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i





Abstract

Modern cryptography pushed forward the need of having provable security. Whereas

ancient cryptography was only relying on heuristic assumptions and the secrecy of the

designs, nowadays researchers try to make the security of schemes to rely on mathemat-

ical problems which are believed hard to solve. When doing these proofs, the capabilities

of potential adversaries are modeled formally. For instance, the black-box model assumes

that an adversary does not learn anything from the inner-state of a construction. While

this assumption makes sense in some practical scenarios, it was shown that one can

sometimes learn some information by other means, e.g., by timing how long the com-

putation take. In this thesis, we focus on two different areas of cryptography. In both

parts, we take first a theoretical point of view to obtain a result. We try then to adapt

our results so that they are easily usable for implementers and for researchers working

in practical cryptography.

In the first part of this thesis, we take a look at post-quantum cryptography, i.e., at cryp-

tographic primitives that are believed secure even in the case (reasonably big) quantum

computers are built. We introduce HELEN, a new public-key cryptosystem based on

the hardness of the learning from parity with noise problem (LPN). To make our res-

ults more concrete, we suggest some practical instances which make the system easily

implementable.

As stated above, the design of cryptographic primitives usually relies on some well-

studied hard problems. However, to suggest concrete parameters for these primitives,

one needs to know the precise complexity of algorithms solving the underlying hard

problem. In this thesis, we focus on two recent hard-problems that became very popular

in post-quantum cryptography: the learning with error (LWE) and the learning with

rounding problem (LWR). We introduce a new algorithm that solves both problems and

provide a careful complexity analysis so that these problems can be used to construct

practical cryptographic primitives.

In the second part, we look at leakage-resilient cryptography which studies adversar-

ies able to get some side-channel information from a cryptographic primitive. In the

past, two main disjoint models were considered. The first one, the threshold probing

model, assumes that the adversary can put a limited number of probes in a circuit. He

then learns all the values going through these probes. This model was used mostly by

theoreticians as it allows very elegant and convenient proofs. The second model, the
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Abstract

noisy-leakage model, assumes that every component of the circuit leaks but that the

observed signal is noisy. Typically, some Gaussian noise is added to it. According to

experiments, this model depicts closely the real behaviour of circuits. Hence, this model

is cherished by the practical cryptographic community. In this thesis, we show that

making a proof in the first model implies a proof in the second model which unifies

the two models and reconciles both communities. We then look at this result with a

more practical point-of-view. We show how it can help in the process of evaluating the

security of a chip based solely on the more standard mutual information metric.
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Résumé

La cryptographie moderne a développé le besoin de prouver la sécurité de ses systèmes.

Alors que la sécurité de la cryptographie antique reposait sur des suppositions heur-

istiques ainsi que sur la confidentialité des constructions, de nos jours, les chercheurs

tentent plutôt de faire reposer la sécurité sur des problèmes mathématiques supposés

difficiles à résoudre. Afin de pouvoir faire ces preuves de sécurité, il est important de

modéliser formellement les capacités de potentiels adversaires. Par exemple, un modèle

très courant utilisé en cryptographie est le modèle dit “en bôıte noire”. Dans ce mod-

èle, nous supposons qu’un adversaire n’apprend rien de l’état interne du système mais

connait uniquement ses entrées et sorties. Bien que cette supposition ait du sens dans

certains scénarios, des chercheurs ont montré qu’il est parfois possible de dériver des

secrets par d’autres moyens, par exemple en mesurant le temps mis par le système pour

faire un calcul. Dans cette thèse, nous nous focalisons sur deux branches distinctes de

la cryptographie. Dans ces deux parties, nous allons tout d’abord prendre un point de

vue théorique. Nous allons ensuite adapter nos résultats afin qu’ils soient facilement

utilisables par des chercheurs travaillant dans le côté plus pratique de la cryptographie,

par exemple dans l’implémentation.

Dans la première partie de cette thèse, nous étudions la cryptographie post-quantique,

c’est-à-dire la cryptographie qui est supposée être sûre même si des ordinateurs quantiques

suffisamment puissants sont construits. Nous proposons HELEN, un nouveau cryptosys-

tème à clé publique, dont la sécurité est basée sur la difficulté du problème “learning

from parity with noise”(LPN). Afin de rendre nos résultats plus concrets, nous proposons

aussi des paramètres pratiques qui rendent notre système facile à implémenter.

Comme mentionné ci-dessus, la construction de primitives cryptographiques est basée

sur la complexité de problèmes supposés difficiles. Afin de pouvoir proposer des para-

mètres concrets pour ces primitives, il est nécessaire de connâıtre la complexité exacte

des algorithmes capables de résoudre ces problèmes. Dans cette thèse, nous nous fo-

calisons sur deux problèmes introduits récemment qui sont devenus très populaires en

cryptographie post-quantique: le problème “learning with error” (LWE) et le problème

“learning with rounding” (LWR). Nous proposons un nouvel algorithme capable de ré-

soudre ces problèmes et nous fournissons une analyse détaillée de sa complexité afin que

les problèmes LWE et LWR puissent être utilisés pour construire des instances pratiques

de primitives cryptographiques.
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Résumé

Dans la seconde partie de cette thèse, nous étudions la cryptographie résistante aux

attaques par canaux auxiliaires. Cette branche de la cryptographie étudie le cas où

un adversaire est capable d’obtenir des informations supplémentaires sur une primitive

cryptographique à l’aide d’un canal auxiliaire. Par le passé, deux modèles principaux

ont été considérés dans ce domaine. Le premier, le “threshold probing model”, suppose

qu’un adversaire puisse mettre un nombre limité de sondes dans un circuit. A l’aide

de ces sondes, l’adversaire apprend ensuite toutes les valeurs passant à travers celles-ci.

ce modèle a été principalement utilisé par les chercheurs en cryptographie théorique,

car il permet de concevoir des preuves plus faciles et plus élégantes. Le second modèle,

le “noisy-leakage model”, suppose que chaque composant du circuit fuit, mais que les

signaux observés sont bruités. Typiquement, le modèle va supposer qu’un bruit Gaussien

est ajouté au signal. Des expériences ont montré que ce modèle décrit assez fidèlement

le comportement réel des circuits. Il est donc normal que ce modèle soit préféré par

les chercheurs travaillant dans le côté pratique de la cryptographie. Dans cette thèse,

nous montrons que faire une preuve dans le premier modèle implique une preuve dans

le second. Ce résultat unifie les deux modèles et réconcilie les deux communautés. Nous

analysons ensuite ce résultat avec un regard plus pratique. Nous montrons comment ce

résultat peut aider à estimer la sécurité de puces en utilisant uniquement une métrique

basée sur l’information mutuelle.
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que nous avons eus ainsi que pour toutes les discussions sur le mariage (iranien). Je

suis aussi reconnaissant envers ma deuxième collègue de bureau, Sonia M. Bogos. Merci
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le labo avec ta fille Zeynep. Katerina, merci pour avoir toujours organisé des LASEC
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Chapter 1

Introduction

The cryptographic world is roughly divided into two parts:

• the“theory”side which tries to simulate the reality using theoretical models, design

new primitives, and study their asymptotic complexity.

• the “practical” side which consists in implementing primitives, studying precise

complexities of schemes, measuring the behaviour of real device and analyse them.

Both communities have their own conferences (e.g., CHES for the practical community

and TCC for the theoreticians) and rarely collaborate together. The recent introduction

at Eurocrypt 2015 of two separate tracks — the ideal track and the real track — can

be understood in two different ways. On one hand, this could mean that theoretical

conferences will accept more practical papers. On the other hand, this could also be

seen as an accentuation in the separation between the two communities. Indeed, in the

past, people were encouraged to attend all the sessions. This is less likely to occur with

this system as the more theoretical people will remain in the ideal track and vice versa.

In this thesis, we develop four different results that try to bring the two sides closer

together. More precisely, we start by taking a theoretical point of view on a problem,

solve it, and present our results such that someone working on the practical side can

make use of it.

This thesis is divided into two parts. In the first we look at the field of post-quantum

cryptography and in the second at leakage-resilient cryptography. In the remaining of

this introduction, we motivate our research directions, we describe in a high-level fashion

the results we obtained, and we show how we believe these results have a practical impact

although most of them are considered as theoretical papers.

1.1 On the Need for Diversity in Public-key Cryptography

In Chapter 5, we propose a new public-key cryptosystem based on some more recent

hardness assumption. At first, one could think that we have already good cryptosystems
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as they are used every day to secure our communications over the internet. Public-key

cryptography initially started with the seminal paper of Diffie and Hellman in 1976 which

introduces the Diffie-Hellman key exchange protocol [DH76]. Two years later, Rivest,

Shamir, and Adleman introduced the nowadays most famous public-key cryptosystem:

the RSA cryptosystem [RSA78]. From these two results, other popular cryptosystems

emerged like the Rabin cryptosystem [Rab79] and the ElGamal family of cryptosys-

tems [EG84]. All these systems are relatively efficient in practice, well-studied, and

implemented on any thinkable platform.

The need for new cryptosystems rises when one understands how the security of a scheme

is proven. When proving a security property, researchers usually relate it to a well-

studied mathematical problem which is believed hard to solve. Typical examples of

such hard problems are the integer factoring problem or the discrete logarithm problem.

However, the number of hard problems used in popular cryptosystems is very small (in

fact, the two problems mentioned above are the only used ones in practice). This leads to

the following question: “What if one can suddenly easily solve these hard problems using

a new clever algorithm?” The answer is simple. It would imply that all the public-key

cryptosystems used in practice would be broken.

In particular, it was shown in the nineties that the integer factoring and the discrete

logarithm problems could easily be solved on a quantum computer using Shor’s al-

gorithm [Sho97] and its generalizations, e.g., [HV09]. At the time of this writing, it

is not yet known if one can ever build quantum computers that can have a large (i.e.,

meaningful) number of qubits.1

To be prepared to this eventuality, we need crypto diversity, namely to have cryptosys-

tems that rely on a wide range of hard problems. In particular we want cryptosystems

in which we can trust even if quantum computers exist. These systems are called post-

quantum cryptosystems. Post-quantum cryptography is, since a few years, a hot topic.

Dozens of quantum-resistant systems already exist. In Part I, we will focus on post-

quantum cryptography.

1.2 Post-quantum Cryptography

Nowadays, recent cryptosystems usually rely on problems that are believed to be hard

to solve, even on quantum computers. In this thesis, we will focus on three such prob-

lems: the Learning from Parity with Noise problem (LPN) and two closely related

problems, the Learning with Error problem (LWE) and the Learning with Rounding

problem (LWR). In Chapter 3, we formally describe these problems, discuss previous

work and discuss their links with other hard problems.

In particular, we will have a strong interest in the algorithmic complexity of the best

algorithms solving these problems. This is especially important when one wants to

design a cryptosystem based on these problems. Indeed, once a reduction between a

hard problem and the security of the system has been shown, this does not help finding

1On a quantum computer, the memory is represented in qubits instead of bits.

2



Introduction

practical parameters for the system as reductions are usually asymptotic. Obviously, to

be used in practice, the implementers of this system will need such parameters that can

be trusted. For this, the typical approach is to survey what the best attacks against the

hard problem are and to select parameters such that complexity of this attack is higher

than a security bound (usually 2λ for a security parameter λ).

In Chapter 5, we present HELEN, a new post-quantum cryptosystem, mostly based

on the hardness of the LPN problem and the decisional minimum distance problem

(a related hard problem introduced in Chapter 3). HELEN was first presented at

YACC 2012 [DV12] and later published at Africacrypt 2013 [DV13a]. We show that

the resulting cryptosystem achieves indistinguishability under chosen plaintext attacks

(IND-CPA security). Using the Fujisaki-Okamoto generic construction [FO99], HELEN

achieves IND-CCA security in the random oracle model.

When we submitted [DV12], HELEN was one of the first public-key cryptosystems based

on the hardness of LPN. Moreover, in contrast with previous work (e.g., [Ale03]), we

were the first to present concrete parameters for our system which is in our opinion a

primordial step if we expect it to be implemented some day. As mentioned above, the

lack of practical instances in most of the public-key cryptosystem proposals annihilates

their interest for the industry. This is why we believe that our proposal tries to narrow

the gap between theory and practice.

1.3 On the Concrete Algorithmic Hardness of Hard Prob-

lems

We already discussed in Section 1.2 the practical importance of a careful algorithmic

study of hard problems used in cryptography. The learning with errors and the learning

with rounding problem are in particular getting more and more popular for recent ap-

plications. For instance, the LWE problem can be used to design a public-key cryptosys-

tem [Reg05] or more complex primitives like identity-based cryptosystems [GPV08] or

fully homomorphic encryption [BV11a, Bra12, GSW13], one of the holy grails in cryp-

tography. The BKW algorithm was suggested by Blum et al. [BKW03] as an algorithm

to solve the Learning Parity with Noise problem (LPN), a subproblem of LWE. This

algorithm was then adapted to LWE [ACF+13] by Albrecht et al. In Chapter 6, we

improve the algorithm suggested by Albrecht et al. by using multidimensional Fourier

transforms. Our algorithm was, at time of publication, the fastest LWE solving al-

gorithm for some meaningful instances. Compared to the work of Albrecht et al. we

greatly simplify the analysis, getting rid of integrals which were hard to evaluate in the

final complexity. We also remove some heuristics on rounded Gaussians and some of our

analytic results on rounded Gaussians might be of independent interest. Moreover, we

also analyze algorithms solving LWE with discrete Gaussian noise.

The LWR problem can be seen as a deterministic counterpart to LWE. This problem

is getting more and more attention and is used, for instance, to design pseudorandom

functions [BPR12]. We adapt in Chapter 7 our LWE algorithm to the LWR problem

3



for prime q. To the best of our knowledge, our algorithm is the first algorithm applied

directly to LWR. Furthermore, the analysis of LWR contains some technical results of

independent interest.

In summary, these two results will help designers of constructions to put forward practical

instances of their schemes. These two results were published in Eurocrypt 2015 [DTV15].

1.4 Leakage-resilient Cryptography

In Part II, we focus on a different area of cryptography, namely leakage-resilient crypto-

graphy and try to narrow the gap between the theoretical world and the practical world.

Most of the cryptographic research is done in the black-box model. This means that

we assume that all the building blocks (e.g., encryption algorithm, signature algorithm,

hash function) behave like black boxes, i.e., the adversary can only see their input and

output. On the other extreme, there is the white-box model in which we assume that

the adversary has a complete access to all the inner-states of the algorithms. An in-

termediate notion is the grey-box model, where we assume that the adversary has only

limited access to the inner components. For instance, one might think of the following

practical scenario in which the adversary has physical access to a chip but in which

physical constraints allow him only to read the values going through a limited number

of wires in this chip. As we will see later, this model, named the (threshold) probing

model, is very convenient for proving security. However, a seminal paper by Chari et

al. [CJRR99] has shown that the best way to model leakage in practice is to assume

that a noisy instance of every wire is given to the adversary. Typically, the noise would

follow a Gaussian distribution. A generalization of this model was introduced by Prouff

and Rivain [PR13], the noisy-leakage model.

The goal of most of the papers mentioned in this thesis as well as in our results is

to construct a generic compiler that takes as input a vulnerable circuit and outputs a

leakage-resilient circuit in a specific leakage model. Such a secure circuit is obtained by

using amasking scheme or secret sharing scheme that allows to split a critical component

into subcomponents that can be recombined when having access to all of them. Their

use in leakage-resilient cryptography is straight-forward: we assume that it is hard for

an adversary to access to a lot of information in a circuit at the same time. For instance,

if the adversary uses probes to read some values in a chip, it might become technically

hard for him to probe too many values. In this thesis, we are going to focus on the

additive masking scheme that is well-studied in the literature.

In Chapter 8, we introduce briefly leakage-resilient cryptography and we show how to

model leakage.

1.5 Unifying Different Leakage Models

As discussed in the previous section, the goal of leakage-resilient cryptography is to

formally show the leakage resilience of cryptographic implementations in a given leakage
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model. One of the most prominent leakage models – the so-called bounded leakage model

– assumes that the amount of leakage is a-priori bounded. Unfortunately, it has been

pointed out that the assumption of bounded leakages is hard to verify in practice. A

more realistic assumption is to assume that leakages are sufficiently noisy, following the

engineering observation that real-world physical leakages are inherently noisy. While

the noisy leakage assumption has first been studied in the seminal work of Chari et al.

(CRYPTO 99), the recent work of Prouff and Rivain (Eurocrypt 2013) provides the first

analysis of a protected scheme under a physically motivated noise model. In particular,

the authors show that a block-cipher implementation that uses an additive masking

scheme is secure against noisy leakages. Unfortunately, the security analysis of Prouff

and Rivain has three important shortcomings:

1. It requires leak-free gates, i.e., simple sub-components in which we assume that

the adversary has no access.

2. It considers a restricted adversarial model, namely it assumes that the adversary

performs random message attacks instead of more traditional attacks, e.g., chosen

plaintext attacks.

3. Finally, the security proof has limited application for cryptographic settings.

In Chapter 9, we provide an alternative security proof in the same noisy model that

overcomes these three challenges. We achieve this goal by a new reduction from noisy

leakage to the important theoretical model of probing adversaries introduced by Ishai et

al. [ISW03]. Our work can be viewed as a next step of closing the gap between theory

and practice in leakage resilient cryptography: while our security proofs heavily rely on

concepts of theoretical cryptography, we solve problems in practically motivated leakage

models. This result was published in Eurocrypt 2014 [DDF14] and received one of the

two best paper awards.

1.6 Towards a More Practical Interpretation of this Result

While the results presented in the previous section have a great theoretical interest, they

might seem to remain far from parameters and techniques used by the more practical

community. Hence, in Chapter 10, we investigate the relationships between theoretical

studies of leaking cryptographic devices and concrete security evaluations with standard

side-channel attacks. First, we connect the formal analysis of the masking countermeas-

ure presented in Chapter 9 with the Eurocrypt 2009 evaluation framework [SMY09]

for side-channel key recovery attacks introduced by Standaert et al. In particular, we

re-state the main proof of Chapter 9 for the masking countermeasure based on a mu-

tual information metric, which is frequently used in concrete physical security evalu-

ations. Second, we discuss the tightness of the bounds presented in Chapter 9 based

on experimental case studies. This allows us to conjecture a simplified link between
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the mutual information metric and the success rate of a side-channel adversary, ignor-

ing technical parameters and proof artifacts. These observations2 enable significant

reductions of the evaluation costs for certification bodies. This result was published in

Eurocrypt 2015 [DFS15a].

2along with two additional contributions presented in [DFS15a] but which are outside the scope of
this thesis.
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Chapter 2

Preliminaries

In this chapter, we present various notations and basic definitions that will be used in

further chapters. In Section 2.1, we give definitions of basic notions in cryptography

like negligible functions. In Section 2.2 we define various notions of statistical distance

that are going to be use throughout this thesis and especially in Chapters 9 and 10. In

Section 2.3, we define formally basic security notions used in cryptography, e.g., IND-

CPA security. In Section 2.4, we state core results about both discrete and continuous

Fourier transforms that we are going to use in Chapters 6 and 7. Finally, in Section 2.5,

we recall a Chernoff and a Hoeffding bound. We want to inform the reader that a very

useful list of definitions is given at the end of this thesis.

2.1 Notations and Mathematical Preliminaries

We denote by “log” the logarithm in base two and by “ln” the natural logarithm. The

concatenation of two bitstrings x and y is written x‖y. We consider vectors as row

vectors. The transpose of a vector v is denoted by vt. Given a vector a, we denote

by aj its j-th component. We write a(j) to say that we access the j-th vector of a set.

We let ⌈.⌋ : R → Z be the rounding function that rounds to the closest integer.1 For a

predicate π(x), we denote by 1{π(x)} the function which is 1 when π(x) is true and 0

otherwise. We denote the Hamming weight of a bitstring x by Hw(x). We write x
U←− D

if an element x is drawn uniformly at random in a domain D. Finally, we sometimes

write Pr[y] := Pr[Y = y] when clear from context.

Definition 2.1 (Negligible Function). A function f(λ) is negligible if for all d ∈ R we

have f(λ) = O
(
λ−d

)
.

We denote the Bernoulli distribution with parameter p by Ber(p), i.e., if x← Ber(p), we

have Pr[x = 1] = p and Pr[x = 0] = 1− p.

1In case of equality, we take the floor.
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Definition 2.2 (Sequence of Bernoulli trials (Snp )). We write Snp to denote the sequence

of n independent Bernoulli trials with parameter p. We write Snp (r) when we need to

specify the seed r used to generate this sequence.

Notation. Given some initial parameters Π and a predicate P , we write

Pr


P (v1, . . . , vm; rp) :

v1 ← f1(Π; r1)

...

vm ← fm(Π, v1, . . . , vm−1; rm)




to denote the probability (over the randomnesses r1, . . . , rm, rp) that, when v1 ← f1(Π; r1),

. . . , vm ← fm(Π, v1, . . . , vm; rm), then P (v1, . . . , vm; rp) holds.

2.2 Statistical Distance

We define the statistical distance between two distributions in the following way.

Definition 2.3 (Statistical distance). Given two discrete distributions D0 and D1 over

a set Z, we define the statistical distance between D0 and D1 by

∆(D0,D1) :=
1

2

∑

z∈Z

|D1(z)−D0(z)| =
∑

z∈Z

max {0,D1(z)−D0(z)} .

If X ,Y are some events then by ∆((A|X ) ; (B|Y)) we will mean the distance between

variablesA′ andB′, distributed according to the conditional distributions PA|X and PB|Y .

If C is a random variable then by ∆(A ; (B|C)) we mean
∑

Pr[C = c] ·∆(A ; (B|(C =

c))).

If A,B, and C are random variables then ∆((B;C) | A) denotes ∆((B,A); (C,A)).2

It is easy to see that it is equal to
∑

a Pr[A = a] · ∆((B|A = a) ; (C|A = a)). If

∆(A;B) ≤ ǫ then we say that A and B are ǫ-close. The“
d
=”symbol denotes the equality

of distributions, i.e., A
d
=B if and only if ∆(A;B) = 0. We will use the following lemma.

Lemma 2.4. Let A,B be two (possibly correlated) random variables. Let B′ be a variable

distributed identically to B but independent from A. We have

∆(A; (A | B)) = ∆((B;B′) | A). (2.1)

2This notation might seem counterintuitive but is used in all the previous works.
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Proof. We have

∆(A; (A | B)) =
∑

b

1

2
· Pr[B = b] ·

∑

a

|Pr[A = a]− Pr[A = a | B = b]|

=
1

2

∑

a,b

|Pr[B = b] · Pr[A = a]− Pr[B = b] · Pr[A = a | B = b]|

=
1

2

∑

a,b

|Pr[B′ = b ∧A = a]− Pr[B = b ∧A = a]| (2.2)

= ∆((B;B′) | A),

where in (2.2) we used the fact that B′ is a variable distributed identically to B and is

independent from A.

