running is compromised. We have tackled some
of the above challenges and implemented a proof of concept in the form of a library wrapper
with an analyzer: the wrapper intercepts all PKCS#11 calls and logs them without leaking key

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università degli Studi di Venezia Ca' Foscari

https://core.ac.uk/display/223170169?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Run-time analysis of PKCS#11 attacks Caiazza, Focardi and Squarcina

values; interestingly, the analyzer is able to detect all attacks on PKCS#11 key management
reported in [12, 13] on the produced logs.

Our approach is very closely related to Caml Crush [2], a PKCS#11 Filtering Proxy that
can be configured to prevent dangerous PKCS#11 commands and mechanisms. Caml Crush
does not currently implement any stateful filtering 1 which is instead our main focus. Notice
that without a stateful filter the only way to prevent wrap/decrypt attacks from an external
monitor or proxy would be drastically reduce the API functionality, for example by forbidding
key wrapping.

2 Run-time Analysis

In order to perform the run-time detection of attacks against PKCS#11 devices, we propose
a software layer that wraps the existing PKCS#11 library interface. The wrapper provides an
hooking facility for analysing selected API calls typically used by attackers to perform malicious
actions, e.g., leaking the values of sensitive keys stored in the device. This tool records the
actions accounted by the underlying library and provides an abstraction over the API calls to
the run-time component responsible of identifying security risks.

2.1 PKCS#11 Wrapper

We have implemented a wrapper of the full PKCS#11 API. However, since our tool is in
an early stage of development, we only keep track of a subset of PKCS#11 functions. In
fact, despite of the small number of functions considered, all the attacks introduced in [9] can
be carried out by exploiting the following API calls: C GenerateKey, C SetAttributeValue,
C WrapKey, C UnwrapKey, C Encrypt and C Decrypt. For the remaining functions, the wrapper
transparently performs the corresponding call.

Additionally, we keep track of meaningful key attributes which define the capabilities of a
given key and its security level: TOKEN, SENSITIVE, ENCRYPT, DECRYPT, WRAP and UNWRAP. If
a key has the TOKEN attribute set to true, then it is stored inside the token. A SENSITIVE

key disallows the key value to be read directly. All the other considered attributes are used to
enable or disable specific functions using the key to which they are associated.

The wrapper produces at run-time a log file listing, for each of the aforementioned PKCS#11
calls, an entry amenable to further analysis. Log entries contain information about the function
name, the identifier of each key involved in the operation and, when supported by the current
call, the attribute template. To track keys over time, we compute key identifiers by encrypting
a fixed value under the inspected key, using a predefined encryption mechanism compatible
with the specific key. The result of the operation is unique for each key, in practice, since the
probability of obtaining the same result given two different keys is negligible.

An example of a log entry associated with a C SetAttributeValue call is the following:

SetAttributeValue F3C7719288E3CFC53A8355E6B06F16D4 110110 ,

where the first field is the function name and the second one is the key identifier obtained by
encrypting a fixed message with the actual key. The last field represents the attribute template
used in the current operation, in this case the attributes TOKEN, SENSITIVE, DECRYPT and WRAP

are set, whilst ENCRYPT and UNWRAP are unset.

1See https://github.com/ANSSI-FR/caml-crush/blob/master/doc/FILTER.md in section “Filtering
PKCS#11 mechanisms options”

2

https://github.com/ANSSI-FR/caml-crush/blob/master/doc/FILTER.md


Run-time analysis of PKCS#11 attacks Caiazza, Focardi and Squarcina

2.2 Attack Detection

Our stateful analyser parses the log file generated by the wrapper in order to account for the
run-time identification of attacks. Specifically, the tool keeps track of all the keys stored within
the token and their templates. It also records the wrapping operations and the encryptions
occurred during the logger lifespan. Keys which are deleted in the token at a certain point
in time are not discarded by the analyser and are still considered meaningful. This captures
attacks where a key is deleted and then reimported in the device.

To briefly illustrate the operating principle of the tool, we consider a simple wrap/decrypt
attack starting from the relevant part of the log file as presented in Listing 1. For ease of reading,
in this example we make use of mnemonic identifiers for the keys involved in the attack. The
first entry of the log file accounts for the creation of key A. After parsing this entry, the analyser
immediately rises a warning since key A is generated with a well known dangerous combination
of attributes WRAP and DECRYPT set to true. B is the sensitive key that we suppose to be already
stored inside the token. The attack proceeds by performing a wrap operation on key B using
the session key A. The result of the wrapping operation is the hex string DBB2A24842E91C5D,
as summarized in the second log entry. The last step of the attack (see log entries three and
four) consists of decrypting the value of the wrapped key B with key A, finally obtaining the
plain text value of the sensitive key B (75C3234CE14954D5).

Listing 1: Log file produced by a wrap/decrypt attack

1 GenerateKey KeyIdA 000110
2 WrapKey KeyIdA KeyIdB DBB2A24842E91C5D
3 Decrypt In i t KeyIdA
4 Decrypt DBB2A24842E91C5D 75C3234CE14954D5

Our analyser is able to immediately identify the wrap/decrypt attack since the input value
of the decrypt operation performed with key A has been previously obtained as a result of a
wrap operation with the same key A. Similar strategies are applied to detect (and potentially
prevent) other attacks such as wrap/unwrap in which a sensitive key is wrapped and then
unwrapped with the SENSITIVE attribute disabled in order to access the key value and classical
encrypt/unwrap and re-import attacks as described in [12, 13].