We state now a basic lemma that will be used in Chapter 9 for some proofs.

Lemma 2.5. For any random variables A and B and an event E we have

∆(A;B) ≤ ∆((A | ¬E);B) + Pr[E ],

where ¬E denotes the negation of E.

A proof of a very similar lemma is given in [DDV10, Appendix A]

2.3 Security Notions

Definition 2.6 (Public-key Encryption Scheme). Let ϕ(λ) be a function. A ϕ(λ)-

cryptosystem over a given message spaceM and random coin space R consists of three

polynomial-time algorithms:

• a probabilistic key-generation algorithm Gen(1λ; ρg) taking as input some security

parameter 1λ in unary representation and some random coins ρg, and producing a

secret key Ks and a public key Kp;

• a probabilistic encryption algorithm Enc(Kp,m; r) taking as input a public key Kp

and a message m ∈M with some random coins r ∈ R, and producing a ciphertext

y in the ciphertext space C;

• a deterministic decryption algorithm Dec(Ks, c) taking as input a secret key Ks

and a ciphertext c ∈ C, and producing a message or an error.

The cryptosystem must satisfy the following correctness property:

max
m∈M

Pr
[
Dec(Ks,Enc(Kp,m; ρ)) 6= m : (Ks,Kp)← Gen(1λ; ρg)

]
≤ ϕ(λ) .
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We will also use the following security notions and acronyms. Adaptive Chosen Cipher-

text Attack is denoted CCA, Chosen Plaintext Attack CPA, Indistinguishability IND and

one-wayness OW.

Definition 2.7 (IND-CPA-security). A cryptosystem is said (t, ε)-IND-CPA-secure or

(t, ε)-semantically secure against chosen plaintext attacks if no adversary A = (A1,A2)

with running time bounded by t can distinguish the encryption of two different plaintexts

m0 and m1 with a probability higher than ε.3 More formally, for all A bounded by t,

Pr



A2(Kp, c; ρ) = b :

(Ks,Kp)← Gen(1λ; ρg)

m0,m1 ← A1(Kp; ρ)

r
U←− R; b U←− {0, 1}

c← Enc(Kp,mb; r)



≤ 1

2
+ ε .

Asymptotically, a cryptosystem is IND-CPA-secure if for any polynomial t(λ) there exists

a negligible function ε(λ) such that it is (t(λ), ε(λ))-IND-CPA-secure.

IND-CPA-security can also be represented in the real-or-random game model [BDJR97b,

BDJR97a].4

Definition 2.8 (Simple real-or-random IND-CPA game security). A cryptosystem is

(t, ε)-IND-CPA-secure in the real-or-random game model if no adversary A with running

time bounded by t can distinguish the encryption of a chosen plaintext m0 to a random

one with a probability higher than ε. More formally, for all A bounded by t,

Pr



A2(Kp, c; ρ) = b :

(Ks,Kp)← Gen(1λ; ρg)

m0 ← A1(Kp; ρ); m1
U←−M

r
U←− R; b U←− {0, 1}

c← Enc(Kp,mb; r)



≤ 1

2
+ ε .

Asymptotically, a cryptosystem is IND-CPA-secure in the real-or-random game model if

for any polynomial t(λ) there exists a negligible function ε(λ) such that it is (t(λ), ε(λ))-

IND-CPA-secure in the real-or-random game model.

A (t, ε)-IND-CPA-secure system in the real-or-random game model is (t, 2ε)-IND-CPA-

secure [BDJR97a]. Conversely, a (t, ε)-IND-CPA-secure system is (t, ε)-IND-CPA-secure

in the real-or-random game model. Asymptotically, both models are equivalent.

Definition 2.9 (IND-CCA-security). A cryptosystem is said (t, ε)-IND-CCA-secure or

(t, ε)-secure against adaptive chosen ciphertext attacks if no adversary A = (A1,A2),

3We include in the running time the size of the code of A in a fixed RAM model of computation to
avoid trivial adversaries.

4In our definition of real-or-random game model, we consider only simple adversaries, i.e., adversaries
who can query the oracle once. This definition is enough to prove the IND-CPA-security of our scheme.
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with access to a decryption oracle OKs and with running time bounded by t can distinguish

the encryption of two different plaintexts m0 and m1 with a probability higher than ε.

More formally, for all A bounded by t,

Pr



AOKs

2 (Kp, c; ρ) = b :

(Ks,Kp)← Gen(1λ; ρg)

m0,m1 ← AOKs

1 (Kp; ρ)

r
U←− R; b U←− {0, 1}

c← Enc(Kp,mb; r)



≤ 1

2
+ ε ,

where OKs,c(y) = Dec(Ks, y) for y 6= c and OKs,c(c) = ⊥. Asymptotically, a cryptosys-

tem is IND-CCA-secure if for any polynomial t(λ) there exists a negligible function ε(λ)

such that it is (t(λ), ε(λ))-IND-CCA-secure.

Definition 2.10 (Distinguisher). Given two distributions D0 and D1, a distinguisher

between them is an algorithm A that takes as input one sample x from either D0 or D1

and has to decide which distribution was used. Its advantage is

AdvA(D0,D1) = Pr [A(x) = 1: x← D1]− Pr [A(x) = 1: x← D0] .

We know that for all A, AdvA(D0,D1) ≤ ∆(D0,D1). Equality can be reached with A
defined by A(x) = 1 iff D1(x) ≥ D0(x).

We say that D0 and D1 are ǫ-statistically indistinguishable if ∆(D0,D1) ≤ ǫ.

We say that the two distributions are (t, ε)-computationally indistinguishable if for any

distinguisher A with running time bounded by t,

|AdvA(D0,D1)| ≤ ε .

Asymptotically, two distributions depending on a parameter λ are computationally indis-

tinguishable if for any polynomial t(λ) there exists a negligible function ε(λ) such that,

they are (t(λ), ε(λ))-computationally indistinguishable.

2.4 Fourier Transforms

Our results in Chapter 6 and 7 make extensive use of both discrete and continuous

Fourier transforms. We summarize in the following some basic properties that we are

going to use. We refer the reader to any book on Fourier transforms for proofs and

extensions of these results. In this section, we define
√
−1 = i ∈ C.

2.4.1 Discrete Fourier Transform

Definition 2.11 (Discrete Fourier Transform (DFT)). Let p1, · · · , pb be integers and

let θpj := exp(2πi/pj), for 1 ≤ j ≤ b and where i =
√
−1. Define the group G :=

Zp1 × · · · × Zpb. We may write an element x ∈ G as (x1, · · · , xb). The discrete Fourier

11



transform (DFT) of a function f : G→ C is a function f̂ : G→ C defined as

f̂(α) :=
∑

x∈G

f(x)θ−α1x1
p1 · · · θ−αbxb

pb
. (2.3)

The discrete Fourier transform can be computed in time O (|G| log(|G|)) =: CFFT ·
|G| log(|G|) for a small constant CFFT.

2.4.2 Continuous Fourier Transforms

We use the following definition for continuous Fourier Transforms.

Definition 2.12 (Continuous Fourier transform (FT)). The continuous Fourier trans-

form (FT) of a function f : R→ C is a function F(f) : R→ C defined as

F(f)(χ) =
∫ ∞

−∞
f(x)e−2πiχx dx . (2.4)

We will use the following well-known properties of the FT.

Linearity.

F(f(x) + g(x))(χ) = (F(f) + F(g))(χ) . (2.5)

Translation.

F(f(x− y))(χ) = e−i2πyχF(f)(χ) . (2.6)

Convolution.

F(f(x)g(x))(χ) = (F(f(x)) ∗ F(g(x)))(χ) , (2.7)

where ∗ denotes the convolution operator which is defined as

(u ∗ v)(x) :=
∫ ∞

−∞
u(y)v(x− y) dy .

Integration.

F
(∫ x

−∞
f(τ) dτ

)
(χ) =

1

2iπχ
F(f)(χ) + 1

2
F(f)(0)δ(χ) , (2.8)

where δ is the Dirac delta distribution. We will use the following property of the Dirac

delta.
∫ ∞

−∞
f(τ)δ(τ − ℓ) dτ = f(ℓ) .

12
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We refer the reader to, e.g., [GS64, Rud91, Str03] for more information about the Dirac

delta distribution or, e.g. [BB86] for a more engineering approach.

We will also use the Poisson summation formula.

Lemma 2.13 (Poisson summation formula (see, e.g., [SW71])). Let f(x) : R → C be a

function in the Schwartz space5 and F(f) its continuous Fourier transform then

∞∑

ℓ=−∞

f(ℓ) =
∞∑

χ=−∞

F(f)(χ) . (2.9)

Useful Fourier Transforms.

F
(

1

σ
√
2π

e−x
2/(2σ2)

)
(χ) = e−2π

2σ2χ2
. (2.10)

Let γ ∈ R. Then

F (cos(αx)) (χ) =
1

2

(
δ
(
χ− γ

2π

)
+ δ

(
χ+

γ

2π

))
, (2.11)

where δ is the Dirac delta distribution.

2.5 Various Bounds

We will need the following Chernoff bound.

Lemma 2.14 (Chernoff bound). Let Z =
∑n

i=1 Zi, where Zi’s are random variables

independently distributed over [0, 1]. Then for every ξ > 0 we have

Pr[Z ≥ (1 + ξ)E[Z]] ≤ exp

(
−ξ2

3
E[Z]

)
.

We will use also the following Hoeffding bounds.

Theorem 2.15 ([Hoe63]). Let X1, X2, . . . , Xn be n independent random variables with

αj ≤ Xj ≤ βj for 1 ≤ j ≤ n. Let X := X1 + . . .+Xn and let E[X] be the expected value

of X. We have that

Pr[X − E[X] ≥ t] ≤ exp

(
−2t2∑n

j=1(βj − αj)2

)

5A function f(x) is in the Schwartz space if ∀α, β ∈ N, ∃Cα,β such that sup|xα∂β
xf(x)| ≤ Cα,β . A

function in C∞ with compact support is in the Schwartz space.

13



and

Pr[X − E[X] ≤ −t] ≤ exp

(
−2t2∑n

j=1(βj − αj)2

)
,

for any t > 0.
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Chapter 3

Hard Problems in Post-Quantum

Cryptography

Every public-key cryptosystem relies on problems that are believed computationally

hard. The two mostly used problems are the integer factorization problem [RSA78,

Rab79] and the discrete logarithm problem [EG84]. However, these two problems can

be solved in polynomial time on a quantum computer. It is thus important to develop

new cryptosystems that are secure even on quantum computers and to correctly propose

some parameters depending on the required security.

In this chapter, we list some hard problems used in cryptography that are believed to

be post-quantum, i.e., hard to solve even on a quantum computer. We do not try to be

exhaustive and we list only the problem we will use later in our results.

3.1 The Learning from Parity with Noise Problem

The Learning from Parity with Noise (LPN) problem1 has been well studied both in

learning theory and in cryptography. The hardness of this problem was first discussed

by Kearns in STOC 1993 [Kea93]. The same year, it was used for the first time in

cryptography by Blum et al. [BFKL93]. The goal of this problem is to find out an

unknown vector u, given some noisy versions of its scalar product with some known

random vector. More formally

Definition 3.1 (LPN Oracle). An LPN oracle Πu,p for a hidden vector u ∈ {0, 1}k and

0 < p < 1
2 is an oracle returning an LPN vector, i.e., vectors of the form

〈a U←− {0, 1}k , 〈a,u〉 ⊕ ν〉 ,

where, ν ← Ber(p). Note that the output is a k + 1-bit vector.

1This problem is also called the Learning Parity with Noise problem in some papers.
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Definition 3.2 (Search Learning from Parity with Noise Problem (LPN)). The (k, p)-

Learning from Parity with Noise Problem ((k, p)-LPN) consists, given an LPN Oracle

Πu,p, to recover the hidden vector u.

We say that an algorithm A (t, n, δ)-solves the (k, p)-LPN problem if A runs in time at

most t, makes at most n oracle queries and

Pr
[
u

U←− {0, 1}k : AΠu,p(1k) = u
]
≥ δ .

3.1.1 The Decisional LPN Problem.

The LPN problem has also a decisional form.

Definition 3.3 (Decisional LPN Problem (D-LPN)). Let Uk+1 be an oracle returning

random k+1-bit vectors. Then, an algorithm A (t, n, δ)-solves the (k, p)-decisional LPN

problem (D-LPN) if A runs in time at most t, makes at most n oracle queries and

∣∣∣Pr
[
u

U←− {0, 1}k : AΠu,p(1k) = 1
]
− Pr

[
AUk+1(1k) = 1

]∣∣∣ ≥ δ .

It is shown in [KS06, Reg05] that if there exists an algorithm A that (t, n, δ)-solves

the (k, p)-D-LPN problem, then there is an algorithm A′ that (t′, n′, δ/4)-solves the

(k, p)-LPN problem, with t′ := O
(
t · kδ−2 log k

)
and n′ := O

(
n · δ−2 log k

)
. Thus,

the hardness of the LPN problem implies that the output of the LPN vector oracle is

indistinguishable from a random source.

We say that the (k, p)-D-LPN problem is (t, ǫ)-hard, if there is no known algorithm that

solves it with running time bounded by t and advantage higher than ǫ.

3.1.2 Algorithms that Solve the LPN Problem

The first subexponential algorithm to solve the LPN problem was given by Blum, Kalai,

and Wasserman in [BKW03] and they estimated its complexity to 2O(k/ log k). We name

this algorithm the BKW algorithm.

The idea of the BKW algorithm is to first query the LPN oracle to obtain a large amount

of LPN vectors. It searches then for basis vectors ej by finding a low amount of vectors

that xor to ej . If the number of vectors that xor to ej is small, the noise for this vector

will be small as well. Using different independent instances that xor to the same ej , one

can recover the jth bit of u with good probability. All this procedure requires using

a large amount of queries. We will devote a whole chapter (Chapter 4) to the BKW

algorithm as we will show how to apply it to the learning with error problem (LWE), an

extension of the LPN problem. The LWE problem will be formally defined in Section 3.3.

The BKW algorithm (when applied to LPN) was analyzed in detail and improved

in [LF06, FMI+06, BL12, GJL14]. Very recently, Bogos, Tramèr, and Vaudenay pub-

lished a detailed survey regarding the BKW problem when applied on the LPN prob-

lem [BTV15]. In this survey, Bogos et al. show tighter bounds for all the previously

existing algorithms. We are going to give here their modified bound of the Levieil and
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Fouque algorithm [LF06] that we will use as a security bound in the cryptosystem we

suggest in Chapter 5. As the hardness of the LPN problem is far from being a bottleneck

in our proposal, we will use this generic bound to find practical parameters. Note that

the bounds from [GJL14] might be slightly better but would require us to find a covering

code that suits our application.

Theorem 3.4 ([BTV15, Theorem 5], modified bound from [LF06]). For a, b ∈ N, two

parameters such that ab ≥ k. Let θ ∈ (0, 1] be the probability of success of the algorithm.

Let q := 8 ln(2b/θ)(1−2p)−2a+(a−1)2b and let t := kaq+b2b. There exists an algorithm

that (heuristically) (t, q, θ)-solves the (k, p)-LPN problem.

Some parameters along with their security are given in [BTV15]. This algorithm requires

a subexponential (in k) number of samples.

3.1.3 Solving LPN with a Polynomial Number of Samples

When the number of samples is polynomial (as it will be in Chapter 5), Lyubashevsky

showed how one can use a universal family of hash functions and the leftover hash

lemma to obtain more samples under the conditions that they are under a higher noise

level [Lyu05].

Definition 3.5 (Universal family of hash functions). Let H be a set of functions from

a set X to a set Y . Let H
U←− H. H is a universal family of hash functions if for all

x1, x2 ∈ X, x1 6= x2,

Pr[H(x1) = H(x2)] ≤
1

|Y | .

Lemma 3.6 (Leftover hash lemma [IZ89]). Let ℓ, e ∈ N be parameters. Let X,Y ⊆
{0, 1}k be two sets such that |X| ≥ 2ℓ and |Y | = {0, 1}ℓ−2e. Let U be the uniform

distribution over the set Y and let H be a universal family of hash functions from X to

Y . Then, there exists H ⊆ H with |H| = (1 − 2−e/2)|H| such that for any h ∈ H, and

x
U←− X, ∆(h(x), U) ≤ 2−e/2.

It is a well-known result (and shown in [Lyu05]) that the family of hash function H
from a set X to a set Y with X ⊆ {0, 1}k1+ǫ

, |X| ≥ 22k and Y = {0, 1}k defined as

H :=
{
ha|a = (a1, . . . , ak1+ǫ), ai ∈ {0, 1}k

}
with ha(x) = x1a1 ⊕ · · · ⊕ xk1+ǫak1+ǫ . In his

paper, Lyubashevsky applies the leftover hash lemma to obtain more queries. For this,

he combines queries using H with X the set of all bit strings with exactly ⌈2k/(ǫ log k)⌉
ones. Letting a be the set of all existing queries and Lemma 3.6 shows that the resulting

queries are now close to uniformly distributed.

Lyubashevsky shows that the LPN problem with a polynomial number of samples is

solved asymptotically in 2O(k/ log log k). More precisely, one can transform the (k, p)-LPN

problem with k1+ǫ samples in the (k, p′)-LPN problem with enough samples to use the
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BKW algorithm and with

p′ =
1

2
− 1

2

(
1

4
− p

2

)⌈

2k
ǫ log k

⌉

. (3.1)

This new noise can easily be explained as we combine exactly ⌈2k/(ǫ log k)⌉ queries

together with the universal hash function. Combining Lyubashevsky’s result with The-

orem 3.4, we get the following time complexity (TLPN) for solving LPN and we will use

it as a security bound in our cryptosystem.

Theorem 3.7 (LPN with limited number of queries). For a, b ∈ N, two parameters

such that ab ≥ k. Let θ ∈ (0, 1] be the probability of success of the algorithm. Let q

be the maximum number of queries allowed. Let ǫ > 0 be such that q = k1+ǫ. Let

p′ = 1/2− 1/2(1/4− p/2)⌈2k/(ǫ log k)⌉ as in (3.1). Let

TLPN := min
0<a≤k

(
k × a×

(
8 ln

(
2k/a

θ

)
(1− 2p′)−2

a

+ (a− 1)2k/a

)
+

k

a
2k/a

)
. (3.2)

There exists an algorithm that (TLPN, q, θ)-solves the (k, p)-LPN problem.

3.2 Finding a Low-weight Codeword in a Random Linear

Code

In our security proof, we will also need to bound the complexity of finding a low-weight

parity-check equation in a random linear code which is the same as finding a low-weight

codeword in the dual code. This problem of finding a low-weight codeword is also called

the minimum distance problem.

Definition 3.8 (Minimum Distance Problem (MDP)). The (n, k, w)-decisional min-

imum distance problem is the following. Given an (n−k)×n matrix H drawn uniformly

and given w ∈ N, w ≥ 0, is there a non-zero x ∈ F
n
2 with Hw(x) ≤ w such that xHt = 0?

The computation counterpart of this problem consists in finding such an x.

Its hardness remained open for a long time. It was even set the “open problem of the

month”in [Joh82]. It was finally shown to be NP-hard by Vardy [Var97] using a reduction

from the decisional syndrome decoding problem. Many algorithms solving this problem

were developed (e.g. [LB88, Ste88, CC94, CC98, CS98, FS09].)

Finally, a general lower-bound on the complexity of the information set decoding al-

gorithm was derived by Finiasz and Sendrier [FS09] using idealized algorithms. How-

ever, it was shown in [BLP11, MMT11, BJMM12] that it is possible to do better than

this bound.

A new lower-bound for information set decoding is proposed in [BLP11]. This bound is

much simpler and we give it in Assumption 3.9.
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Assumption 3.9 ([BLP11]). Let r := n − k. Given an [n, k]-code and given a weight

w, if
(
n
w

)
≤ 2r, the cost of finding a parity-check equation of weight w is lower-bounded

by

TMDP(w, n, k) := min
i

(
n
w

)

2
(

k
w−i

)√(
r
i

) , (3.3)

bit operations.

We will assume this lower-bound for our cryptosystem. Note that a similar analysis for

linear codes over a general field Fq is presented in [Pet10].

3.3 The Learning With Error Problem

The Learning With Error problem (LWE) was introduced by Regev in [Reg05] and

can be seen as an extension of the Learning (from) Parity with Noise problem (LPN).

Roughly, the adversary is given queries from an LWE oracle, which returns uniformly

random vectors aj in Zq and their inner-product with a fixed secret vector s ∈ Z
k
q to

which some noise was added (typically some discrete Gaussian noise). The goal of the

adversary is then to recover the secret s. In LPN, q = 2 and the noise follows a Bernoulli

distribution. In his seminal paper [Reg09], Regev shows a quantum reduction from some

well-known Lattice problems like the decisional shortest vector problem (Gap-SVP) or

the short independent vector problem (SIVP) to the LWE problem. Later, Peikert and

Brakerski et al. showed how to make this reduction classical [BLP+13, Pei09]. The

LWE problem was then used to design a wide range of cryptographic primitives. For

instance, Gentry et al. showed how to construct a trapdoor function based on LWE and

created an identity-based cryptosystem [GPV08]. Applebaum et al. used LWE to design

encryption schemes with strong security properties [ACPS09]. However, the biggest

breakthrough regarding LWE is its use in the design of (fully) homomorphic encryption

schemes (FHE). FHE was first introduced by Gentry in his PhD thesis [Gen09]. While

the initial construction was not using the LWE problem, most of the recent designs are,

e.g., [BV11a, Bra12, GSW13].

We give now a formal definition of the LWE problem.

Definition 3.10 (LWE Oracle). Let k, q be positive integers. A Learning with Er-

ror (LWE) oracle Πs,χ for a hidden vector s ∈ Z
k
q and a probability distribution χ over

Zq is an oracle returning

(
a

U←− Z
k
q , 〈a, s〉+ ν

)
,

where ν ← χ.

Definition 3.11 (Search-LWE). The Search-LWE problem is the problem of recovering

the hidden secret s given n queries (a(j), c(j)) ∈ Z
k
q × Zq obtained from Πs,χ.
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In typical schemes based on LWE, the parameter q is taken to be polynomial in k, and

χ follows a discretized Gaussian distribution (see next section).

Like for LPN, one can define analogously a decisional version of the LWE problem, but

we will not use this problem in this thesis.

3.3.1 Gaussian Distributions

Let N (0, σ2) denote the Gaussian distribution of mean 0 and standard deviation σ. We

denote its probability density function by φ 7→ p(φ;σ), for φ ∈ R. Consider the wrapped

Gaussian distribution Ψσ,q resulting from wrapping the Gaussian distribution around a

circle of circumference q > 0. Its probability density function g(θ;σ, q) is given by

g(θ;σ, q) :=

∞∑

ℓ=−∞

1

σ
√
2π

exp

[−(θ + ℓq)2)

2σ2

]
, for θ ∈

]
−q

2
,
q

2

]
. (3.4)

Note that Ψσ,2π is the standard wrapped normal distribution obtained by wrapping

N (0, σ2) around the unit circle, used, for instance, in directional statistics [MJ09].

LWE schemes use a discretization of a Gaussian over Zq. There are two variants of LWE

that we will consider in this thesis. We will see that we obtain similar results for both

distributions. In the initial version by Regev [Reg09], the noise in LWE was a rounded

Gaussian distribution. This is also what is considered in [ACF+13, GKPV10]. Such

a distribution can be obtained by sampling from Ψσ,q and rounding the result to the

nearest integer in the interval ]−q2 , q2 ]. We denote this distribution by Ψ̄σ,q.

Definition 3.12 (Rounded Gaussian distribution (Ψ̄σ,q)). The probability mass function

of a Rounded Gaussian distribution is given by

Pr[x← Ψ̄σ,q] =

x+ 1
2∫

x− 1
2

g(θ;σ, q) dθ , (3.5)

for x an integer in the interval ]−q2 , q2 ] and where g(θ;σ, q) is given in (3.4).

The LWE problem is believed to be hard when σ ≥
√
k and q ∈ Poly(k).

The second Gaussian distribution used for LWE is the discrete Gaussian distribution

Dσ,q. This distribution is used in most of the applications and in the classical LWE

reduction [BLP+13]. We denote this distribution by Dσ,q.

Definition 3.13 (Discrete Gaussian distribution (Dσ,q)). For x an integer in ]− q
2 ,

q
2 ],

the discrete Gaussian distribution Dσ,q is defined as

Pr[x← Dσ,q] =
exp(−x2/(2σ2))∑

y∈]− q
2
, q
2
]

exp(−y2/(2σ2))
. (3.6)
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3.4 The Learning With Rounding Problem

The Learning With Rounding problem (LWR) was introduced by Banerjee, Peikert,

and Rosen to construct pseudorandom functions [BPR12]. LWR can be seen as a

derandomization of LWE where the random noise is replaced by a rounding modulo

p < q. This rounding introduces a deterministic error which makes the problem hard

to solve. Banerjee et al. showed that LWR is at least as hard as the LWE problem,

when q/p = kω(1), where k is the length of the secret. The LWR problem was later

revisited by Alwen et al. to get rid of this super-polynomial blowup [AKPW13]. How-

ever, the number of LWR samples given to the adversary is limited in this case. LWR

finds new applications every year. Among them, there is the design of pseudorandom

functions [BPR12], lossy trapdoor functions and reusable extractors [AKPW13], or key-

homomorphic PRFs [BLMR13].

We formalize now the LWR problem.

Definition 3.14 (Rounding function (⌈·⌋p)). Let q ≥ p ≥ 2 be positive integers. The

LWR problem uses the rounding function from Zq = {0, . . . , q−1} to Zp = {0, . . . , p−1},
given by2

⌈·⌋p : Zq → Zp : x 7→
⌈(

p

q

)
· x
⌋
,

where the operations are done over R.

Definition 3.15 (LWR Oracle). Let k and q ≥ p ≥ 2 be positive integers. A Learning

with Rounding (LWR) oracle Λs,p for a hidden vector s ∈ Z
k
q , s 6= 0 is an oracle

returning

(
a

U←− Z
k
q , ⌈〈a, s〉⌋p

)
.

Definition 3.16 (Search-LWR). The Search-LWR problem is the problem of recovering

the hidden secret s given n queries (a(j), c(j)) ∈ Z
k
q × Zp obtained from Λs,p.

Two main reductions from LWE to LWR exist: one with exponential parameters and

another with a limited number of samples.

Theorem 3.17 (Theorem 3.2 in [BPR12]). Let β ∈ R+ and let χ be any efficiently

sampleable distribution over Z such that Prx←χ[|x| > β] is negligible. Let q ≥ p ·β ·kω(1).
Then, solving decision-LWR with secrets of size k and parameters p and q is at least as

hard as solving decision-LWE over Zq with secret of size k and noise distribution χ.

The second result reduces this explosion in the parameters but limits the number of

samples the adversary is allowed to get from the LWR oracle.

2For the second component returned by the LWR oracle, we decided to return the rounding of 〈a, s〉
instead of the usual ⌊〈a, s〉⌋. The problem is equivalent (see, e.g., [AKPW13]). However, if we would
use the floor operation, the noise in Lemma 7.1 would not have zero mean but mean (1/2−gcd(p, q)/2q)
and we would have to introduce tedious correcting terms in (7.3).
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Theorem 3.18 (Theorem 4.1 from [AKPW13]). Let λ be the security parameter. Let

k, ℓ,m, p, γ be positive integers, pmax be the largest prime divisor of q, and pmax ≥
2βγkmp. Let χ be a probability distribution over Z such that E[|χ|] ≤ β. Then, if

k ≥ (ℓ + λ + 1) log(q)/ log(2γ) + 2λ and if gcd(q, q/pmax) = 1, the decision-LWR with

secret of size k, parameters p and q and limited to m queries is at least as hard as solv-

ing decision-LWE over Zq with secrets of size ℓ, noise distribution χ and limited to m

queries.
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Chapter 4

The BKW Algorithm for LWE

The BKW algorithm [BKW03], introduced by Blum et al., was the first sub-exponential

algorithm given for solving the Learning Parity with Noise (LPN) problem. Asymptotic-

ally, it has a time and sample complexity of 2O(k/ log k). As LPN can be seen as a special

case of LWE where we work over Z2, the BKW algorithm can be adapted to solve Search-

LWE over Zq with an asymptotic sample and time complexity of qO(k/ log(k)) = 2O(k)

when the modulus q is polynomial in k [ACF+13, Reg09, Reg10].

The BKW algorithm can be described as a variant of the standard Gaussian elimination

procedure, where a row addition results in the elimination of a whole block of elements

instead of a single element. The main idea is that by using ‘few’ row additions and no

row multiplications, we limit the size of the noise at the end of the reduction, allowing

us to recover a small number of elements of s with high probability through maximum

likelihood. The main complexity drawback of the algorithm comes from finding samples

colliding on a block of elements such that their addition eliminates multiple elements at

once.

The BKW algorithm takes two integer parameters, usually denoted a and b, such that a=

⌈k/b⌉. The algorithm repeatedly eliminates blocks of up to b elements per row addition,

over a rounds, to obtain the samples used for recovering elements of s. Minimizing the

complexity of the algorithm requires a tradeoff between the two parameters. For small

a, the reduced samples have low noise and the complexity of recovering elements of s

with high probability is reduced. For large b however, the complexity of finding colliding

samples increases.

In [ACF+13], Albrecht et al. view the BKW algorithm as a linear system solving al-

gorithm consisting of three stages, denoted sample reduction, hypothesis testing and back

substitution. For convenience, we briefly describe each of these stages below.

4.1 Sample Reduction

Given an LWE oracle Πs,χ, the goal of this stage is to construct a series of oracles As,χ,ℓ,

each of which produces samples (a, c), where the first b · ℓ elements of a are zero. To
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create the oracles As,χ,ℓ for 0 < ℓ < a, Albrecht et al. make use of a set of tables T ℓ,

which are maintained throughout the execution of the algorithm. To sample from As,χ,1,

we query the oracle As,χ,0 (which is the original LWE oracle) to obtain samples (a, c)

to be stored in table T 1. However, if T 1 already contains a sample (a′, c′) such that

a and ±a′ agree on their first b coordinates, we do not store (a, c) but instead output

(a ∓ a′, c ∓ c′). If a sample from As,χ,0 already has its first b elements to be zero, we

directly output it as a sample from As,χ,1.

For 1 < ℓ < a, we proceed recursively by populating a table T ℓ of non-zero samples from

As,χ,ℓ−1 and outputting a query as soon as we get a collision in the table.

Exploiting the symmetry of Zq and the fact that we do not need to store queries which are

already all-zero on a block, a table T ℓ contains at most (qb−1)/2 samples. Then, to create

m samples from As,χ,ℓ, we will need at most m + qb−1
2 calls to As,χ,ℓ−1. Furthermore,

since there is no use in storing the zero elements from reduced samples, table T ℓ stores

samples of size n− (ℓ− 1) · b+1 elements from Zq. The description of the oracles As,χ,ℓ

is given in Algorithm 4.1.

In the original BKW algorithm (see [BKW03, LF06]), one would then take samples from

As,χ,a−1, i.e., samples with zeros everywhere except in the first b positions, and delete

any sample (a, c) with more than one non-zero coordinate ai. The remaining samples

would be used to recover one bit of s at a time.

Albrecht et al. generalized a bit this result. First, they select a parameter d ≤ k−(a−1)b
which will define the number of non-zero positions we want to keep in the last iteration.1

Instead of keeping an element only if it has a single non-zero coordinate, they do a final

reduction using a new oracle As,χ,a. This oracle follows exactly the same algorithm as

before except that its goal is to obtain vectors that have exactly d non-zero entries in

a. Like the previous oracles, the oracle As,χ,a makes use of a final table T a. It samples

from As,χ,a−1 and adds (or subtracts) queries (a, c), (a′, c′), for which a and ±a′ agree
on coordinates (a−1) · b+1 through k−d−1. Albrecht et al. note that, in practice, the

obtain the best results when choosing d equal to 1 or 2. Note that d = 1 corresponds to

the BKW algorithm.2

4.2 Hypothesis Testing

After the reduction phase, Albrecht et al. are left with samples (a, c) from As,χ,a, where

a has non-zero elements on d positions. We can view As,χ,a as outputting samples in

Z
d
q × Zq. Let s′ denote the d first elements of s. Since a was obtained by summing

or subtracting up to 2a samples from the LWE oracle Πs,χ (and considering the fact

that χ is symmetric around 0), the noise (c− 〈a, s′〉) of the reduced samples follows the

distribution of the sum of 2a noise samples. The problem of recovering s′ can then be

1If k = ab, then d ≤ b.
2The only difference between the two algorithms is that the original BKW algorithm restarts every

time As,χ,a outputs something.
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The BKW Algorithm for LWE

Algorithm 4.1 Oracle As,χ,ℓ, for 0 < ℓ < a

State: A table T ℓ (initially empty)
Output: An LWE tuple (a, c) such that a has the first b · ℓ elements set to 0.
1: loop
2: Let (a, c)← As,χ,ℓ−1.
3: if a has the first b · ℓ elements set to 0 then
4: return (a, c).
5: end if
6: if there is (a′, c′) ∈ T ℓ such that a and ±a′ are equal on the first b · ℓ positions

then
7: return (a∓ a′, c∓ c′)
8: end if
9: Insert (a, c) in T ℓ.

10: end loop

seen as a problem of distinguishing between the noise distributions for s′ and v 6= s′.

By performing an exhaustive search over Zd
q and making use of the log-likelihood ratio,

Albrecht et al. determine the number m of samples from As,χ,a which should be required

to recover s′ with high enough probability.

As already mentioned, the analysis of the solving phase from [ACF+13] makes use of

the heuristic assumption that the noise contributions of the samples from As,χ,a are

independent and that the sum of rounded Gaussians also follows a rounded Gaussian

distribution.

4.3 Back Substitution

This stage was not part of the original BKW algorithm for LPN [BKW03, LF06] (which

does not make use of the set of tables T defined previously either). It is analogous to the

back substitution typically used in Gaussian elimination and is a clever way of reducing

the size of the LWE problem after part of the secret s has been recovered.

Indeed, once d elements of s are recovered with high probability, we can perform a back

substitution over the set of tables T , zeroing-out d elements in each sample. To recover

the next d elements from s, we query m new samples from Πs,χ and reduce them through

the tables T (which are already filled) to obtain samples for hypothesis testing. Note

that as soon as we recover all the bits at positions (ℓ− 1) · b through ℓ · b− 1, the oracle

As,χ,ℓ and its corresponding table T ℓ become superfluous and further samples will need

one reduction phase less.

4.4 The LF1 Algorithm

In [LF06], Levieil and Fouque propose an optimisation of the BKW algorithm for LPN,

denoted LF1, which recovers a full block of b bits of the secret s at once by cleverly
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applying a Walsh-Hadamard transform.

Compared to the original BKW algorithm, their method has the advantage of making

use of all the available samples after reduction, instead of having to discard those with

more than one non-zero position. Instead of an exhaustive search of complexity of the

order O
(
2b ·m

)
(where m is the number of samples left after reduction), they use a fast

Walsh-Hadamard transform to recover the most likely secret block in time O
(
m+ b2b

)
.

The analysis of their algorithm shows that it clearly outperforms the standard BKW,

although their asymptotic complexities are the same. Note that the LF1 algorithm uses

the exact same reduction phase as the original BKW. This is exactly the algorithm we

used to obtain the complexity in Theorem 3.4. We will use a similar idea in Chapter 6

to solve the LWE problem.
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Chapter 5

The HELEN Cryptosystem

The work presented in this chapter is a joint work with Prof. S. Vaudenay and was

published in [DV13a] and in [DV12] as an extended abstract. However, compared to

these two papers, we greatly simplify the security proof in this thesis. In this chapter, we

present HELEN, a public-key cryptosystem, the security of which relies on the hardness

of the LPN (see Section 3.1) and the minimum distance problem (see Section 3.2).1

Algorithms solving these problems were surveyed in Chapter 3. Note that there is also no

known polynomial-time algorithm on quantum computers. In short, the keys in HELEN

consists in a low-weight parity check equation h (the private key) which is hidden in a

random matrix G (the public key) such that it is indistinguishable from a totally random

matrix. The matrix G spans a linear code. Our cryptosystem has some similarities with

the Alekhnovich cryptosystem [Ale03]. However, we carefully study its complexity, we

further suggest concrete and optimized parameters, and we make incorrectness small.

We encrypt a duplicated bit by hiding it using a random linear codeword as well as a

random biased noise vector. For decryption, the random linear codeword is removed

by multiplying the ciphertext with h. The noise is removed by majority logic decoding.

With a proper parameter choice, the probability of decrypting erroneously the message

is small. We show in a further section how to reduce this probability of error as well as

how to encrypt multiple bits at the same time using HELEN.

5.1 Related Work

The LPN problem is well studied in the cryptographic community. There is an authen-

tication protocol based on the LPN problem named HB by Hopper and Blum [HB01].

This protocol was later improved into the HB+ protocol by Juels and Weis [JW05].

However, HB+ was shown vulnerable to man-in-the-middle attacks [GRS05]. Several

variants were suggested [BCD06, DK07, MP07] but all of them suffer from the same

vulnerability [GRS08a]. A new variant HB# was introduced by Gilbert, Robshaw and

1HELEN stands for Hidden Equation for Linear Encryption with Noise.
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Seurin [GRS08b] to improve the transmission cost of the protocol and its securtiy against

man-in-the-middle attacks but an attack was also found in this variant [OOV08]. Two

more recent versions were introduced based on the hardness of some variant of the LPN

problem, namely Ring-LPN [HKL+11, HKL+12] and subspace LPN [KPC+11].

Among other work based on the LPN problem, a PRNG is presented by Blum et al.

in [BFKL93] along with a one-way function and a private-key encryption scheme based

on some hard learning problems. A private-key encryption scheme named LPN-C was

suggested by Gilbert, Robshaw and Seurin [GRS08c]. LPN-C was shown IND-CPA

secure.

The construction of HELEN presents some similarities with the trapdoor cipher TCHo

by Aumasson et al. [DV13b, AFMV07, FV06] which similarly encrypts a message by

adding some random biased noise and some contribution from a linear code. In TCHo,

this noise is introduced using an LFSR whose feedback polynomial has a multiple of low

weight.

A class of lattice-based cryptosystems introduced by Regev is based on the worst-case

complexity of the learning with errors (LWE) problem [Reg05, Pei09, LPR10, SSTX09],

which is a generalisation of the LPN problem on fields Fq with q > 2. The last two

introduce the ring-LWE problem, an algebraic variant of the LWE problem. According

to the authors, it is the first truly practical lattice-based cryptosystem based on the

LWE problem.

Recall that HELEN is somewhat a code-based cryptosystem. This class of systems

includes some well-known cryptosystems like the McEliece cryptosystem [McE78] and its

dual the Niederreiter cryptosystem [Nie86], which are code-based making use of Goppa

codes.

Besides LWE-based cryptosystem, there are other lattice-based cryptosystem, for in-

stance NTRU [HPS98], a system based on the hardness of the shortest vector problem

in a particular class of lattices. We refer the reader to [Ber09] for a more exhaustive

survey on post-quantum cryptosystems.

More closely-related cryptosystems were suggested. Gentry et al. introduced an LWE-

based cryptosystem [GPV08] in which users share a common random matrix and whose

private key (resp. public key) consists in a random error vector (resp. its syndrome).

Extensions to p = 2 have been open so far. Our procedure is different from theirs in

the sense that we hide a low-parity check equation in a matrix so that this matrix looks

random, whereas they pick a totally random matrix. Similarly, Alekhnovich proposed a

scheme based on problem to distinguish (A,Ax+e) with x following uniform distribution

and e either in
(
n
nδ

)
or
(

n
nδ+1

)
with δ < 1/2 which he conjectures to be hard [Ale03].

Our scheme differs with the scheme proposed in [Ale03] in the following ways. First,

we encode the bit so that decryption is correct with constant probability φ and which

is independent from the encrypted bit b (in [Ale03], this probability is just known to

be close to one for b = 0 and 1/2 for b = 1). Finally, we propose concrete parameters

and asymptotic parameters for our scheme. Applebaum et al. proposed a scheme, which

is very similar to ours but which uses sparse matrices instead of random ones. Thus,
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The HELEN Cryptosystem

the security reduces to the less-studied 3LIN problem instead of LPN. This problem is

similar to the LPN problem except that queries are done with vectors of weight 3 instead

of random vectors. Also, the authors do not provide any concrete parameters [ABW10].

In Asiacrypt 2012, Döttling et al. presented an IND-CCA secure cryptosystem based on

Alekhnovich’s scheme, but again, no concrete parameters are given [DMQN12]. IND-

CCA security is obtained using a technique by Dolev et al. [DDN91] based on one-time

signatures and a tool by Rosen and Segev [RS09b]. We want also to mention a result by

Damg̊ard and Park who tries to characterize how practical a cryptosystem based on LPN

can be [DP12]. At the time of the publication of the paper related to this chapter, to the

best of our knowledge, we proposed for the first time a concrete public key cryptosystem

whose security is based on LPN.

5.2 The Cryptosystem

We will first consider how to encrypt one single bit b. Hence, our message space is

M = {0, 1}. We denote the cryptosystem by HELEN. We generalize the encryption to

multiple bits in Section 5.5.

HELEN uses the following parameters which are described below: n, k, p, w, c, and H.
We encode first our message bit b with a binary [n, 1]-error-correcting code C1, for n ∈ N.

The goal of this code is to be able to recover b when errors occur. Let c ∈ {0, 1}n be the

generating matrix of this code (in fact, it is a vector). We encode b as b · c. This message

is hidden by a random codeword from a random binary linear [n, k]-code C2 which has

a low-weight parity-check equation h ∈ {0, 1}n and a generator matrix G ∈ {0, 1}k×n.
The parameter k ∈ N determines the dimension of the codeword space in C2 and needs

to be tuned so that the system has the required security. The parity-check equation h

will be the private key of our system while G will be the public key. As h is a parity

check equation of the code generated by G, we have h · Gt = 0. We denote the weight

of h by w and the set of all possible h by H. In the following, H will be the set of

all vectors of weight w and dimension n but we keep this more general H for further

improvements. We also hide the message further by adding some low weight random

noise vector ν ∈ {0, 1}n produced by a source Sp.

For correct decryption, we require also that h · ct = 1 for all h ∈ H. When H contains

all the vectors of weight w, this condition implies c = (1, . . . , 1) (see (5.1) below).

In the following, we describe more precisely the cryptosystem. All algorithms are sum-

marized in Algorithms 5.1, 5.2, and 5.3.

Before formally describing the cryptosystem, we will need the following technical lemma.

Lemma 5.1. Let X be a random variable defined as the sum modulo 2 of w iid Bernoulli

random variables ν1, · · · νw equals to 1 with probability p and to 0 else. Then

Pr[X = 1] =
1− (1− 2p)w

2
.
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Figure 5.1 – The HELEN encryption

Proof. On one hand, we have

E

[
(−1)X

]
= Pr[X = 0]− Pr[X = 1] = 1− 2Pr[X = 1] .

On the other hand,

E

[
(−1)X

]
=

w∏

i=1

E [(−1)νi ] = (1− 2p)w .

Combining the two equations shows the result.

5.2.1 Encryption

A bit b ∈M is encrypted as

BEnc(G, b; r1‖r2) = b · c⊕ r1G⊕ ν ,

where c is the generator vector for C1, G is the generator matrix for C2, r1 ∈ {0, 1}k is

random and ν := Snp (r2), i.e., it is the n first bits generated by the source Sp with random

seed r2. The ciphertext space is, thus, C = {0, 1}n. The complexity of encryption is

O (kn).2

5.2.2 Decryption

We define

b′ := BDec(h, y) = h · yt .
2Recently Gwanbae Choi showed [Cho15] that when encrypting many plaintexts at the same time

(batch encryption), one could obtain a small improvement in this complexity, using more clever matrix
multiplication algorithms (e.g., Strassen’s algorithm [Str69]).
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The HELEN Cryptosystem

Algorithm 5.1 The HELEN encryption algorithm

Input: A bit b to encrypt, a public key G, two random seeds r1 and r2, a length n, an
n-bit vector c, and a noise parameter p.

Output: A ciphertext y encrypted under the public key G.
1: Let ν := Snp (r2).
2: return y ← b · c⊕ r1G⊕ ν.

Given a ciphertext y ∈ {0, 1}n, we recover the original message by first removing the

noise due to C2. This is done by applying h on y since h ·Gt = 0. Hence, we get

b′ := BDec(h, y) = h · yt = (h · ct · bt)⊕ ν ′ ,

for ν ′ := h · ν a noise with

Pr[ν ′ = 1] =
1− (1− 2p)w

2

by Lemma 5.1. Note that it is necessary that

h · ct = 1 (5.1)

for all vector h ∈ H if one wants to be able to recover b. When H includes all vectors of

weight w, this condition is equivalent to setting c to the all-one vector and w to an odd

number. The resulting bit b′ is then different from b with probability ϕ, which is given

in the following theorem.