3 Discussion

Our approach hinges on the ability of tracking the usage of a key without exposing its value.
To do so, we identify each key with the result of the encryption of a fixed value with the actual
key. It follows that all the keys should provide the capability of performing encrypt operations.
This is not the case for keys with the ENCRYPT attribute disabled, since encryption for these
keys is forbidden. We take on this issue by temporary altering the attribute in order to allow
the encrypt operation needed for key identification. Even if for a short amount of time, we may
enable a malicious user to perform an encrypt/unwrap attack using a previously safe key, i.e., a
key without the conflicting attributes ENCRYPT and UNWRAP set to true. The checks implemented
in our analyser allow the detection of such attack, but we are fully aware that tampering with
the keys is typically unwanted.

Another limitation of our solution is the overhead due to the multiple encrypt calls needed
to track keys. Indeed, our first prototype requires keys to be identified by the mean of an
encryption call each time they are used. We are still investigating possible optimizations, but
we may be able to drastically lower the number of encrypt calls by pairing the key identifier

3



Run-time analysis of PKCS#11 attacks Caiazza, Focardi and Squarcina

with the ID attribute assigned to the key by the token. We also plan to develop a formal
framework for the detection of run-time attacks: we argue that a sound approximation of the
dynamic evolution of the keys in PKCS#11 devices would be of practical interest and would
make it possible to improve the performance of our tool.

References

[1] R. Anderson. The correctness of crypto transaction sets (discussion). In Revised Papers from the
8th International Workshop on Security Protocols, pages 128–141, London, UK, 2001. Springer
Verlag.

[2] Ryad Benadjila, Thomas Calderon, and Marion Daubignard. Caml Crush: A PKCS#11 Filter-
ing Proxy. In Smart Card Research and Advanced Applications - 13th International Conference,
CARDIS 2014, Paris, France, November 5-7, 2014. Revised Selected Papers, pages 173–192, 2014.

[3] M. Bond. Attacks on cryptoprocessor transaction sets,. In Proc. of the 3rd International Workshop
on Cryptographic Hardware and Embedded Systems (CHES’01), volume 2162 of LNCS, pages 220–
234. Springer Verlag, 2001.

[4] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attacking and fixing PKCS#11 secu-
rity tokens. In Proc. of the 17th ACM Conference on Computer and Communications Security
(CCS’10), pages 260–269. ACM, 2010.

[5] C. Cachin and J. Camenisch. Encrypting keys securely. IEEE Security & Privacy, 8(4):66–69,
2010. IEEE Computer Society.

[6] M. Centenaro, R. Focardi, F.L. Luccio, and G. Steel. Type-Based Analysis of PIN Processing
APIs. In Proc. of the 14th European Symposium on Research in Computer Security (ESORICS’09),
volume 5789 of LNCS, pages 53–68. Springer Verlag, 2009.

[7] Matteo Centenaro, Riccardo Focardi, and Flaminia L. Luccio. Type-based analysis of key manage-
ment in PKCS#11 cryptographic devices. Journal of Computer Security, 21(6):971–1007, 2013.

[8] R. Clayton and M. Bond. Experience using a low-cost FPGA design to crack DES keys. In
Cryptographic Hardware and Embedded System (CHES’02), volume 2523 of LNCS, pages 579–592.
Springer Verlag, 2003.

[9] J. Clulow. On the security of PKCS#11. In 5th International Workshop on Cryptographic Hard-
ware and Embedded Systems (CHES’03), volume 2779 of LNCS, pages 411–425. Springer Verlag,
2003.

[10] J. Clulow. The design and analysis of cryptographic APIs for security devices. Master’s thesis,
University of Natal, Durban, 2003.

[11] V. Cortier and G. Steel. A generic security API for symmetric key management on crypto-
graphic devices. In Proc. of the 14th European Symposium on Research in Computer Security
(ESORICS’09), LNCS, pages 605–620. Springer Verlag, 2009.

[12] S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11 and proprietary extensions.
Journal of Computer Security, 18(6):1211–1245, November 2010. IOS Press.

[13] R. Focardi, F.L. Luccio, and G. Steel. An introduction to security api analysis. In FOSAD, pages
35–65, 2010.

[14] S.B. Fröschle and G. Steel. Analysing PKCS#11 key management APIs with unbounded fresh
data. In Joint Workshop on Automated Reasoning for Security Protocol Analysis and Issues in the
Theory of Security, (ARSPA-WITS’09), volume 5511 of LNCS, pages 92–106, York, UK, 2009.
Springer Verlag.

[15] S. Kremer, G. Steel, and B. Warinschi. Security for key management interfaces. In Proceedings
of the 24th IEEE Computer Security Foundations Symposium (CSF’11), pages 266–280. IEEE
Computer Society Press, June 2011.

4


	Introduction
	Run-time Analysis
	PKCS#11 Wrapper
	Attack Detection

	Discussion