Theorem 5.2. HELEN is a ϕ-cryptosystem, where

ϕ :=
1− (1− 2p)w

2
.

Note that the complexity of decryption is O (n).

Algorithm 5.2 HELEN decryption algorithm

Decryption:
Input: A ciphertext y and a private key h.
Output: The original plaintext b with probability ϕ defined in Theorem 5.2.
1: return b′ ← h · yt.

5.2.3 Key Generation

We need now to generate a code that is indistinguishable from a random code but that

contains a known secret parity-check equation h of low weight. Let w be the required

weight of h and let H be the set of all possible private keys. We propose the following

key generation scheme.
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1. Draw a random vector h of length n in the set H. This vector will be the private

key.

2. Let 0 < u ≤ n be any index of h such that hi = 1 , e.g., max {i : hi = 1}.

3. Let gij ← Ber(12), for 1 ≤ i ≤ k and 1 ≤ j ≤ n, j 6= u.

4. Let

giu =
∑

1≤j≤n
j 6=u

gijhj

for 1 ≤ i ≤ k, where the sum is taken over F2.

5. Return the matrix G := [gij ]1≤i≤k
1≤j≤n

and the vector h.

The resulting public key size is k×n bits, as we have to store the matrix G. The private

key is w log n bits long. The key generation complexity is O (k × n). Note that we have

hGt = 0.

Algorithm 5.3 HELEN key generation algorithm

Input: Lengths k, n and a set H.
Output: A private key h and a public key G.
1: Draw a random vector h of length n in the set H.
2: Let 0 < u ≤ n be any index of h such that hi = 1 , e.g., max {i : hi = 1}.
3: Let gij ← Ber(12), for 1 ≤ i ≤ k and 1 ≤ j ≤ n, j 6= u.
4: Let

giu =
∑

1≤j≤n
j 6=u

gijhj

for 1 ≤ i ≤ k, where the sum is taken over F2.
5: return the matrix G := [gij ]1≤i≤k

1≤j≤n

and the vector h.

5.3 Security Analysis

We will reduce the security of our scheme to the LPN problem presented in Section 3.1.

To do this, we will proceed in two steps. First, we show that the code we construct for

C2 is computationally indistinguishable from a random matrix.

5.3.1 Link to Random Codes

We first show in Lemma 5.3, that our key generation algorithm is equivalent to an

algorithm that generates a random matrix such that it has at least one parity-check

equation in H. The first generator is our key generation algorithm.
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The HELEN Cryptosystem

Generator A: Run the key generation algorithm to obtain G and h and return A := G.

Generator G1: Draw a random h ∈ H. Then, draw a random k×n matrix B until it

has h as parity check equation.

Generator B: Return a random k × n matrix B.

Lemma 5.3.

∆(A,G1) = 0 .

Proof. We have to show that generator A and generator G1 produce the same distribu-

tion. First, note that showing that one line of A and G1 are generated using the same

distribution is enough, as the lines are drawn independently one from another. To finish

the proof, note first that in both cases, h is drawn with uniform distribution. Let gi be

one line of G and note that, when h 6= 0,

Pr[gi ← A | h← A] =
1

2n−1
= Pr[gi ← G1 | h← G1] .

If h = 0, any gi would be accepted in both cases.3

We want now to link this distribution with the distribution of an uniformly distributed

k× n matrix, i.e., a matrix produced by generator B. We will need suitable parameters

such that G1 is computationally indistinguishable from B.

The best distinguisher between G1 and B consists in deciding whether the output of

the unknown generator has a parity-check equation in H or not. As discussed, the

decisional problem is believed as hard as the computational problem. Hence, we extend

Assumption 3.9 to the following one.

Assumption 5.4. For any distinguisher between G1 and B, the complexity over ad-

vantage ratio is lower bounded by TMDP(w, n, k), which is defined in (3.3).

So, by selecting parameters such that the TMDP(w, n, k) ≥ 2λ, for a security parameter

λ, any game involving our cryptosystem produces a computationally indistinguishable

outcome when the key generator is replaced by B.

5.3.2 Semantic Security

Now that we haveB computationally indistinguishable fromA, we can link our cryptosys-

tem with the LPN problem.

3Note that this case would imply that 0 ∈ H, which would break the correctness of our cryptosystem.
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Theorem 5.5. If the (n, k, w)-decisional minimum distance problem is (t1, ε1)-hard and

if the (k, p)-decisional LPN problem is (t2, ε2)-hard, then there exists a constant τ such

that our cryptosystem is

(min{t1, t2 − τkn}, 2(ε1 + ε2)) -IND-CPA-secure .

Proof. We recall the real-or-random IND-CPA game defined in Definition 2.8. We in-

troduce the following three games Γ0, Γ1 and Γ2. Γ0 is the IND-CPA game for our

cryptosystem in the simple real-or-random model. Γ1 is the IND-CPA game in the same

model but using generator B instead of A. Γ2 is the (k, p)-D-LPN game.

By the assumptions, we know that the best advantage between Γ0 and Γ1 is ε1. For the

best advantage between Γ1 and Γ2, we do the following. Recall that in the simple real-

and-random game this model, the adversary submits first a chosen plaintext b using an al-

gorithmAror
1 (G). Then, given a n-bit word u, has to decide using an algorithmAror

2 (G, u),

whether u is the encryption of b or is a random bitstring. Let (Aror
1 (G),Aror

2 (G, u)) be

an IND-CPA adversary for our cryptosystem when G is generated using generator B.

We show that using this adversary, we can create an adversary B that solves the D-LPN

problem. B first queries the unknown oracle of the D-LPN problem n times to obtain

n-vectors α1, . . . , αn. Note that each of these αi has exactly k + 1 bits. He creates then

the k×n matrix G̃ using the first k bits of αi as column i, for 1 ≤ i ≤ n. Using Aror
1 (G̃),

he ca recover a plaintext b. Let z := b · c ⊕ (α1|k+1‖ . . . ‖αn|k+1), where αi|k+1 denotes

the k + 1-th bit of αi. If the unknown oracle returns random bitstrings, then z will

be random as well. However, if it is an LPN oracle, then z is a valid ciphertext of b

using the public key G̃. Note also that the matrix G̃ follows the same distribution as

the output of generator B.

Hence, using Aror
2 (G̃, z), we can decide whether z is a ciphertext corresponding to b or

not. The complexity of this simulation is τkn for a constant τ > 0 large enough. Thus,

B wins Γ2 with the same advantage as (A1,A2) wins Γ1.

As the D-LPN problem is supposed (t2, ε2)-hard, we get that our cryptosystem when we

use generator B is (t2 − τkn, ε2)-IND-CPA-secure in the simple real-or-random model.

Similarly, we get that the original cryptosystem is (min{t1, t2− τkn}, ε1+ ε2)-IND-CPA-

secure in the simple real-or-random model. Thus, our cryptosystem is (min{t1, t2 −
τkn}, 2(ε1 + ε2))-IND-CPA-secure in the standard model [BDJR97b].

Hence, we reduced the semantic security of our cryptosystem to the hardness of the

decisional LPN problem with n queries and noise parameter p.

Note that since we encrypt one single bit, an IND-CPA adversary has to distinguish

BEnc(G, 0) from BEnc(G, 1) which is equivalent to OW-CPA security.
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5.4 Selection of Parameters

To summarize, we need to tune the following security parameters for HELEN:

• The dimension k of the code C2 generated by G,

• The ciphertext length n (also the length of the codewords in C2),

• The weight w of the secret key, and

• The noise probability p.

For our cryptosystem to be semantically secure, we need the parameters to verify The-

orem 5.5. In particular, this implies that the D-LPN problem should be hard and

that finding a low-weight parity-check equation in the code is hard as well, i.e., that

TMDP(w, n, k) ≥ 2λ We need also w to be odd. For the LPN problem, we want TLPN ≥ 2λ,

where TLPN is given in Equation (3.2).

Recall that the probability of decrypting incorrectly a bit is

Perror :=
1− (1− 2p)w

2
. (5.2)

Hence, to compare different parameters, we will normalize them with the capacity of

a binary symmetric channel (BSC) with parameter Perror. Recall that the capacity of

the BSC is C := 1 −H2(Perror) with H2(p) := −p log(p) − (1 − p) log(1 − p) the binary

entropy. We normalize by this factor, as we know that such a rate is achievable by the

channel coding theorem (see, e.g., [CT06]). This gives us a good way of comparing the

parameters.

We propose two sets of parameters. Some (I) which minimizes the n/C ratio to minimize

the number of transmitted bits and some (II) with a smaller kn/C ratio to minimize

the encryption/decryption complexity. We give in Table 5.1 concrete parameters for

different security parameters λ.

Table 5.1 – Parameters for our cryptosystem

λ k n w p kn n/C kn/C TMDP TLPN C

I 64 4 500 18 000 33 0.01 226.3 216.4 228.6 265.3 ≥ 2k 0.20
II 64 2 200 16 000 23 0.02 225.0 217.1 228.2 264.7 ≥ 2k 0.11
I 80 5 600 28 000 35 0.01 227.2 217.2 229.7 280.5 ≥ 2k 0.18
II 80 2 800 27 000 25 0.02 226.2 218.1 229.6 280.4 ≥ 2k 0.10

In Table 5.2, we compare for concrete parameters HELEN with the code-based McEliece

cryptosystem [McE78] and with an LWE-based cryptosystem [LP11]. Note that for

encryption and decryption time, we neglect the cost of encoding and decoding.

We propose the following asymptotic parameters for our system:

k = Θ
(
λ2
)

n = Θ
(
λ2
)

w = Θ(λ) p = Θ(1/λ) .
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Indeed, we obtain TMDP and TLPN ≥ 2λ, DA,G3
≤ 2−λ, Perror =

1
2 − 1

eO(1) , and C > 0.

In Table 5.3, we compare the asymptotic complexity of HELEN with the complexity of

various cryptosystems of which we could find some asymptotic parameters. Analysing

this table, we can see that, although HELEN is not as good as NTRU or McEliece, it

performs better than RSA and even TCHo.4

Table 5.2 – Comparison with other cryptosystems

Name λ Message
expansion

Pub key size Encryption
time

Decryption
time

HELEN I 80 217.2 227.2 O
(
229.7

)
O
(
217.2

)

McEliece [BLP08] 80 1.29 218.8 O
(
221.0

)
O
(
221.3

)

LWE [LP11] 128 22 217.5 O
(
224
)

O
(
218.5

)

Ring-LWE [LP11] 128 22 ≈ 210 O
(
224
)

O
(
218.5

)

Table 5.3 – Asymptotic comparison with other cryptosystems. The Θ (.)’s have been
omitted.

Name Message
expansion

Pub
key size

Private
key size

Key
generation

Encryption Decryption

HELEN λ2 λ4 λ log λ λ4 λ4 λ2

TCHo [DV13b] λ2 λ2 λ log λ λ6 log λ log log λ λ5 λ4

McEliece [BLP08] 1 λ2 λ2 λ3 λ2 λ2 log λ
RSA 1 λ3 λ3 λ12 λ6 λ9

NTRU [HPS98] 1 λ λ λ3 λ2 λ2

5.5 Encrypting More than One Bit

In this section, we show how to encrypt more than one bit using HELEN. Taking ad-

vantage of an efficient coding scheme, we can also improve the probability of decrypting

correctly the message. In addition to the previous parameters n, k, p, w and H, we add

a [µ, κ]-error-correcting code. Let Encode be this [µ, κ]-error-correcting code. Let also

Decode be an efficient decoding algorithm corresponding to this code.

Encryption: We encrypt a plaintext m ∈ {0, 1}κ in two steps. First we compute

b1‖ . . . ‖bµ := Encode(m). The ciphertext c is then BEnc(G, b1)‖ . . . ‖BEnc(G, bµ). The

complexity of encryption is O (µkn+ TEncode), where TEncode is the complexity of the

encoding algorithm.

4For the comparison with TCHo, only the public key size is worse in HELEN.
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Decryption: To decrypt, we first decrypt each block of n bits using BDec to recover

b′1‖ . . . ‖b′µ, where each b′i 6= bi with probability (1−(1/2p)w)/2 =: Perror. The complexity

of decryption is O (µn+ TDecode), where TDecode is the complexity of the decoding al-

gorithm. Let ρ be the maximum number of errors the error-correcting code can correct.

Then, the probability of decrypting incorrectly the message is

µ∑

i=ρ+1

(
µ

i

)
(Perror)

i(1− Perror)
µ−i ≤ exp

[
−2µ

(
ρ

µ
− Perror

)2
]
=: φ (5.3)

by the Hoeffding bound (Theorem 2.15).

Theorem 5.6. HELEN with parameter µ, κ is a φ-cryptosystem, where φ is given

in (5.3).

Very recently Gwangbae Choi [Cho15] instantiated HELEN using a [23, 12, 7]-Golay code

and showed a reduction of the ciphertext length by a factor 2/3 with respect to basic

repetition codes.

5.5.1 Security

Theorem 5.7. Let εb be the IND-CPA advantage for the elementary cryptosystem HELEN

with µ = κ = 1. Then, the advantage of an IND-CPA adversary against the full cryptosys-

tem HELEN with parameter µ and κ is smaller than µεb.

Proof. Let A := (A1,A2) be an IND-CPA adversary HELEN with parameter µ, κ. Given

i ∈ {1, . . . , µ}, we define Bi := (Bi,1(G),Bi,2(G, c)) as follows.

Bi,1(G):

1. Let m0,m1 ← A1(G)

2. Let b01‖ . . . ‖b0µ ← Encode(m0), the encoding of m0

3. Let b11‖ . . . ‖b1µ ← Encode(m1), the encoding of m1

4. Return b0i , b
1
i .

Bi,2(G, c):

1. Compute c1 ← BEnc(G, b11), . . . , ci−1 ← BEnc(G, b1i−1).

2. Let ci = c

3. Compute ci+1 ← BEnc(G, b0i+1), . . . , cµ ← BEnc(G, b0µ).

4. Set y := c1‖ . . . ‖cµ

5. return A2(G, y)
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We know that AdvBi ≤ εb. We have

Pr [A → 0 | m0 encrypted] = Pr
[
B1 → 0 | b01 encrypted

]

and

Pr [A → 0 | m1 encrypted] = Pr
[
Bµ → 0 | b1µ encrypted

]
.

Also,

Pr
[
Bi → 0 | b1i encrypted

]
= Pr

[
Bi+1 → 0 | b0i+1 encrypted

]
.

Hence,

AdvA = (Pr [A → 0 | m0 encrypted]− Pr [A → 0 | m1 encrypted])

=

µ∑

i=1

(
Pr
[
B → 0 | b0i encrypted

]
− Pr

[
B → 0 | b1i encrypted

])
≤ µεb .

5.6 IND-CCA-security

Obviously HELEN is not IND-CCA-secure, as it is clearly malleable. It suffices to change

one single bit of the ciphertext and to submit it to the decryption oracle to decrypt the

plaintext with good probability. To achieve IND-CCA security, one can use well-known

construction like the Fujisaki-Okamoto hybrid construction [FO99]. This construction

uses two random oracles H1 and H2 as well as a symmetric encryption scheme. However,

such a construction work only if the cryptosystem is Γ-uniform.

Definition 5.8 (Γ-uniformity). Let Enc be an asymmetric encryption scheme, with key

generation algorithm Gen(1λ) and encryption algorithm Enc(Kp,m; r) over the message

spaceM and the random coins space R. Enc is Γ-uniform if for any plaintext m ∈M,

for any keys drawn by Gen and for any y ∈ {0, 1}∗, we have

Pr
[
h

U←− R : y = Enc(Kp,m;h)
]
≤ Γ ,

i.e., the probability that a plaintext and a ciphertext match is bounded.

Lemma 5.9. HELEN is (1− p)n-uniform.

Proof. Recall that the HELEN encryption of b is y = b · c ⊕ r1G ⊕ Snp (r2), for random

coins r1 and r2. We need to bound the probability (taken over r1 and r2) that a given

plaintext x and ciphertext y match. As in HELEN we consider only p < 1
2 , the most

probable ciphertext corresponds to y = b · c ⊕ r1G, i.e., when Snp is the zero bitstring.

This happens with probability (1− p)n. When we take the average over the possible r1,

this probability can only decrease. Hence, HELEN is (1− p)n-uniform.
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Theorem 5.10. Let q1(resp. q2) be the number of queries an adversary makes to H1

(resp. H2). Let qd be the number of queries performed to the decryption oracle. Then,

if HELEN is (t, ǫ)-IND-CPA-secure, the Fujisaki-Okamoto hybrid construction using a

one-time pad for symmetric encryption with key length ℓ is (t1, ǫ1)-IND-CCA-secure in

the random oracle model, where

t1 := t−O ((q1 + q2)× (k + ℓ))

ǫ1 := (2(q1 + q2)ǫ+ 1)(1− (1− p)n − 2−ℓ)−qd − 1 .

Proof. Since HELEN is OW-CPA secure and (1−p)n-uniform (see Lemma 5.9), the result

follows from [FO99, Theorem 14].
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Chapter 6

A New Algorithm Solving the Learning

With Error Problem

The work presented in this chapter is part of a joint work with F. Tramèr and Prof. S.

Vaudenay and was published in [DTV15].

Notation. In this chapter as well as in the next one, we define
√
−1 = i ∈ C.

6.1 Previous Work

Algorithms solving LWE can be divided into two categories: those finding short vectors

in a lattice using, e.g., Regev’s [Reg09] or Brakerski et al.’s [BLP+13] reduction and those

attacking the LWE problem directly. The first type of algorithms is extensively studied

(see, e.g., [BGJ14, LP11, CN11, Ngu11, HPS11b, HPS11a, GNR10, NS09b]). However,

there is still no precise complexity analysis for large dimensions. In this chapter, we focus

only on the second type of algorithms the study of which started with the LPN problem

and the BKW Algorithm [BKW03] with complexity 2O(k/ log k) where k is the length of

the secret vector (see Chapter 4 for more background regarding the BKW algorithm).

In ICALP 2011, Arora and Ge publish the first algorithm targeting a specific version

of LWE, namely when the Gaussian noise is low [AG11] using algebraic attacks. This

result was later improved by Albrecht et al. [ACF+14]. Using BKW for LWE was first

mentioned by Regev [Reg09]. However, it is only in 2013 that the first detailed analysis

of a generic algorithm targeting LWE is published by Albrecht et al. [ACF+13]. It is

an adaptation of the original BKW algorithm with some clever improvements of the

memory usage and achieves complexity 2O(k). Their analysis is extremely detailed and

we already presented their result in Chapter 4. Finally, Albrecht et al. presented in

PKC 2014 an algorithm targeting LWE when the secret vector has small components

(typically binary). Using BKW along with modulus switching techniques, they managed

to reduce the complexity for solving the LWE problem in these cases [AFFP14].
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6.2 Our Contribution

We contributed in the following:

• First we suggest a new algorithm for LWE, which is better than the current state

of the art. Our new algorithm replaces the log-likelihood part from [ACF+13] by

a multidimensional Fourier transform. We also put forward a heuristic adapted

from LF2 [LF06] to reduce the number of oracle queries even further.

• Albrecht et al. in [ACF+13] were relying on the heuristic that the sum of rounded

Gaussian variables remains a rounded Gaussian. We remove this heuristic by a

careful analysis. In particular, we give good bounds on the expected value of the

cosine of the rounded Gaussian distribution. Our algorithm relies solely on the

common heuristic stating that after having performed all the XORs in the BKW

algorithm, all the noises are independent. This heuristic is already used in most

of the LPN-solving algorithms (e.g. [LF06, FMI+06, ACF+13]).

• In [ACF+13], only the rounded Gaussian distribution for the noise in LWE is

considered. While this distribution was initially used by Regev [Reg09], more

recent papers tend to use the discrete Gaussian distribution instead. We perform

our analysis for both distributions.

• Albrecht et al.’s complexity is rather difficult to estimate when
√
2aσ > q/2 (see for

instance [ACF+13, Theorem 2]). Indeed, their result contains a parameter which

they could express only using an integral and the erf function. Our detailed analysis

allows us to bound the Fourier coefficients of the rounded Gaussian distribution in

all the cases and, hence, all our complexities are simple to evaluate.

• Finally, we adapt Lyubashevsky’s idea for LPN that we presented in Section 3.1.3

to LWE and show that for LWE, the minimum number of queries required using

his method is k1+(log q+1)/ log k.

6.3 Our LWE Algorithm

In this section, we present our new LWE-solving algorithm. Following the structure

from [ACF+13], our algorithm will also consist of the sample reduction, hypothesis

testing and back substitution phases. However, we change the hypothesis testing phase

with an idea similar to the LF1 algorithm [LF06]. Indeed, as the Walsh-Hadamard

transform can be seen as a multidimensional discrete Fourier transform in Z2, it would

seem plausible that a similar optimization could be achieved over Zq for LWE. As we

have seen, the BKW algorithm for LWE from [ACF+13] differs slightly from the original

BKW algorithm in its reduction phase. Recall that after reducing samples to a block

of size k′ ≤ b, Albrecht et al. further reduce the samples to d elements. Our idea is

to remove this last reduction to d elements and recover directly the k′ elements of s
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using a DFT. Thus, the samples we use for the DFT would have noise sampled from the

sum of 2a−1 discretized Gaussians instead of 2a, which might also lead to a significant

improvement. As for most other works on LPN or LWE solving algorithms, we will make

use of an heuristic assumption of independence for the noise of the reduced samples.

Finally, note that the LF1 algorithm uses the exact same reduction phase as the ori-

ginal BKW. Similarly, our algorithm will use (nearly) the same reduction phase as

in [ACF+13], combined with a different hypothesis testing phase. The major differ-

ences in our reduction phase will be that we perform one reduction round less, and that

we decide to store and re-use samples for solving successive blocks of s.

6.3.1 Sample reduction

As mentioned previously, our algorithm uses the same reduction phase as the BKW

algorithm from [ACF+13], except that we always stop the reduction as soon as we reach

a block of k′ ≤ b non-zero elements. We will construct the oracles As,χ,ℓ and the tables

T ℓ only for 1 ≤ ℓ ≤ a− 1. It is thus fairly trivial to adapt the results from [ACF+13] to

bound the complexity of our algorithm’s reduction phase.

Lemma 6.1 (Lemma 2 and 3 from [ACF+13]). Let k, q be positive integers and Πs,χ be

an LWE oracle, where s ∈ Z
k
q . Let a ∈ Z with 1 ≤ a ≤ k, let b be such that ab ≤ k, and

let k′ = k− (a− 1)b. The worst case cost of obtaining m samples (ai, ci) from the oracle

As,χ,a−1, where the ai are zero for all but the first k′ elements, is upper bounded by

(
qb − 1

2

)(
(a− 1) · (a− 2)

2
(k + 1)− ab · (a− 1) · (a− 2)

6

)
+m

(
a− 1

2
(k + 2)

)

additions in Zq and (a− 1) · qb−12 +m calls to Πs,χ.

The memory required in the worst case to store the set of tables T 1 through T a−1, ex-

pressed in elements of Zq is upper bounded by

(
qb − 1

2
· (a− 1) ·

(
k + 1− b

a− 2

2

))
.

Proof. The proof follows exactly the one from [ACF+13], with the exception that we do

not use any table T a.

6.3.2 Hypothesis testing

At the end of the reduction phase, we are left with m samples (a(j), c(j)) from the

oracle As,χ,a−1, where each a(j) has all elements equal to zero except for a block of size

k′ = k − (a− 1) · b. Let s′ denote the corresponding block of the secret s. We can view

the oracle As,χ,a−1 as returning samples in Z
k′
q × Zq. We will consider that each such

sample is the sum of 2a−1 samples (or their negation) from the LWE oracle Πs,χ. Then,
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the noise 〈a(j), s′〉 − c(j) will correspond to the sum of 2a−1 independent samples from

the distribution χ, multiplied by ±1, and taken modulo q. We perform our analysis

when χ is the discrete Gaussian distribution (3.6) and when χ is the rounded Gaussian

distribution (3.5) which are used in most of the LWE research, i.e., we let χ = Dσ,q or

χ = Ψ̄σ,q.

We represent our m samples as a matrix A ∈ Z
m×k′
q with rows Aj and a vector c ∈ Z

m
q .

Recall that θq := exp(2πi/q). Let us consider the function

f(x) :=
m∑

j=1

1{Aj=x} θ
cj
q , ∀x ∈ Z

k′

q . (6.1)

The discrete Fourier transform of f is

f̂(α) :=
∑

x∈Zk′
q

f(x)θ−〈x,α〉q =
∑

x∈Zk′
q

m∑

j=1

1{Aj=x} θ
cj
q θ−〈x,α〉q =

m∑

j=1

θ
−(〈Aj ,α〉−cj)
q .

In particular, note that

f̂(s′) =
m∑

j=1

θ
−(〈Aj ,s

′〉−cj)
q =

m∑

j=1

θ
−(νj,1±···±νj,2a−1 )
q , (6.2)

where the νj,l are independent samples from χ. Note that we dropped the reduction of

the sum of the ν modulo q, since θkqq = 1, for k ∈ Z.

We will now show, through a series of lemmas, that for appropriate values for m and

a, the maximum value of the function Re(f̂(α)) is reached by s′ with high probability.

Our algorithm for recovering s′ will thus consist in finding the highest peak of the real

part of the DFT of f(x).

We start first with two technical lemmas regarding Gaussian distributions which might

be of independent interest.

Lemma 6.2. For q an odd integer, let X ∼ Ψ̄σ,q and let Y ∼ 2πX/q. Then

E[cos(Y )] ≥ q

π
sin

(
π

q

)
e−2π

2σ2/q2 and E[sin(Y )] = 0 .

Proof. Let Sℓ be the set of integers in ]− q/2 + ℓq, q/2 + ℓq]. Using (3.4) and (3.5), we
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can write

E[cos(Y )] =
∑

x∈S0

cos

(
2π

q
x

) ∞∑

ℓ=−∞

∫ x+1/2

x−1/2
p(θ + ℓq;σ) dθ (6.3)

=
∞∑

ℓ=−∞

∑

x∈S0

cos

(
2π

q
x+ 2πℓ

)∫ x+1/2

x−1/2
p(θ + ℓq;σ) dθ (6.4)

=
∞∑

ℓ=−∞

∑

x∈S0

cos

(
2π

q
(x+ ℓq)

)∫ x+1/2+ℓq

x−1/2+ℓq
p(θ;σ) dθ (6.5)

=

∞∑

ℓ=−∞

∑

x′∈Sℓ

cos

(
2π

q
x′
)∫ x′+1/2

x′−1/2
p(θ;σ) dθ (6.6)

=
∞∑

x′=−∞

cos

(
2π

q
x′
)∫ x′+1/2

x′−1/2
p(θ;σ) dθ (6.7)

=

∞∑

χ=−∞

F
(
cos

(
x
2π

q

)∫ x+1/2

x−1/2
p(θ;σ) dθ

)
(χ) , (6.8)

where, for (6.6), we used x′ := x+ℓq and, for (6.8), we used Lemma 2.13. More generally,
basics about continuous Fourier transforms and the Fourier transforms of cos(2πx/q) and
1/(σ
√
2π) exp[−x/(2σ2)] can be found in Section 2.4.2. We are now ready to prove the

lemma (we drop some (χ) for readability). For integer values of χ, we have

F
(
cos

(
x
2π

q

)∫ x+1/2

x−1/2

1

σ
√
2π

e−θ2/(2σ2) dθ

)
(6.9)

= F
(
cos

(
x
2π

q

))
∗
(
F
(∫ x+ 1

2

−∞

1

σ
√
2π

e−
θ
2

2σ2 dθ

)
−F

(∫ x− 1

2

−∞

1

σ
√
2π

e−
θ
2

2σ2 dθ

))

(6.10)

= F
(
cos

(
x
2π

q

))
∗
((

eπiχ − e−πiχ
)
F
(∫ x

−∞

1

σ
√
2π

e−θ2/(2σ2) dθ

))
(6.11)

=
1

2

(
δ

(
χ− 1

q

)
+ δ

(
χ+

1

q

))
∗
((

eπiχ − e−πiχ
)( 1

2πiχ
e−2π2σ2χ2

+
1

2
δ(χ)

))

(6.12)

=
1

2

(
δ

(
χ− 1

q

)
+ δ

(
χ+

1

q

))
∗
(
sin(πχ)

(
1

πχ
e−2π2σ2χ2

))
(6.13)

=
q

2π
sin

(
π

q

)
(−1)χ

(
e−2π2σ2(qχ+1)2/q2

qχ+ 1
− e−2π2σ2(qχ−1)2/q2

qχ− 1

)
, (6.14)

where (6.10) is the convolution property of the FT, (6.11) comes from the transla-

tion property of the FT, (6.12) comes from the integration property of the FT, and
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(6.13) holds as δ(χ± 1/q) ∗ δ(χ) = 0 for integer values of χ. We can write (6.8) as

q

π
sin

(
π

q

)
exp−2π

2σ2/q2

+
∞∑

χ=1

q

π
sin

(
π

q

)
(−1)χ

(
e−2π

2σ2(qχ+1)2/q2

qχ+ 1
− e−2π

2σ2(qχ−1)2/q2

qχ− 1

)
.

Notice that the sum term in this equation is alternating and decreasing in absolute value

when χ grows (derivative is negative). Notice also that the first term (when χ = 1) is

positive. Hence this sum is greater than 0 and we get our result for E [cos(Y )].

For E [sin(Y )], note that when q is odd, X and Y are perfectly symmetric around 0. The

result then follows trivially from the symmetry of the sine function.

Lemma 6.3. For q an odd integer, let X ∼ Dσ,q and let Y ∼ 2πX/q. Then

E[cos(Y )] ≥ 1− 2π2σ2

q2
and E[sin(Y )] = 0 .

Proof. Using [Ban93, Lemma 1.3] with a = 1/(2σ2), we have that E[X2] ≤ σ2. Hence,

using cos(x) ≥ 1− x2/2,

E[cos(2πX/q)] ≥ 1− 2π2
E[X2]/q2 = 1− 2π2σ2/q2 .

For E [sin(Y )], note that when q is odd, X and Y are perfectly symmetric around 0. The

result then follows trivially from the symmetry of the sine function.

Definition 6.4 (Rσ,q,χ). In the following, let Rσ,q,χ := E[cos(χ)], i.e.,

Rσ,q,χ :=





q
π sin

(
π
q

)
e−2π

2σ2/q2 when χ = Ψ̄q,σ

1− 2π2σ2

q2
when χ = Dq,σ

Lemma 6.5. E

[
Re(f̂(s′))

]
≥ m · (Rσ,q,χ)

2a−1

.

Proof. From (6.2), we get

E

[
Re(f̂(s′))

]
= Re




m∑

j=1

E

[
θ
−(νj,1±···±νj,2a−1 )
q

]
 = Re




m∑

j=1

E

[
cos

(
2π

q
νj,1

)]2a−1

 ,

using the independence of the noise samples νj,ℓ and E[θ
±νj,ℓ
q ] = E[cos(2πνj,ℓ/q)] (which

follows from Lemmas 6.2 and 6.3). Using Lemmas 6.2 and 6.3 again, we have that
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E[cos(2πνj,ℓ/q)] ≥ Rσ,q,χ. Hence, we get that

E

[
Re(f̂(s′))

]
≥

m∑

j=1

(Rσ,q,χ)
2a−1

= m · (Rσ,q,χ)
2a−1

. (6.15)

Lemma 6.6. Let G ⊆ Zq be a subgroup of Zq, let X
U←− G and let e ∈ Zq be independent

from X. Then, E
[
θX+e
q

]
= 0.

Proof. Define Y = 2π
q X. Then Y is a random variable following a discrete uniform

distribution on the unit circle. Then E[θXq ] = 0 follows from the analysis of discrete

circular uniform distributions (see e.g. [AP13]). Now, as X and e are independent,

E[θX+e
q ] = E[θXq ]E[θeq ] = 0.

Lemma 6.7. argmaxαRe(f̂(α)) = s′ with probability greater than1

1− qk
′ · exp

(
−m

8
· (Rσ,q,χ)

2a
)

.

Proof. A similar proof is given for LPN in [BTV15]. We are looking to upper bound the

probability that there is some α 6= s′ such that Re(f̂(α)) ≥ Re(f̂(s′)). Using a union

bound, we may upper bound this by qk
′
times the probability that Re(f̂(α)) ≥ Re(f̂(s′))

for some fixed vector α ∈ Z
k′
q , α 6= s′ which is the probability that

m∑

j=1

(
Re
(
θ
−(〈Aj ,s

′〉−cj)
q

)
− Re

(
θ
−(〈Aj ,α〉−cj)
q

))
≤ 0 .

Let y = α − s′ ∈ Z
k′
q . Also, define ej := 〈Aj , s

′〉 − cj , for 1 ≤ j ≤ m. Then,

〈Aj ,α〉 − cj = 〈Aj ,y〉 + ej . Note that as Aj is uniformly distributed at random,

independently from ej , and y is fixed and non-zero, 〈Aj ,y〉 is uniformly distributed in

a subgroup of Zq, and thus so is 〈Aj ,α〉 − cj . Hence, we can apply Lemma 6.6.

From our heuristic assumption, we will consider X1, X2, . . . , Xm to be independent ran-

dom variables with Xj = uj − vj , where

uj = Re
(
θ
−(〈Aj ,s

′〉−cj)
q

)
and vj = Re

(
θ
−(〈Aj ,α〉−cj)
q

)
. (6.16)

Note that Xj ∈ [−2, 2] for all j. Furthermore, let X =
∑m

j=1Xj . Using Lemmas 6.5 (for

the uj ’s) and 6.6 (for the vj ’s), we get that

E [X] ≥ m · (Rσ,q,χ)
2a−1

. (6.17)

1A recent result [BV15] seems to show that if we replace the Hoeffding bound with the Central Limit
theorem, the factor 1/8 can be replaced by a factor 1/4.
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We will bound the probability that X ≤ 0 using Hoeffding’s inequality (Theorem 2.15).

Let t = E[X] > 0. Then,

Pr[X ≤ 0] = Pr
[
(X − E[X]) ≤ −E[X]

]
≤ exp

(−2(E[X])2

16m

)

≤ exp
(
−m

8
· (Rσ,q,χ)

2a
)

.

(6.18)

Applying the aforementioned union-bound, we get the desired result.

We are now ready to derive the number of samples m required to recover the correct

secret block s′ with high probability.

Theorem 6.8. Let k, q be positive integers and Πs,χ be an LWE oracle, where s ∈ Z
k
q .

Let a ∈ Z with 1 ≤ a ≤ k, let b be such that ab ≤ k, and let k′ = k − (a − 1)b. Let

As,χ,a−1 be the oracle returning samples (ai, ci) where the ai are zero for all but the

first k′ elements. Denote the vector consisting of the first k′ elements of s as s′. Fix

an ǫ ∈ (0, 1). Then, the number of independent samples mLWE from As,χ,a−1, which are

required such that we fail to recover the secret block s′ with probability at most ǫ satisfies

mLWE ≥




8 · k′ · log

( q
ǫ

)
·
(

q
π sin

(
π
q

)
e−2π

2σ2/q2
)−2a

when χ = Ψ̄σ,q

8 · k′ · log
( q
ǫ

)
·
(
1− 2π2σ2

q2

)−2a
when χ = Dσ,q .

Furthermore, the hypothesis testing phase (the FFT phase in Algorithm 6.1) that recovers

s′ requires 2mLWE+CFFT ·k′ ·qk
′ ·log q operations in C and requires storage for qk

′
complex

numbers, where CFFT is the small constant in the complexity of the FFT.2

Proof. For a fixed m, we get

ǫ = Pr
[
∃ α 6= s′ : Re(f̂(α)) ≥ Re(f̂(s′))

]
< qk

′ · exp
(
−m

8
· (Rσ,q,χ)

2a
)

.

Solving for m, we get the desired result.

Concerning the algorithmic and memory complexities, we need to store the values of

the function f(x) as qk
′
elements from C. For each of the mLWE samples we receive

from As,χ,a−1, we compute an exponentiation and an addition in C to update f(x) and

then discard the sample. Finally, computing the discrete Fourier transform of f can be

achieved with CFFT · k′ · qk
′ · log q complex operations, and no additional memory, using

an in-place FFT algorithm.

The hypothesis testing part of the algorithm is summarized in Algorithm 6.1.

2One might comment on the required precision needed to compute the DFT. For this, we set our

precision to O
(

log(m(Rσ,q,χ)
2a)

)

bits which is the expected size of our highest peak in the DFT. Using

this result along with some standard results about the exact complexity to compute a DFT with a given
precision (see, e.g., [BSS00]), the ratio between our (binary) complexities and the binary complexities
of [ACF+13] remain the same.
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Algorithm 6.1 Hypothesis testing algorithm for LWE.

Input: m independent LWE samples with only k′ := k− (a− 1)b non-zero components
in a. We represent our samples as a matrix A ∈ Z

m×k′
q and a vector c ∈ Z

m
q .

Output: A vector consisting of the k′ elements of s that are at the non-zero positions
of a

1: Compute the fast Fourier Transform f̂(α) of the function f(x) :
∑m

j=1 1Aj=xθ
cj
q

2: return argmax
α∈Zk′

q
f̂(α)

6.3.3 Back Substitution

We use a similar back substitution mechanism as the one described in [ACF+13]. Note

that we have to apply back substitution on one table less, because we performed only

a − 1 reductions. Furthermore, because we recovered a complete block of s, the table

T a−1 would be completely zeroed-out by back substitution and can therefore simply be

dropped after the hypothesis testing phase. Finally, we do not discard the mLWE queries

from Πs,χ, which were reduced and then used for the solving phase. Instead, we store

these mLWE original queries and re-use m′ < mLWE of these queries for the next block

of s.

6.4 Complexity of BKW with Multidimensional DFT on

LWE

We now have all the results we need to state the total complexity of solving SEARCH-

LWE with our algorithm. For ease of notation, we will consider from here on that the

parameters a and b are chosen such that k = a · b. Note that the general case, where

k = (a− 1) · b+ k′, follows similarly from our previous results.

Theorem 6.9 (Complexity of SEARCH-LWE). Let k, q be positive integers and Πs,χ be

an LWE oracle, where s ∈ Z
k
q . Let a, b ∈ N be such that a · b = k. Let CFFT be the small

constant in the complexity of the fast Fourier transform computation. Let 0 < ǫ < 1 be

a targeted success rate and define ǫ′ := (1− ǫ)/a. For 0 ≤ j ≤ a− 1, let

mLWE

j,ǫ :=




8 · b · log

( q
ǫ

)
·
(

q
π sin

(
π
q

)
e−2π

2σ2/q2
)−2a−j

when χ = Ψ̄σ,q

8 · b · log
( q
ǫ

)
·
(
1− 2π2σ2

q2

)−2a−j

when χ = Dσ,q .

Under the standard heuristic that all the samples after reduction are independent (which

was also used in the previous work), the time complexity of our algorithm to recover the

secret s with probability at least ǫ is c1 + c2 + c3 + c4, where

c1 :=

(
qb − 1

2

)
·
(
(a− 1) · (a− 2)

2
(k + 1)− b

6
(a · (a− 1) · (a− 2))

)
(6.19)
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is the number of additions in Zq to produce all tables T j, 0 ≤ j ≤ a− 1,

c2 :=

a−1∑

j=0

mLWE

j,ǫ′ ·
a− 1− j

2
· (k + 2) (6.20)

is the number of additions in Zq to produce the samples required to recover all blocks of

s with probability ǫ,

c3 := 2




a−1∑

j=0

mLWE

j,ǫ′


+ CFFT · k · qb · log(q) (6.21)

is the number of operations in C to prepare and compute the DFTs,and

c4 := (a− 1) · (a− 2) · b · q
b − 1

2
(6.22)

is the number of operations in Zq for back substitution.

The number of calls to the oracle Πs,χ is

(a− 1) · q
b − 1

2
+mLWE

0,ǫ . (6.23)

Finally, the memory complexity in number of elements from Zq and C are respectively

(
qb − 1

2
· (a− 1) ·

(
k + 1− b

a− 2

2

))
+mLWE

0,ǫ and qb . (6.24)

Proof. To recover s, we need to recover each block of s successfully. Since we are making

use of the same set of tables T and reduced queries for each block, these events are not

independent. Using a union bound, and a failure probability bounded by (1 − ǫ)/a for

each of the a blocks thus leads to a overall success probability of at least ǫ.

• The cost of constructing the set of tables T in (6.19) is given by Lemma 6.1.

Note that theses tables are constructed only once and maintained throughout the

execution of the algorithm.

• As per Lemma 6.1, the cost of obtaining m samples from the oracle As,χ,a−1 is

upper bounded by m · a−12 · (k + 2). Noting that after solving the jth block, the

table T j is dropped, the result in (6.20) follows.

• The DFT has to be applied a times, for each block of size b. Since the number of

samples required is updated for each block, we get equation (6.21).

• After solving the first block, back substitution has to be applied to a − 2 tables

(table T a−1 can be dropped). Per table, the substitution has cost 2b for each of

the qb−1
2 rows. In total, we get a cost of

∑a−2
j=1 2 · b ·

(
i · qb−12

)
, as in (6.22).

52



A New Algorithm Solving the Learning With Error Problem

• The required number of oracle samples follows from Lemma 6.1. Note that the

samples needed to fill up the tables are required only once and that the mLWE
0,ǫ

additional queries are stored and can be reused for each block of s since mLWE
0,ǫ >

mLWE
j,ǫ for j > 0. This gives us the total from (6.23).

• Finally, the storage cost for the tables follows from Lemma 6.1. In addition, we

need an array of size qb to store the complex function on which we apply the DFT

(we assume an in-place DFT algorithm requiring no extra storage). We also store

the mLWE
0,ǫ samples queried to solve the first block. Combining these results gives

us (6.24).

6.5 Reducing the Number of Samples

In this section, we show how we can reduce the number of queries required by our

algorithm using two different ideas. The first is due to Lyubashevsky [Lyu05] and the

second is due to Levieil and Fouque [LF06].

6.5.1 Lyubashevsky’s Idea

If the number of queries to the LWE oracle is limited we can adapt Lyuabshevsky’s idea

that we presented in the context of LPN in Section 3.1.3. Recall that his idea is to use a

universal family of hash function to combine samples to create new ones and that these

samples will have higher noise.

Theorem 6.10. Let ǫ ≥ (log q+1)/ log k. Then, one can convert an LWE instance Πs,χ

where χ is Ψ̄σ,q (resp. Dσ,q) and using k1+ǫ samples into an LWE instance Πs,χ′ where

χ′ is Ψ̄σ⌈(log q+1)k/(ǫ log k)⌉,q (resp. Dσ⌈(log q+1)k/(ǫ log k)⌉,q) without any sample limit.

Proof (sketch). The proof is exactly the same as in [Lyu05] except for few differences that

we state here. We let our samples be A = a(1), · · ·a(k1+ǫ) ∈ Z
k
q . Let also X ⊂ {0, 1}k1+ǫ

with x ∈ X if
∑

j xj = ⌈(log(q)+1)k/(ǫ log k)⌉. We use the following universal family of

hash function H :=
{
hA : X ← Z

k
q

}
where A is defined above and hA(x) := x1a

(1)+ · · ·+
xk1+ǫa(k

1+ǫ). By the Leftover Hash Lemma (Lemma 3.6), when A and x are uniformly

distributed, with probability greater than 1 − 2−k/4, ∆(hA(x), U) ≤ 2−n/4, where U is

the uniform probability distribution over Zk
q . Note that the Leftover Hash Lemma holds

because

|X| ≥
(

k1+ǫ

⌈(log q + 1)k/(ǫ log k)⌉

)⌈(log q+1)k/(ǫ log k)⌉

≥ qk ,

when ǫ ≥ (log q + 1)/ log k.
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6.5.2 The LF2 Heuristic

In [LF06], Levieil and Fouque propose LF2, an heuristic improvement for the reduction

phase of their LPN solving algorithm LF1. The main idea of LF2 is to compute the

sum (or difference) of any pair of samples (a, c) and (a′, c′), which agree on b particular

coordinates. Thus, in an entry of a reduction table T i, we would store not only one, but

all samples agreeing (up to negation) on b coordinates. Then, when reducing a sample

(a, c), we could output (a±a′, c± c′) for each sample (a′, c′) in the corresponding table

entry. Note that if we have x samples agreeing on b positions, we can output
(
x
2

)
reduced

samples.

An interesting case arises when we take exactly 3 · qb/2 oracle samples. In the worst

case, we get exactly 3 samples per entry in table T 1.3 Then, applying all the pairwise

reductions, we again get 3 · qb/2 samples to be stored in table T 2 and so forth. Hence,

if we take

max
{
mLWE

0,ǫ′ , 3 · qb/2
}

(6.25)

oracle queries, we are ensured to have enough samples for the Fourier transform. We

could, thus, solve the LWE problem using fewer oracle samples than in Theorem 6.9 and

with a similar time complexity, at the expense of a higher memory complexity (to store

multiple samples per table entry).

6.6 Results

We computed the number of operations needed in Zq to solve the LWE problem for

various values of k when the parameters are chosen according to Regev’s cryptosys-

tem [Reg09] and ǫ = 0.99. In this scheme, q is a prime bigger than k2 and σ =

q/(
√
k log2(k)

√
2π). For our table, we took q to be the smallest prime greater than k2.

Our results are displayed in Table 6.1.4 To simplify our result, we considered operations

over C to have the same complexity as operations over Zq. We also took CFFT = 1 which

is the best one can hope to obtain for a FFT. Regarding the noise distribution, we ob-

tained the same results for both Dσ,q and Ψ̄σ,q. If we compare our results with [ACF+13,

Table1], we see that we are better in all the cases.5 This improvement with respect to

log likelihood comes from the fact that we do one reduction less in our reduction phase

as we recover a full block instead of a single element in Zq. This implies that our noise

is going to be smaller and, hence, we will need a lower number of queries. However, we

still achieve the same asymptotic complexity.

3Bogos and Vaudenay did an average case analysis and showed that 2 + qb samples would be
enough [BV15].

4The code used to compute these value is available on our website http://lasec.epfl.ch/lwe/
5Albrecht et al. simplified their complexity by considering non-integer a which explains why the

difference between our results varies depending on k.
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k q a log(#Zq) log(m)
log(m) for

LF2
log(#Zq)

in [ACF+13]

64 4 099 19 52.62 43.61 41.01 54.85
80 6 421 20 63.23 53.85 51.18 65.78
96 9 221 21 73.72 63.95 61.98 76.75
112 12 547 21 85.86 75.94 73.20 87.72
128 16 411 22 95.03 84.86 82.05 98.67
160 25 601 23 115.87 105.33 102.46 120.43
224 50 177 24 160.34 149.26 146.32 163.76
256 65 537 25 178.74 167.43 164.43 185.35
384 147 457 26 269.18 257.23 254.17 −
512 262 147 27 357.45 345.03 341.92 −

Table 6.1 – We write #Zq for the worst case cost (in operations over Zq) of solving
Search-LWE for various parameters for the Regev cryptosystem [Reg09] when ǫ = 0.99
according to Theorem 6.9. We provide also the value of a that minimizes the complexity,
the number of queries (m) according to (6.23), and the number of queries (m) when we
apply the LF2 heuristic (6.25).
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Chapter 7

A New Algorithm Solving the Learning

With Rounding Problem

The work presented in this chapter is part of a joint work with F. Tramèr and Prof. S.

Vaudenay and was published in [DTV15].

Notation. In this chapter, we define
√
−1 = i ∈ C.

We try now to adapt the algorithm presented in Chapter 6 to the Learning With Round-

ing problem (see Section 3.4). More precisely, we present the first algorithmic analysis

of the LWR problem when q is prime. While our proposal requires a subexponential

number of samples, our detailed analysis contains many results of independent interest.

In the remaining of this chapter, we will always consider q to be prime.

Lemma 7.1. Let k and q > p ≥ 2 be positive integers, q prime. Let (a, c) be a random

sample from an LWR oracle Λs,p. Then, the “rounding error”, given by ξ = (p/q)〈a, s〉−
c, follows a uniform distribution in a discrete subset of [−1/2, 1/2] with mean zero.

Furthermore, for γ ∈ R6=0,

E

[
e±iξγ

]
=

1

q
· sin(

γ
2 )

sin( γ
2q )

. (7.1)

Proof. We first prove the first part of the lemma. We will prove that for any α ∈
[−q+1

2 , . . . , q−12 ], ξ takes the value α/q with probability 1/q. We have p · 〈a, s〉 ≡ ξq

(mod q). So, α = ξq = ((p · 〈a, s〉+ (q − 1)/2) mod q)− (q − 1)/2. As 〈a, s〉 is uniform
in Zq (for s 6= 0), α is uniform in −(q + 1)/2, · · · , (q − 1)/2 and has mean zero. Hence,

so has ξ.

We now prove the second part of our lemma. LetX = q ·ξ be a random variable following

a discrete uniform distribution on the set of integers {(−q+1)/2, . . . , (q− 1)/2}. Then,
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from the characteristic function of X, for any t ∈ R we have

E
[
eitX

]
=

e−it(q−1)/2 − eit(q+1)/2

q · (1− eit)
. (7.2)

By simple arithmetic, we obtain

E

[
eiξγ

]
= E

[
eiγq

−1X
]
=

eiγ/(2q)
(
e−iγ/2 − eiγ/2

)

q
(
1− eiγ/q

) =
− sin(γ/2) · 2i

q
(
e−γi/(2q) − eγi/(2q)

)

which gives our result.

In our case, q is an odd prime and different from p. Hence, E[eiξγ ]tends to 2
γ sin(γ/2)

as q grows to infinity. We will be interested in the value γ = 2π/p. Then, for small

p = {2, 3, 4, 5, . . .}, E[eiξγ ] is {0.6366, 0.8270, 0.9003, 0.9355, . . .}.

7.1 The LWR-solving Algorithm

From the similarity of the LWR and LWE problems, it should not seem surprising that

we would use the same sample reduction and back substation phases, but we need an

alternative “hypothesis testing phase” (which we call solving phase) to account for the

difference in error distributions.

As for LWE, we choose some a, b ≤ k such that ab ≤ k and we let k′ = k − (a − 1)b.

We will view the reduction phase of our algorithm as producing a series of oracles Bs,p,ℓ
for 0 ≤ ℓ ≤ a− 1, where Bs,p,0 is the original LWR oracle Λs,p. The final oracle Bs,p,a−1
produces samples (a, c) where a is non-zero only on the first k′ elements.

Solving Phase

We consider the samples from Bs,p,a−1 as belonging to Z
k′
q × Zp. We assume we have

m such samples and represent them as a matrix A ∈ Z
m×k′
q with rows Ai and a vector

c ∈ Z
m
p . The corresponding block of k′ elements of the secret s is denoted s′.

Additionally, we assume that each sample (a(j), c(j)) from Bs,p,a−1 is the sum of 2a−1

samples (or their negation) from the LWR oracle. The ‘noise’ 〈a(j), s′〉pq − c(j) will then

correspond to the sum of 2a−1 independent “rounding errors” (or their negation) from

the original samples.

For θu := exp(2πi/u), we consider the function

flwr(x) :=
m∑

j=1

1{Aj=x} θ
cj
p , ∀x ∈ Z

k′

q . (7.3)
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The discrete Fourier transform of flwr is

f̂lwr(α) :=
∑

x∈Zk′
q

flwr(x)θ
−〈x,α〉
q =

m∑

j=1

θ
−(〈Aj ,α〉

p
q
−cj)

p . (7.4)

In particular, note that

f̂lwr(s
′) =

m∑

j=1

θ
−(〈s′,Aj〉

p
q
−cj)

p =
m∑

j=1

θ
−(±ξj,1±···±ξj,2a−1 )
p , (7.5)

where the ξj,ℓ are the independent rounding errors from the original LWR samples. Note

that it is irrelevant whether the noise has been reduced modulo p, since θ−upp = 1 for

u ∈ Z.

As for LWE, we can now derive an explicit formula for the number of samples m, which

are required to recover s′ with high probability.

Lemma 7.2. For q > p ≥ 2, q prime, E
[
Re(f̂lwr(s

′))
]
= m ·

(
1
q ·

sin(π
p
)

sin( π
pq

)

)2a−1

.

Proof. Let ξ be the random variable defined in Lemma 7.1. Because the original rounding

errors are independent, using Lemma 7.1, we may write

E

[
Re(f̂lwr(s

′))
]
= m · Re

(
E

[
e
∓iξ 2π

p

]2a−1
)

= m ·
(
1

q
·
sin(πp )

sin( π
pq )

)2a−1

. (7.6)

We need also to bound the values of f̂ when not evaluated at s′.

Lemma 7.3. Let α 6= s′. Then

E

[
Re(f̂lwr(α))

]
≤ m

(
2

p
+

1

p
cos

(
π

p

))2a−1

≤ m

(
3

p

)2a−1

.

Proof. Like in the previous lemma, we can write, for a uniformly distributed,

E

[
Re(f̂lwr(α))

]
= m · Re

(
E

[
e∓i(2π〈a,α〉/q−2πc/p)

]2a−1
)

. (7.7)

However, unlike in the LWE case, we cannot use the independence of a and the noise to
obtain a zero expected value. This occurs because the errors are computed determinist-
ically from the vectors a in LWR. In fact, experiments showed that the error is strongly
correlated to a and that the expected value is not zero. Thus, we will instead bound
this expected value. To do this, we write

E

[
e∓i(2π〈a,α〉/q−2πc/p)

]
= E

[
cos

(
2π〈a,α〉

q
− 2πc

p

)]
± i · E

[
sin

(
−2π〈a,α〉

q
+

2πc

p

)]
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and we bound both the sine and the cosine term.

• We first show that the contribution of the sine is zero, i.e., that for α 6= s′ fixed,1

E [sin (2π〈a,α〉/q − 2πc/p)] = 0 . (7.8)

Let w(a) := sin (2π〈a,α〉/q − 2π⌈〈a, s′〉(p/q)⌋/p). First, note that for a = 0,

c = 0. For a 6= 0, the contribution in the expected value is w(a). We have

w(−a) = sin
(
2π〈−a,α〉/q − 2π⌈〈−a, s′〉(p/q)⌋/p

)

= sin
(
−2π〈a,α〉/q − 2π⌈−〈a, s′〉(p/q)⌋/p

)
= −w(a) .

As q is odd, −a 6= a and, thus, in the expected value, the contribution of any

a 6= 0 is cancelled. Hence, the result.

• For the cosine, as in Lemma 6.7, we let y = α− s′ ∈ Z
k′
q . We get,

cos

(
2π〈a,α〉

q
− 2πc

p

)
= cos

(
2π〈a,y〉

q
+

2π(〈a, s′〉p/q − c)

p

)

= cos

(
2π〈a,y〉

q
+

2πξ

p

)
, (7.9)

where ξ ∈ [−1/2, 1/2] is the rounding error from Lemma 7.1. We are looking for an

upper-bound and, hence, we assume that ξ ∈ [−1/2, 1/2] will always be such that

cos(2π〈a,y〉/q+2πξ/p) is maximized. Figure 7.1 might help with the reading. We

divide the circle into sets of the form

Sℓ :=
[
ℓπ

p
,
(ℓ+ 1)π

p

]
∪
[−ℓπ

p
,
−(ℓ+ 1)π

p

]
, ℓ ∈ [0, p− 1] .

Note that this covers the whole circle. The hashed surface in Figure 7.1 is such a

set.

When 2π〈a,y〉/q ∈ Sℓ for ℓ 6= 0, we upper-bound (7.9) by cos((ℓ − 1)π/p) (the

bold line in Figure 7.1). Indeed, |2πξ/p| ≤ π/p. When 2π〈a,y〉/q ∈ S0, we

upper-bound (7.9) by cos(0) = 1.

Note that Pr[2π〈a,y〉/q ∈ Sℓ]] = 1/p because 〈a,y〉 is uniformly distributed in Zq

and p ≤ q. Hence,

E [cos (2π〈a,y〉+ 2πξ/p)] ≤ 1

p
+

1

p

p−1∑

ℓ=1

cos

(
(ℓ− 1)π

p

)

=
1

p
+

1

p
cos(0)− 1

p
cos

(
(p− 1)π

p

)
=

2

p
+

1

p
cos

(
π

p

)
≤ 3

p
. (7.10)

1This is where the round function instead of the floor function in the definition of LWR becomes
handy.
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cos

sin

ℓπ/p

(ℓ+ 1)π/p

(ℓ− 1)π/p

−ℓπ/p
−(ℓ+ 1)π/p

−(ℓ− 1)π/p

Figure 7.1 – Figure for the proof of Lemma 7.3.

Plugging the values of the sine and the upper-bound for the cosine in (7.7) finishes the

proof.

Lemma 7.4. When q > p ≥ 4 and q is prime, argmaxαRe(f̂lwr(α)) = s′ with probability

greater than2

1− qk
′ · exp


−m

8
·



(
1

q
·
sin(πp )

sin( π
pq )

)2a−1

−
(
3

p

)2a−1



2

 .

Proof. We first want the probability that Re(f̂(x)) ≥ Re(f̂(s′)) for some fixed vector

x ∈ Z
k′
q , x 6= s′. Applying the same heuristic argument as for LWE, we consider

X1, X2, . . . , Xm to be independent random variables with Xj = uj − vj , where

uj = Re

(
θ
−(〈Aj ,s

′〉 p
q
−cj)

p

)
and vj = Re

(
θ
−(〈Aj ,x〉

p
q
−cj)

p

)
. (7.11)

Note that Xj ∈ [−2, 2] for all j. Furthermore, let X =
∑m

j=1Xj . Using Lemmas 7.2

and 7.3, we get that

E [X] ≥ m ·



(
1

q
·
sin(πp )

sin( π
pq )

)2a−1

−
(
3

p

)2a−1

 ≥ 0 . (7.12)

We will again bound the probability that X ≤ 0 using Hoeffding’s inequality. Let

2Again, a recent result [BV15] seem to show that if we replace the Hoeffding bound with the Central
Limit theorem, the factor 1/8 can be replaced by a factor 1/4.
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t = E[X] > 0. Then,

Pr[X ≤ 0] = Pr
[
(X − E[X]) ≤ −E[X]

]
≤ exp

(−2(E[X])2

16m

)

≤ exp


−m

8
·



(
1

q
·
sin(πp )

sin( π
pq )

)2a−1

−
(
3

p

)2a−1



2

 . (7.13)

The final result follows by applying a union bound over all possible values of x.

As for LWE, we may now deduce the number m of reduced samples that are required

to recover a block s′.

Theorem 7.5. Let k and q > p ≥ 4 be positive integers, q prime, and Λs,p be an LWR

oracle, where s ∈ Z
k
q . Let a ∈ Z with 1 ≤ a ≤ k, let b be such that ab ≤ k, and let

k′ = k − (a − 1)b. Let Bs,p,a−1 be the oracle returning samples (ai, ci) where the ai are

zero for all but the first k′ elements. Denote the vector consisting of the first k′ elements

of s as s′. Fix an ǫ ∈ (0, 1). Then, the number of samples m from Bs,p,a−1 , which are

required such that we fail to recover the secret block s′ with probability at most ǫ satisfies

mLWR ≥ 8 · k′ · log
(q
ǫ

)
·



(
1

q
·
sin(πp )

sin( π
pq )

)2a−1

−
(
3

p

)2a−1


−2

.

Furthermore, recovering s′ in the solving phase (the FFT phase) requires 2mLWR+CFFT ·
k′ · qk′ · log q operations in C, as well as storage for qk

′
complex numbers.

7.2 Complexity of BKW with multidimensional DFT on

LWR

We now summarize the complexity of our algorithm in the following theorem (the proof

of which is analogous to the proof of Theorem 6.9).

Theorem 7.6 (Complexity of SEARCH-LWR). Let k, q be positive integers and Λs,p be

an LWR oracle, where s ∈ Z
k
q . Let a, b ∈ N be such that a · b = k. Let CFFT be the small

constant in the complexity of the fast Fourier transform computation. Let 0 < ǫ < 1 be

a targeted success rate and define ǫ′ := (1− ǫ)/a. For 0 ≤ j ≤ a− 1, let

mLWR

j,ǫ := 8 · b · log
(q
ǫ

)
·



(
1

q
·
sin(πp )

sin( π
pq )

)2a−1−j

−
(
3

p

)2a−1−j


−2

.

Under the standard heuristic that all the samples after reduction are independent (which

was also used in the previous work), the time complexity of our algorithm to recover the

62



A New Algorithm Solving the Learning With Rounding Problem

secret s with probability at least ǫ is c1 + c2 + c3 + c4, where

c1 :=

(
qb − 1

2

)
·
(
(a− 1) · (a− 2)

2
(k + 1)− b

6
(a · (a− 1) · (a− 2))

)
(7.14)

is the number of additions in Zq to produce all tables T j, 0 ≤ j ≤ a− 1,

c2 :=
a−1∑

j=0

mLWR

j,ǫ′ ·
a− 1− j

2
· (k + 2) (7.15)

is the number of additions in Zq to produce the samples required to recover all blocks of

s with probability ǫ,

c3 := 2




a−1∑

j=0

mLWR

j,ǫ′


+ CFFT · k · qb · log(q) (7.16)

is the number of operations in C to prepare and compute the DFTs,and

c4 := (a− 1) · (a− 2) · b · q
b − 1

2
(7.17)

is the number of operations in Zq for back substitution.

The number of calls to the oracle Λs,p is

(a− 1) · q
b − 1

2
+mLWR

0,ǫ . (7.18)

Finally, the memory complexity in number of elements from Zq and C are respectively

(
qb − 1

2
· (a− 1) ·

(
k + 1− b

a− 2

2

))
+mLWR

0,ǫ and qb . (7.19)

7.3 Results

The current hardness results for LWR require either a parameter q exponential in k or

a bound m on the number of oracle samples that an adversary may query. It is an open

problem ([AKPW13]) to assess the hardness of LWR with polynomial parameters when

the adversary has no sample limit. In such a case, for a = O (log k) and b = ⌈k/a⌉, our
algorithm would solve LWR in time 2O(k), as for LWE.

However, the bound on the number of oracle samples in Theorem 3.18 is much lower

than the amount of samples required by our algorithm. Using an idea from Lyu-

bashevsky [Lyu05], we can generate additional samples with higher noise (see The-

orem 6.10). Yet, even this method requires at least k1+ǫ samples for ǫ ≥ (log q+1)/ log k,

which is incompatible with the constraints of Theorem 3.18, for a q polynomial in k.

In [AKPW13, Corollary 4.2], two types of parameters are given: parameters maximizing

63



k q p a log(#Zq) log(m) type

64 383 056 211 733 23 92.20 82.80 (a)
80 1 492 443 083 1 151 25 110.91 101.11 (a)
96 ≈ 232 1 663 26 132.26 122.15 (a)
112 ≈ 233 2 287 28 148.08 137.68 (a)
128 ≈ 234 3 023 29 167.52 156.87 (a)
64 9 461 13 12 81.61 72.90 (b)
80 14 867 13 12 103.89 94.86 (b)
96 21 611 13 12 126.97 117.66 (b)
112 29 717 13 13 140.21 130.60 (b)
128 39 241 13 13 162.63 152.84 (b)

Table 7.1 – Worst case cost (in operations over Zq) of solving Search-LWR for various
parameters for the Regev cryptosystem [Reg09] when ǫ = 0.99 according to Theorem 7.6.
We provide also the value of a that minimizes the complexity, the number of queries (m)
according to (6.23).

efficiency (a) and parameters minimizing the Modulus/Error ratio (b). For completeness,

we show in Table 7.1 the complexity of our algorithm applied to these parameters. More

precisely, we took for the underlying LWE problem Regev’s parameters and ignored the

constrains on the number of samples. For the type (a) parameters, we took

σ =
k2√

k log2(k)
√
2π

q = nextprime(⌈(2σk)3⌉) p = nextprime(⌈ 3
√
q⌉)

and for the type (b) parameters

σ =
k2√

k log2(k)
√
2π

p = 13 q = nextprime(⌈2σkp⌉) .

Table 7.1 shows that the parameters given in [AKPW13] seem secure even if we remove

the constrain on the number of samples as the complexities are still quite high.
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Leakage-resilient Cryptography





Chapter 8

Introduction to Leakage-resilient

Cryptography

The study of side-channel attacks started to receive a lot of attention with the work

of Kocher [Koc96, KJJ99] in the nineties. At Crypto’96 [Koc96], Kocher showed how

one could completely break the RSA cryptosystem [RSA78] and the Diffie-Hellman key-

exchange protocol [DH76] by simply performing a timing attack. A timing attack re-

quires the attacker to measure the time taken by an implementation to perform some

operations. From this information, one can recover secret information and eventually

break the system. An example of such an attack is the timing attack against RSA

proposed by Kocher [Koc96] against the square-and-multiply algorithm used to perform

modular exponentiation, an operation required in the RSA decryption algorithm. In

a naive implementation of the square-and-multiply algorithm, the Hamming weight of

the exponent will impact the duration of the algorithm, thus, leaking some information.

Combining this with some knowledge on the ciphertext allowed Kocher to completely

recover the secret key.

In the same paper [Koc96], Kocher mentions the fact that the study of power consump-

tion would similarly allow to break the cryptosystems. In Crypto’99 [KJJ99], together

with Jaffe and Jun, he introduced the concept of differential power analysis in which they

study in details how the analysis of the power consumption might lead to devastating

attacks.

At that point, the popularity of side-channel attacks rose and many new ways of phys-

ically attacking an implementation appeared, including acoustic attacks (e.g., [GST13]),

or electromagnetic attacks (e.g., [QS01]).

In parallel of the search of new side-channel attacks, a large body of both applied and

theoretical research tried to model the information an adversary obtains from the leakage

and design countermeasures to prevent such attacks [CJRR99, ISW03, MR04, AGV09,

DP08, SVCO+10, SPY13]. In this thesis, we focus on the masking countermeasure

which is one of the most studied countermeasure. More specifically, we focus on additive
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masking.

8.1 The Masking Countermeasure

A large body of work on cryptographic engineering has developed countermeasures to

defeat side-channel attacks (see, e.g., [MOP07] for an overview). While many counter-

measures are specifically tailored to protect particular cryptographic implementations

(e.g., key updates or shielded hardware), a method that generically works for most cryp-

tographic schemes is masking [GP99, BGK04, OMPR05, SVCO+10].

The basic idea of a masking scheme is to secret share all sensitive information, including

the secret key and all intermediate values that depend on it, thereby making the leakage

independent of the secret data. The main issue that occurs when designing masking

techniques is to be able to use these masks to compute on the encoded data while still

ensuring that all the intermediate values are still protected. Below, we shortly discuss

about the most common masking schemes.

8.1.1 Boolean Masking

The most prominent masking scheme is the Boolean masking : a bit b is encoded into an

d-bit random bit string in the following way:

1. First d− 1 bits b1, . . . bd−1 are drawn independently and uniformly at random.

2. Finally, we let bd := b1 ⊕ · · · ⊕ bd1 ⊕ b.

That way, we know that b = b1 ⊕ · · · ⊕ bd and that the knowledge of d− 1 bits leaks no

information about the encoded bit b. Note that this additive secret sharing technique

can easily be extended to any group G by replacing the XORs with the group operation

and taking some inverses. Such an encoding then trivially protects against so-called

(d − 1)-threshold-probing adversaries that we will define more formally in Section 8.2.

Roughly, in our example, such an adversary is allowed to learn the value of d− 1 wires

(which in our case correspond to bits) and, hence, learning no information about the

encoded bit b.

8.1.2 Additive Masking

Boolean masking trivially generalizes to the additive masking scheme. Let G be a group

with additive notation. In this scheme the idea is the same as in the previous section

except that instead of encoding a single bit, a group element x is split into d random

group elements in the following way:

1. First d− 1 group elements x1, . . . xd−1 are drawn independently and uniformly at

random.

2. Finally, we let xd := x1 ⊕ · · · ⊕ xd1 ⊕ x.
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That way, we know that x = x1⊕· · ·⊕xd and that the knowledge of d−1 group elements

leaks no information about the encoded element x. Note that in most of the literature,

G will have a field structure which will be useful when performing computations. The

following chapters will be dedicated exclusively to this masking scheme.

8.1.3 Inner-product Masking

The idea of inner-product masking was first introduced by Dav̀ı, Dziembowski, and

Venturi for Leakage-Resilient storage [DDV10]. It was then further studied in the work

of Dziembowski and Faust [DF11]. In this scheme, the secret is split in two separate

vectors that are supposed to leak independently. More precisely, let F be a finite field,

let x ∈ F be an element to encode, and let n ∈ N be a parameter. The scheme works in

the following way:

1. First, draw a random vector L in F
n \ {0}n.

2. Then, sample R ∈ F
n at random such that 〈L,R〉 = x, where 〈L,R〉 denotes

the inner-product between L and R. A simple way to sample R is to sample

R1, . . . , Rn−1 independently at random and fix Rn such that 〈L,R〉 = x.1

A recent result [BFG15] shows that the inner-product masking is more secure than the

additive masking shown above but slightly slower.

8.2 Modeling the Leakage

A first step, while formalizing side-channel attacks, is to find a model for the leakage.

For this, one has to find a model that represents well the leakage with respect to what an

attacker would see when performing his attack. On the other hand, this leakage should

be restrictive to allow to prove some results. Indeed, assume that we have a secret value

s and that we let the leakage be any function f applied on s. If we do not add any

restriction, then it is easy to show impossibility of leakage-resilient constructions in this

model, as f could just reveal s with probability one. In such a model, we would have

to assume that an adversary can read the value of any secret, which trivially breaks any

system.

In this thesis, we will stick to the noisy-leakage model in which the adversary sees only

noisy versions of each wire, to the random-probing model in which an adversary recovers

an intermediate value with some probability, and to the threshold-probing model in which

the adversary is allowed to see only a limited number of intermediate values.

We will model a system with a set of values (x1, . . . , xℓ) ∈ X ℓ, where X is a finite set

and ℓ ∈ N. One can see the xi’s as the set of wires in the system that the adversary

can probe. As explained above, an adversary A will only be able to obtain some partial

information about (x1, . . . , xℓ). Note that we do not specify the computational power of

1We assume here, wlog, that Ln 6= 0.
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A as the definitions below make sense for both computationally-bounded and infinitely

powerful A.

8.3 Threshold Probing Model

The threshold probing model can be seen as an adversary having at its disposal a limited

number of probes that can be used on wires of his choice. We define now formally the

adversary’s capability in this model.

Definition 8.1 (t-threshold-probing adversary). For t = 0, . . . , ℓ a t-threshold-probing

adversary on X ℓ is an algorithm A that plays the following scenario against an oracle

that knows (x1, . . . , xℓ) ∈ X ℓ:

1. A specifies a set I = {i1, . . . , i|I|} ⊆ {1, . . . , ℓ} such that |I| ≤ t,

2. A receives (xi1 , . . . , xi|I|
) and outputs some value denoted by outA(x1, . . . , xℓ).

2

Note that in most of the previous work, this model is simply denoted as“probing model”.

We decided to append the word “threshold” to distinguish it with the random probing

model defined in the next subsection. This model is the easiest to work with when

trying to prove security. It is in this model that Ishai, Sahai, and Wagner proved their

seminal work [ISW03]. In there, Ishai et al. construct a circuit compiler that transforms

a circuit in a leakage-resilient one. More precisely, a circuit compiler takes as input

the description of a cryptographic scheme C with secret key K, e.g., a circuit that

describes a block cipher, and outputs a transformed circuit C ′ and corresponding key

K ′. The circuit C ′[K ′] shall implement the same functionality as C running with key K,

but additionally is resilient to certain well-defined classes of leakage. Notice that while

the framework of [ISW03] talks about circuits the same approach applies to software

implementations, and we only follow this notation to abstract our description. We will

describe in more details their construction in Section 9.6.2.

8.4 Random Probing Model

We will use this model as an intermediate model in our proof. Before formally defining

our adversary in this model, we define ǫ-identity functions.

Definition 8.2 (ǫ-identity function). A randomized function ϕ : X → X ∪ {⊥} is

an ǫ-identity function if for every x we have that either ϕ(x) = x or ϕ(x) = ⊥ and

Pr[ϕ(x) 6= ⊥] = ǫ, where the probability is taken over the random coins of ϕ.

We use the special symbol⊥ to denote that the adversary was unable to make a successful

probe. We can now formally define our adversary:

2The goal of A will typically be to derive some information about the encoded value.
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Definition 8.3 (ǫ-random-probing adversary). For ǫ ≥ 0 an ǫ-random-probing ad-

versary on X ℓ is an algorithm A that plays the following scenario against an oracle that

knows (x1, . . . , xℓ) ∈ X ℓ:

1. A specifies a sequence (ǫ1, . . . , ǫℓ) such that each ǫi ≤ ǫ.

2. A receives ϕ1(x1), . . . , ϕℓ(xℓ) and outputs some value denoted by outA(x1, . . . , xℓ),

where each ϕi is the ǫi-identity function with mutually independent randomness.

Note that here, outA(x1, . . . , xℓ) is a random variable combining A and the randomness

of the functions ϕi.

A similar model was introduced in the work of Ishai, Sahai and Wagner [ISW03] to obtain

a circuit compiler that blows-up the size of the circuit linearly in the security parameter

d. Also, the work of Ajtai [Ajt11] considers the random probing model, and constructs a

compiler that for sufficiently large security parameter d achieves security in the random

probing model for a small (but constant) probability ǫ. Reference [Ajt11] however does

not give concrete parameters for ǫ and d, and circuits produced by the compiler of [Ajt11]

result into a huge circuit size blow-up (O(d4) with large hidden constants).

8.5 Noisy Model

We finally describe the noisy leakage model, a model in which the adversary sees a noisy

version of each value of the circuit. The idea of noisy leakage was first introduced by

Chari, Jutla, Rao, and Rohatgi in CRYPTO’99 [CJRR99]. In this seminal work, the

authors consider a model, where each share bi of an encoding is perturbed by Gaussian

noise and show that the number of noisy samples needed to recover the encoded secret

bit b grows exponential with the number of shares. As stated in [CJRR99], this model

matches real-world physical leakages that inherently are noisy. Moreover, many practical

solutions exist to amplify leakage noise (see for instance the works of [CK10, CCD00,

MOP07]).

One limitation of the security analysis given in [CJRR99] is the fact that it does not

consider leakage emitting from masked computation. This shortcoming has been ad-

dressed in the recent important work of Prouff and Rivain [PR13], who extend at Euro-

crypt 2013 the noisy leakage model of Chari et al. [CJRR99] to also include leakage

from the masked operations. Specifically, they show that a variant of the construction of

Ishai et al. [ISW03] is secure even when there is noisy leakage from all the intermediate

values that are produced during the computation. The authors of [PR13] also generalize

the noisy leakage model of Chari et al. [CJRR99] to a wider range of leakage functions

instead of considering only the Gaussian one. While clearly noisy leakage is closer to

physical leakage occurring in real world, the security analysis of [PR13] has a number of

shortcomings which puts strong limitations in which settings the masking countermeas-

ure can be used and achieves the proved security statements. In particular, like earlier

works on leakage resilient cryptography [DF12, FRR+10], the security analysis of Prouff
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and Rivain relies on so-called leak-free gates. Moreover, security is shown in a restricted

adversarial model that assumes that plaintexts are chosen uniformly during an attack

and the adversary does not exploit joint information from the leakages and, e.g., the

ciphertext. We discuss these shortcomings in more detail in Section 9.1.

8.5.1 Modeling the Noise

We can now formalize our noise model based on the work of Prouff and Rivain [PR13].

Let us start with a discussion defining what it means that a randomized function LNoisy :

X → Y is “noisy”.3 We will assume that X is finite and rather small: typical choices

for X would be GF(2) (the “Boolean case”), or GF(28), if we want to deal with the

AES circuit. The set Y corresponds to the set of all possible noise measurements and

may be infinite, except when we require the “efficient simulation” (we discuss it further

at the end of this section). In [PR13], the authors introduced the notion of a bias,

which informally says that the statistical distance between the distribution of X and the

conditional distribution X|LNoisy(X) is bounded by some parameter. We base our noise

definition on their idea and we define it more formally as follows:

Definition 8.4 (δ-noisy function). Let LNoisy : X → Y be a randomized function. We

say that the function LNoisy is δ-noisy if

δ = ∆(X; (X | LNoisy(X))) , (8.1)

where ∆ denotes the statistical distance (see Section 2.2).

Of course for (8.1) to be well-defined, we need to specify the distribution of X. The

idea to define noisy functions by comparing the distributions of X and “X conditioned

on LNoisy(X)” comes from [PR13], where it is argued that the most natural choice for

X is a random variable distributed uniformly over X . We also adopt this convention

and assume that X ← X . We would like to stress, however, that in our proofs we will

apply LNoisy to inputs X̂ that are not necessarily uniform and in this case the value

of ∆(X̂; (X̂|LNoisy(X̂)) may obviously be some non-trivial function of δ. Of course if

X ← X and X ′ ← X then LNoisy(X
′) is distributed identically to LNoisy(X), and hence,

by Lemma 2.4, (8.1) is equivalent to:

δ = ∆((LNoisy(X); LNoisy(X
′)) | X) , (8.2)

where X and X ′ are uniform over X . Note that at the beginning, this definition may

be a bit counter-intuitive, as smaller δ means more noise: in particular we achieve “full

noise” if δ = 0, and “no noise” if δ ≈ 1. Let us compare this definition with the definition

of [PR13]. In a nutshell: the definition of [PR13] is similar to ours, the only difference

being that instead of the statistical distance ∆ in [PR13] the authors use a distance

based on the Euclidean norm. More precisely, they start with defining d2 as:

3In the following, we will not write the random coins used to compute the LNoisy function to simplify
the notation.
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Definition 8.5 (Euclidean Norm).

d2(X;Y ) :=

√∑

x∈X

(Pr[X = x]− Pr[Y = y])2 .

Using this notion, they define β as:

β(X | LNoisy(X)) :=
∑

y∈Y

Pr[LNoisy(X) = y] · d2(X ; (X | LNoisy(X) = y)) ,

where X is uniform. In the terminology of [PR13], a function LNoisy is “δ-noisy” if

δ = β(X|LNoisy(X)). Observe that the right hand side of our noise definition in (8.1) can

be rewritten as:

∑

y∈Y

Pr[LNoisy(X) = y] ·∆(X ; (X | LNoisy(X) = y)) .

Hence the only difference between their approach and ours is that we use ∆ where they

use the distance d2. The authors do not explain why they choose this particular measure.

We believe that our choice to use the standard definition of statistical distance ∆ is

more natural in this setting, as, unlike the “d2” distance, it has been used in hundreds of

cryptographic papers in the past. The popularity of the ∆ distance comes from the fact

that it corresponds to an intuitive concept of the “indistinguishability of distributions”.

It is well-known, and simple to verify, that ∆(X;Y ) ≤ δ if and only if no adversary can

distinguish between X and Y with advantage better than δ.4 Hence, e.g., (8.2) can be

interpreted as:

δ is the maximum probability, over all adversaries A, that A distinguishes

between the noise from a uniform X that is known to him, and a uniform X ′

that is unknown to him.

It is unclear to us if a d2 distance has a similar interpretation. We emphasize, however,

that the choice whether to use ∆ or β is not too important, as the following inequalities

between these measures hold for every X and Y distributed over X (cf. [PR13]):

1

2
· d2(X;Y ) ≤ ∆(X;Y ) ≤

√
|X |
2
· d2(X;Y ) ,

and consequently

1

2
· β(X | LNoisy(X)) ≤ ∆(X; (X | LNoisy(X)) ≤

√
|X |
2
· β(X | LNoisy(X)) . (8.3)

Hence, we decide to stick to the “∆ distance” in this thesis. However, to allow for

comparison between our work and the one of [PR13], we will at the end of Chapter 9

4This formally means that for every A we have |Pr[A(X) = 1]− Pr[A(Y ) = 1]| ≤ δ.
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present our results also in terms of the β measure. This translation will be straight-

forward, thanks to the inequalities in (8.3). In [PR13, Theorem 4], the result is stated

in form of Shannon information theory. While such an information theoretic approach

may be useful in certain settings [SMY09], we follow the more “traditional” approach

and provide an efficient simulation argument. As discussed in the introduction, this also

covers a setting where the adversary exploits joint information of the leakage and, e.g.,

the plaintext/ciphertext pairs. We emphasize, however, that our results can easily be

expressed in the information theoretic language as we will show in Chapter 10.

The Issue of “Efficient Simulation”

To achieve the strong simulation-based security notion, we need an additional require-

ment on the leakage, namely, that the leakage can efficiently be “simulated”, which typ-

ically requires that the noise function is efficiently computable. In fact, for our proofs to

go through, we actually need something slightly stronger, namely that LNoisy is efficiently

decidable.

Definition 8.6 (Efficiently decidable noise). A function LNoisy : X → Y is efficiently

decidable if

1. there exists a ppt algorithm that computes it and

2. the set Y is finite and for every x and y the value of Pr[LNoisy(x) = y] is computable

in polynomial time.

While the second requirement may look like a strong assumption we note that in practice

for most “natural” noise functions (like the Gaussian noise with a known parameter,

measured with a very good, but finite, precision) it is easily satisfiable.

The results of [PR13] are stated without taking into consideration the issue of the “effi-

cient simulation”. Hence, if one wants to compare our results with [PR13] then one can

simply drop the efficient decidability assumption on the noise. To keep our presentation

concise and clean, also in this case the results will be presented in a form “for every

adversary A there exists an (inefficient) simulator S”. Here the “inefficient simulator”

can be an arbitrary algorithm, capable, e.g., of sampling elements from any probability

distributions.

8.5.2 Adversarial Model

We can now formally define our noisy model.

Definition 8.7 (δ-noisy adversary). For δ ≥ 0, a δ-noisy adversary on X ℓ is an al-

gorithm A that plays the following scenario against an oracle that knows (x1, . . . , xℓ) ∈
X ℓ:

1. A specifies a sequence {LNoisyi : X → Y}ℓi=1 of noisy functions such that every

LNoisyi is δ′i-noisy, for some δ′i ≤ δ and mutually independent noises.
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2. A receives LNoisy1(x1), . . . , LNoisyℓ(xℓ) and outputs some value that we denote by

outA(x1, . . . , xℓ).

Like before, outA(x1, . . . , xℓ) is a random variable combining A and the randomness of

the functions LNoisyi. If A works in polynomial time and the noise functions specified by

A are efficiently decidable, then we say that A is poly-time-noisy.

8.5.3 Other Models

The work of Faust et al. [FRR+10] also considers circuit compilers for noisy models.

Specifically, they propose a construction with security in the binomial noise model,

where each value on a wire is flipped independently with probability p ∈ (0, 1/2). In

contrast to the work of [PR13] and our work, the noise model is restricted to binomial

noise, but the noise rate is significantly better (constant instead of linear noise). Similar

to [PR13] the work of Faust et al. also uses leak-free components. Besides these works

on masking schemes, several works consider noisy leakages for concrete cryptographic

schemes [DP08, NS09a, KV09]. Typically, the noise model considered in these works is

significantly stronger than the noise model that is considered for masking schemes. In

particular, no strong assumption about the independence of the noise is made.
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Chapter 9

Unifying Leakage Models

This chapter presents a joint work with Prof. S. Dziembowski and Prof. S. Faust and

was published in [DDF14]. While there is still a large gap between what theoretical

models can achieve and what side-channel information is measured in practice, some

recent important works introduce models that are better in line with the perspective

of cryptographic engineering [SMY09, PR13, SPY13]. Our work follows this line of

research by analyzing the security of a common countermeasure – the so-called masking

countermeasure – in the model of Prouff and Rivain [PR13]. Our analysis works by

showing that security in certain theoretical leakage models implies security in the model

of [PR13], and hence may be seen as a first attempt to unify the large class of different

leakage models used in recent results.

We briefly described Prouff and Rivain’s work [PR13] in the previous chapter and pointed

out some shortcomings. We discuss them more in the next section.

9.1 The Work of Prouff and Rivain [PR13]

Prouff and Rivain [PR11] analyze the security of a block-cipher implementation that

is masked with an additive masking scheme working over a finite field F. More pre-

cisely, let t be the security parameter, then a secret s ∈ F is represented by an encoding

(X1, . . . , Xt) such that each Xi ← F is uniformly random subject to s = X1 ⊕ . . . ⊕
Xt. As discussed above, the main difficulty in designing secure masking schemes is

to devise masked operations that work on masked values. To this end, Prouff and

Rivain use the original scheme of Ishai et al. [ISW03] augmented with some techniques

from [CGP+12a, RP10] to work over larger fields and to obtain a more efficient im-

plementation. The masked operations are built out of several smaller components.

First, a leak-free operation that refreshes encodings, i.e., it takes as input an encod-

ing (X1, . . . , Xt) of a secret s and outputs a freshly and independently chosen encoding

of the same value. Second, a number of leaky elementary operations that work on a con-

stant number of field elements. For each of these elementary operations the adversary is

given leakage f(X), where X are the inputs of the operation and f is a noisy function.
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Clearly, the noise-level has to be high enough so that given f(X) the values of X is

not completely revealed. To this end, the authors introduce the noisy leakage model

presented in Section 8.5.

While noisy leakages are certainly a step in the right direction to model physical leakage,

we detail below some of the limitations of the security analysis of Prouff and Rivain

[PR13]:

1. Leak-free components: The assumption of leak-free computation has been used

in earlier works on leakage resilient computation [FRR+10, DF12]. It is a strong

assumption on the physical hardware and, as stated in [PR13], an important limit-

ation of the current proof approach. The leak-free component of [PR13] is a simple

operation that takes as input an encoding and refreshes it. While the computation

of this operation is supposed to be completely shielded against leakage, the inputs

and the outputs of this computation may leak. Notice that the leak-free component

of [PR13] depends on the computation that is carried out in the circuit by taking

inputs. In particular, this means that the computation of the leak-free component

depends on secret information, which makes it harder to protect in practice and is

different from earlier works that use leak-free components [FRR+10, DF12].

2. Random message attacks: The security analysis is given only for random message

attacks. In particular, it is assumed that every masked secret is a uniformly random

value. This is in contrast to most works in cryptography, which usually consider at

least a chosen message attack. When applied to a block-cipher, their proof implies

that the adversary has only access to the leakage of the system without knowing

which plaintext was used nor which ciphertext was obtained. Hence, the proof

does not cover chosen plaintext or chosen ciphertext attacks. However, it is true

that it is not clear how chosen message attacks change the picture in standard

DPA attacks [VCS10].

3. Mutual-information-based security statement: The final statement of Theorem 4

in [PR13] only gives a bound on the mutual information of the key and the leakages

from the cipher. In particular, this does not include information that an adversary

may learn from exploiting joint information from the leakages and plaintext/cipher-

text pairs. Notice that the use of mutual information gets particularly problematic

under continuous leakage attacks, as multiple plaintext/ciphertext pairs informa-

tion theoretically completely reveal the secret key. The standard security notion

used, e.g., in Ishai et al. is simulation-based and covers such subtleties when dealing

with Shannon information theory.

4. Strong noise requirements: The amount of noise that is needed depends on the

number of shares and on the size of the field which might be a bit unnatural.

Moreover, the noise is independently sampled for each of the elementary operation

that have constant size.
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9.2 Our Contribution

We show in this work how to eliminate limitations 1-3 by a simple and elegant simulation-

based argument and a reduction to the so-called t-probing adversarial setting [ISW03]

(that in this thesis we call the t-threshold-probing model to emphasize the difference

between this model and the random-probing model defined later.). The t-threshold-

probing model considers an adversary that can learn the value of t intermediate values

that are produced during the computation and is often considered as a good approxima-

tion for modelling higher-order attacks. We notice that limitation 4 from above is what

enables our security analysis. The fact that the noise is independent for each elementary

operation allows us to formally prove security under an identical noise model as [PR13],

but using a simpler and improved analysis. In particular, we are able to show that the

original construction of Ishai et al. satisfies the standard simulation-based security no-

tion under noisy leakages without relying on any leak-free components. We emphasize

that our techniques are very different (and much simpler) than the recent breakthrough

result of Goldwasser and Rothblum [GR12], which shows how to eliminate leak-free gates

in the bounded leakage model. We will further discuss related works in Section 9.3.

Our proof considers three different leakage models and shows connections between them.

One may view our work as a first attempt to “reduce” the number of different leakage

models, which is in contrast to many earlier works that introduced new leakage settings.

Eventually, we are able to reduce the security in the noisy leakage model to the security in

the t -threshold-probing model. This shows that, for the particular choice of parameters

given in [PR13], security in the t-threshold-probing model implies security in the noisy

leakage model. This goes align with the common approach of showing security against t-

order attacks, which usually requires to prove security in the t–threshold-probing model.

Moreover, it shows that the original construction of Ishai et al. that has been used in

many works on masking (including the work of Prouff and Rivain) is indeed a sound

approach for protecting against side-channel leakages when assuming that they are suf-

ficiently noisy. We give some more details on our techniques below.

From noisy leakages to random probes. As a first step in our security proof, we

show that we can simulate any adversary in the noisy leakage model of Prouff and Rivain

with a random probing adversary that we defined in Section 8.4.

From random probes to the t-threshold-probing model. We show how to go

from the random probing adversary setting to the more standard t-threshold-probing

adversary of Ishai et al. in [ISW03] (see Section 8.3). This step is rather easy as due to

the independence of the noise we can apply Chernoff’s bound almost immediately. One

technical difficulty is that the work of Prouff and Rivain considers joint noisy leakage

from elementary operations, while the standard t-threshold-probing setting only talks

about leakage from wires. Notice, however, that the elementary operations of [PR13]

only depend on two inputs and, hence, it is not hard to extend the result of Ishai et
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al. to consider “gate probing adversary” by tolerating a loss in the parameters. Finally,

our analysis enables us to show security of the masking based countermeasure without

the limitations 1-3 discussed above.

Leakage resilient circuits with simulation-based security. In our security ana-

lysis we use the framework of leakage resilient circuits introduced in the seminal work of

Ishai et al. [ISW03].

Moreover, our work uses the well-established simulation paradigm to state the security

guarantees we achieve. Intuitively, simulation-based security says that whatever attack

an adversary can carry out when knowing the leakage, he can also run (with similar

success probability) by just having black-box access to C. In contrast to the approach

based on Shannon information theory, our analysis includes attacks that exploit joint

information from the leakage and plaintext/ciphertext pairs. It seems impossible to us to

incorporate the plaintext/ciphertext pairs into an analysis based on Shannon information

theory. To see this, consider a block-cipher execution, where, clearly, when given a

couple of plaintext/ciphertext pairs, the secret key is information theoretically revealed.1

The authors of [PR13] are well aware of this problem and explicitly exclude such joint

information. A consequence of the simulation-based security analysis is that we require

an additional mild assumption on the noise – namely, that it is efficiently computable (see

Section 9.4 for more details). While this is a standard assumption made in most works

on leakage resilient cryptography, we emphasize that we can easily drop the assumption

of efficiently computable noise (and hence considering the same noise model as [PR13]),

when we only want to achieve the weaker security notion considered in [PR13]. Notice

that in this case, we are still able to eliminate the limitations 1 & 2 mentioned above.

9.3 Related Work

Masking & leakage resilient circuits. A large body of work has proposed various

masking schemes and studies their security in different security models (see, e.g., [GP99,

BGK04, OMPR05, SVCO+10, RP10]). The already mentioned t-threshold-probing

model has been considered in the work of Rivain and Prouff [RP10], who show how

to extend the work of Ishai et al. to larger fields and propose efficiency improvements.

In [PR11] it was shown that techniques from multiparty computation can be used to

show security in the t-threshold-probing model. The work of Standaert et al. [SVCO+10]

studies masking schemes using the information theoretic framework of [SMY09] by con-

sidering the Hamming weight model. Many other works analyze the security of the

masking countermeasure and we refer the reader for further details to [PR13].

1More concretely: imagine an adversary that attacks a block-cipher implementation EK , where K
is the secret key. Then just by launching a known-plaintext attack he can obtain several pairs V =
(M0, EK(M0)), (M1, EK(M1)), . . .. Clearly a small number of such pairs is usually enough to determine
K information-theoretically. Hence it makes no sense to require that “K is information-theoretically
hidden given V and the side-channel leakage.”
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With the emerge of leakage resilient cryptography [MR04, AGV09, DP08], several works

have proposed new security models and alternative masking schemes. The main dif-

ference between these new security models and the t-threshold-probing model is that

they consider joint leakages from large parts of the computation. The work of Faust et

al. [FRR+10] extends the security analysis of Ishai et al. beyond the t-threshold-probing

model by considering leakages that can be described by low-depth circuits (so-called AC0

leakages). Faust et al. use leak-free component that have been eliminated by Rothblum

in [Rot12] using computational assumptions. The recent work of Miles and Viola [MV13]

presents a new circuit transformation using alternating groups and shows security with

respect to AC0 and TC0 leakages.

Another line of work considers circuits that are provably secure in the so-called continu-

ous bounded leakage model [JV10, GR10, DF12, GR12]. In this model, the adversary

is allowed to learn arbitrary information from the computation of the circuit as long as

the amount of information is bounded. The proposed schemes rely additionally on the

assumption of “only computation leaks information” of Micali and Reyzin [MR04].

9.4 Noise from Set Elements

We start with describing the basic framework for reasoning about the noise from elements

of a finite set X . Later, in Section 9.5, we will consider the noisy leakage from the vectors

over X , and then, in Section 9.6, from the entire computation. The reason why we can

smoothly use the analysis from Section 8.5.1 in the later sections is that, as in the

work of Prouff and Rivain, we require that the noise is independent for all elementary

operations. By elementary operations, [PR13] considers the basic underlying operations

over the underlying field X used in a masked implementation. In this work, we consider

the same setting and type of underlying operations (in fact, notice that our construction

is identical to theirs – except that we eliminate the leak-free gates and prove a stronger

statement). Notice that instead of talking about elementary operations, we consider the

more standard term of “gates” that was used in the work of Ishai et al. [ISW03].

9.4.1 Simulating Noise by ǫ-identity Functions

Lemma 9.1 below is our main technical tool. Informally, it states that every δ-noisy

function LNoisy : X → Y can be represented as a composition LNoisy
′ ◦ ϕ of efficiently

computable randomized functions LNoisy
′ and ϕ, where ϕ is a “δ · |X |-identity function”,

defined in Definition 8.2.

This will allow us to reduce the “noisy attacks” to the “random probing attacks”, where

the adversary learns each wire (or a gate, see Section 9.6.5) of the circuit with probability

ǫ. Observe also, that thanks to the assumed independence of noise, the events that the

adversary learns each element are independent, which, in turn, will allow us to use the

Chernoff bound to prove that with a good probability the number of wires that the

adversary learns is small.
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Lemma 9.1. Let LNoisy : X → Y be a δ-noisy function. Then there exist ǫ ≤ δ · |X | and
a randomized function LNoisy

′ : X ∪ {⊥} → X such that for every x ∈ X we have

LNoisy(x)
d
= LNoisy

′(ϕ(x)), (9.1)

where ϕ : X → X ∪ {⊥} is an ǫ-identity function. Moreover, if LNoisy is efficiently

decidable (see Definition 8.6) then LNoisy
′(ϕ(x)) is computable in time that is expected

polynomial in |X |.

Proof. We consider only the case when LNoisy is efficiently decidable, and hence the LNoisy
′

function that we construct will be efficiently computable. The case when LNoisy is not

efficiently decidable is handled in an analogous way (the proof is actually simpler as

the only difference is that we do not need to argue about the efficiency of the sampling

algorithms). Let X and X ′ be uniform over X . For every y ∈ Y define

π(y) = min
x∈X

(Pr[LNoisy(x) = y]). (9.2)

Clearly π is computable in time polynomial in |X |. Obviously, π is usually not a probab-

ility distribution as it does not sum up to 1. The good news is that it sums up “almost”

to 1 provided δ is sufficiently small. This is shown below. Let ǫ := 1−∑y∈Y π(y). We

now have

ǫ =

=1︷ ︸︸ ︷∑

y∈Y

Pr[LNoisy(X
′) = y]−

∑

y∈Y

π(y)

=
∑

y∈Y

Pr[LNoisy(X
′) = y]−min

x∈X
(Pr[LNoisy(x) = y])

=
∑

y∈Y

max
x∈X

(Pr[LNoisy(X
′) = y]− Pr[LNoisy(x) = y])

≤
∑

y∈Y

∑

x∈X

max(0,Pr[LNoisy(X
′) = y]− Pr[LNoisy(x) = y])) (9.3)

=
∑

x∈X

∆(LNoisy(x); LNoisy(X
′))

= |X | ·∆((LNoisy(X); LNoisy(X
′)) | X)

= δ · |X |, (9.4)

where (9.3) comes from the fact that the maximum of positive values cannot be larger

than their sum2, and (9.4) follows from the assumption that the LNoisy function is δ-noisy.

2More precisely, for every {Zx}x∈X we have:

max
x∈X

(Zx) ≤
∑

x:Zx≥0

Zx

=
∑

x

max(0, Zx),
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Now, let LNoisy
′(x) be a distribution defined as follows: for every y ∈ Y and every x 6= ⊥

let:

Pr[LNoisy
′(x) = y] = (Pr[LNoisy(x) = y]− π(y))/ǫ, (9.5)

and otherwise:

Pr[LNoisy
′(⊥) = y] = π(y)/(1− ǫ). (9.6)

We will later show how to sample LNoisy
′ efficiently. Obviously, this will automatically

imply that (9.5) and (9.6) define probability distributions over Y (which may not be

obvious at the first sight). First, however, let us show (9.1). To this end take any x ∈ X
and y ∈ Y and observe that

Pr[LNoisy
′(ϕ(x)) = y]

= Pr[ϕ(x) = x] · Pr[LNoisy′(x) = y] + Pr[ϕ(x) = ⊥] · Pr[LNoisy′(⊥) = y]

= ǫ · (Pr[LNoisy(x) = y]− π(y))/ǫ+ (1− ǫ) · π(y)/(1− ǫ)

= Pr[LNoisy(x) = y]− π(y) + π(y)

= Pr[LNoisy(x) = y].

Which implies (9.1). What remains is to show how to sample LNoisy
′ efficiently. Let us

first show an efficient algorithm Alg1(x) for computing LNoisy
′(x) for x 6= ⊥:

1: algorithm Alg1(x)

2: Sample y from LNoisy(x).

3: With probability π(y)/Pr[LNoisy(x) = y] resample y, i.e.: go back to Step 2.

4: Output y.

5: end algorithm

We now argue that Alg1(x) indeed computes LNoisy
′(x) efficiently. Let R1 ∈ {1, 2, . . .} be

a random variable denoting the number of times the algorithm Alg1(x) performed Step

2. First observe that the probability of jumping back to Step 2 in Step 3 is equal to

∑

y

Pr[LNoisy(x) = y] · π(y)/Pr[LNoisy(x) = y] =
∑

y

π(y) (9.7)

= 1− ǫ (9.8)

Therefore the probability of not jumping back to Step 2 in Step 3 is ǫ, and hence the

expected number E[R1] of the executions of Step 2 in Alg1(x) is equal to
∑n

i=1 i · (1 −

where in our case Zx := Pr[LNoisy(x) = y].
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ǫ)i−1 · ǫ = 1/ǫ. Moreover for every i = 0, 1, . . . we have:

Pr[Alg1(x) = y ∧R1 = i | R1 ≥ i]

= Pr[LNoisy(x) = y] · (1− (π(y)/Pr[LNoisy(x) = y]))

= Pr[LNoisy(x) = y]− π(y)

Hence

Pr[Alg1(x) = y]

=
∞∑

i=0

Pr[Alg1(x) = y ∧R1 = i]

=
∞∑

i=0

Pr[Alg1(x) = y ∧R1 = i | R1 ≥ i] · Pr[R1 ≥ i]

= (Pr[LNoisy(x) = y]− π(y)) ·
∞∑

i=1

Pr[R1 ≥ i]

= (Pr[LNoisy(x) = y]− π(y)) · E[R1]

= (Pr[LNoisy(x) = y]− π(y))/ǫ,

as required in (9.5). We now present an efficient algorithm Alg2 for computing LNoisy
′(⊥).

Fix an arbitrary element x0 ∈ X , and execute the following.

1: algorithm Alg2()

2: Sample y from LNoisy(x0).

3: With probability 1−(π(y)/Pr[LNoisy(x0) = y]) resample y, i.e., go back to Step 2.

4: Output y.

5: end algorithm

By a similar argument as for Alg1 we obtain that the expected number R2 of times

the algorithm Alg2 performs Step 2 is equal to E[R2] = 1/(1 − ǫ). Moreover for every

i = 1, 2, . . . we have:

Pr[Alg2 = b ∧R2 = i | R2 ≥ i] = π(y),

which, in turn, implies that Pr[Alg2(x) = y] = π(y)/(1 − ǫ), and hence the output of

Alg2 satisfies (9.6). Clearly, the expected running time of both algorithms is polynomial

in |X | and E[R], where R is the number of execution of Step 2 in Alg1 or Alg2. We

obviously have

E[R] = E[R1 | ϕ(x) 6= ⊥] · Pr[ϕ(x) 6= ⊥] + E[R2 | ϕ(x) = ⊥] · Pr[ϕ(x) = ⊥]
= (1/ǫ) · ǫ+ (1/(1− ǫ)) · (1− ǫ)

= 2.

Hence, the expected running time of LNoisy
′(ϕ(x)) is polynomial in |X|.
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Informally speaking, it is based on an extension of the standard observation that for

any two random variables A and B one can find two events A and B such that the

distributions PA|A and PB|B are equal and Pr[A],Pr[B] = ∆(A;B) (see, e.g., [MT10,

Section 1.3]).

9.5 Leakage from Vectors

In this section, we adapt our result from the previous section to leakage applied to vector

of values. It is in this section that we show how to simulate a noisy adversary with a

threshold-probing adversary (using for this as an intermediate step a random-probing

adversary). The different adversarial models are presented in Section 8.2.

9.5.1 Simulating the Noisy Adversary by a Random-probing Adversary

The following lemma shows that every δ-noisy adversary can be simulated by a δ · |X |-
random probing adversary.

Lemma 9.2. Let A be a δ-noisy adversary on X ℓ. Then there exists a δ · |X |-random-

probing adversary S on X ℓ such that for every (x1, . . . , xℓ) we have

outA(x1, . . . , xℓ)
d
= outS(x1, . . . , xℓ). (9.9)

Moreover, if A is poly-time-noisy, then S works in time polynomial in |X |.

Proof. Without loss of generality assume that A simply outputs all the information that

he gets. Thus (9.9) can be rewritten as:

(LNoisy1(x1), . . . , LNoisyℓ(xℓ))
d
= outS(x1, . . . , xℓ), (9.10)

where LNoisyi’s are the δi-noisy functions chosen by A. By Lemma 9.1 for each i there

exists ǫi ≤ δi · |X | ≤ δ · |X | and a randomized function LNoisy
′
i : X ∪ {⊥} → X , such that

for every x ∈ X we have

LNoisyi(x)
d
= LNoisy

′
i(ϕi(x)), (9.11)

where ϕi : Xi → Xi ∪ {⊥} is the ǫi-identity function and Noise′i(ϕi(x)) is computable in

time polynomial in |X |. We now describe the actions of S. The sequence that he specifies
is (ǫ1, . . . , ǫℓ). After receiving (y1, . . . , yℓ) (equal to (ϕ1(x1), . . . , ϕℓ(xℓ))) he outputs

out(x1, . . . , xℓ) := (LNoisy
′
1(y1), . . . , LNoisy

′
ℓ(yℓ))

85



(this clearly takes time that is expected polynomial in ℓ · |X |). We now have

(LNoisy
′
1(y1), . . . , LNoisy

′
ℓ(yℓ))

d
=(LNoisy

′
1(ϕ1(x1)), . . . , LNoisy

′
ℓ(ϕℓ(xℓ)))

d
=(LNoisy1(x1), . . . , LNoisyℓ(xℓ)) (9.12)

where (9.12) comes from (9.11). This implies (9.10) and hence it finishes the proof.

Intuitively, this lemma easily follows from Lemma 9.1 applied independently to each

element of (x1, . . . , xℓ).

9.5.2 Simulating the Random-probing Adversary by a Threshold-probing

Adversary

In this section, we show how to simulate every δ-random probing adversary by a threshold

adversary. This simulation, unlike the one in Section 9.5 will not be perfect in the

sense that the distribution output by the simulator will be identical to the distribution

of the original adversary only when conditioned on some event that happens with a

large probability. We start with the following lemma, whose proof is a straightforward

application of the Chernoff bound.

Lemma 9.3. Let A be an ǫ-random-probing adversary on X ℓ. Then there exists a

(2ǫℓ − 1)-threshold-probing adversary S on X ℓ operating in time linear in the working

time of A such that for every (x1, . . . , xℓ) we have

∆(outA(x1, . . . , xℓ) ; outS(x1, . . . , xℓ) | outS(x1, . . . , xℓ) 6= ⊥) = 0, (9.13)

where

Pr[outS(x1, . . . , xℓ) = ⊥] ≤ exp

(
−ǫℓ

3

)
. (9.14)

Proof. As in the proof of Lemma 9.2, we assume that the simulated adversary A outputs

all the information that he received. Moreover, since for ǫ′ ≤ ǫ every ǫ′-identity function

ϕ′ can be simulated by the ǫ-identity function ϕ,3 hence we can assume that each ǫi
specified by A is equal to ǫ. Thus, we need to show a 2ǫℓ-threshold-probing simulator S
such that for every (x1, . . . , xℓ) ∈ X ℓ we have

∆(ϕ1(x1), . . . , ϕℓ(xℓ) ; outS(x1, . . . , xℓ) | outS(x1, . . . , xℓ) 6= ⊥) = 0 , (9.15)

(where each ϕi is the ǫ-identity function) and (9.14) holds. The simulator S proceeds

as follows. First a sequence (Z1, . . . , Zℓ) of independent random variables is chosen by

3Just set ϕ′(x) := ϕ(x) with probability ǫ′/ǫ, and ϕ′(x) = ⊥ otherwise. Then clearly Pr[ϕ′(x) = x] =
ǫ · ǫ′/ǫ = ǫ′.
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setting, for each i,

Zi :=

{
1 with probability ǫi

0 otherwise.

Let Z denote the number of Zi’s equal to 1, i.e, Z :=
∑ℓ

i=1 Zi. If Z ≥ 2ℓǫ then S
outputs ⊥. Otherwise, it specifies the set I as I := {i : Zi = 1}. The simulator receives

(xi1 , . . . , xi|I|
). For all the remaining i’s (i.e. those not in the set I) the simulator sets

xi := ⊥. It outputs (x1, . . . , xℓ). It is straightforward to see that S is (2ǫℓ−1)-threshold-
probing and that (9.15) holds. What remains is to show (9.14). As E[Z] = ǫℓ,

Pr[Z ≥ 2ℓǫ] = Pr[Z ≥ 2E[Z]]

≤ exp

(
−ǫℓ

3

)
, (9.16)

where (9.16) comes from the Chernoff bound with ξ = 1 (cf. Lemma 2.14). This finishes

the proof.

The following corollary combines Lemma 9.2 and 9.3 together and will be useful in the

sequel.

Corollary 9.4. Let d, ℓ ∈ N with ℓ > d and let A be a d/(4ℓ · |X |)-noisy adversary on

X ℓ. Then there exists an (d/2− 1)-threshold-probing adversary S such that

∆(outA(x1, . . . , xℓ) ; outS(x1, . . . , xℓ) | outS(x1, . . . , xℓ) 6= ⊥) = 0 (9.17)

and Pr[outS(x1, . . . , xℓ) = ⊥] ≤ exp(−d/12). Moreover, if A is poly-time-noisy then S
works in time polynomial ℓ · |X |,

Proof. By Lemma 9.2, there exists a d/(4ℓ)-random-probing adversary A′ whose output
is distributed identically to the output ofA. In turn, by Lemma 9.3 for t = 2·(d/(4ℓ))·ℓ =
d/2 there exists a (t − 1)-threshold-probing adversary S whose output, conditioned on

not being equal to ⊥, is distributed identically to the output of A′, and such that

Pr[outS(x1, . . . , xℓ) = ⊥] ≤ exp(−d/12).
If A is poly-time noisy then clearly the expected working time of A′ is polynomial in

ℓ · |X |. As the working time of S is linear in the working time of A hence this finishes

the proof.

9.6 Leakage from Computation

In this section, we address the main topic of this chapter, which is the noise-resilience of

cryptographic computations. Our main model will be the model of arithmetic circuits

over a finite field. First, in Section 9.6.1, we formally define arithmetic circuits as well as

our security definitions, and then, in Section 9.6.2, we describe a secure “compiler” that
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transforms any cryptographic scheme secure in the “black-box” model into one secure

against the noisy leakage. It is essentially identical to the transformation of [ISW03]

later extended in [RP10]. Finally, in the last section, we present our security results.

9.6.1 Arithmetic Circuits

We will model our computations using (stateful) arithmetic circuits that we formally

define below.

Definition 9.5 (Stateful arithmetic circuit). A (stateful arithmetic) circuit Γ over a

field F is a directed graph whose nodes are called gates.

Gates: each gate γ can be of one of the following types:

• an input gate γ inp of fan-in zero and fan-out 1,

• an output gate γout of fan-in 1 and fan-out zero,

• a random gate γrand of fan-in zero and fan-out 1,

• a multiplication gate γ× of fan-in 2 and fan-out 1,

• an addition gate γ+ of fan-in 2 and fan-out 1,

• a subtraction gate γ− of fan-in 2 and fan-out 1,

• a constant gate γconstc for a value c ∈ F of fan-in zero and fan-out 1,

• and a memory gate γmem of fan-in 1 and fan out 1.

The only cycles that are allowed in Γ must contain exactly 1 memory gate. The size |Γ|
of the circuit Γ is defined to be the total number of its gates. The numbers of input gates,

output gates and memory gates will be denoted |Γ.inp|, |Γ.out|, and |Γ.mem|, respectively.

Computations: the computation of Γ is performed in several“rounds”numbered 1, 2, . . ..

In each of them the circuit will take some input, produce an output and update the

memory state. Initially, the memory gates of Γ are preloaded with some initial “state”

k0 ∈ F
|Γ.mem|. At the beginning of the ith round the input gates are loaded with elements

of some vector ai ∈ F
|Γ.inp| called the input for the ith round. The computation of Γ in

the ith round depends on ai and on the memory state ki−1. It proceeds in a straightfor-

ward way: if all the input wires of a given gate γ are known then the value on its output

wire can be computed naturally (where all the operations are done over F):

• if γ is a multiplication gate γ× with input wires carrying values a and b, then its

output wire will carry the value a · b.

• If γ is an addition gate γ+ with input wires carrying values a and b, then its output

wire will carry the value a+ b.
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• If γ is an subtraction gate γ− with input wires carrying values a and b, then its

output wire will carry the value a− b.

• If γ is a constant gate γconstc with value c ∈ F then its output will always be c.

• If γ is a random gate γrand, then, we assume that it produces a fresh random

element in F in each round.

The output of the ith round is read off from the output gates and denoted bi ∈ F
|Γ.out|.

The state after the ith round is contained in the memory gates and denoted ki. For k ∈
F
|Γ.mem| and a sequence of inputs (a1, . . . , am) (where each ai ∈ F

|Γ.inp|) let Γ(k, a1, . . . , am)

denote the sequence (B1, . . . , Bm) where each Bi is the output of Γ with k0 = k and inputs

a1, . . . , am in rounds 1, 2, . . . ,m.

Observe that, because Γ is randomized, hence Γ(k, a1, . . . , am) is a random variable.

We define now various adversaries interacting with circuits. We start with the most

basic black-box circuit adversary which does not take advantage on any leakage from

the circuit.

Definition 9.6 (Black-box circuit adversary). A black-box circuit adversary A is a

machine that adaptively interacts with a circuit Γ via the input and output interface.

Then out

(
A

bb

⇆ Γ(k)

)
denotes the output of A after interacting with Γ whose initial

memory state is k0 = k.

We can now formally define adversaries against circuits that suffer from various leakages.

We start first with the noisy-leakage model.

Definition 9.7 (δ-noisy circuit adversary). A δ-noisy circuit adversary A is a black-box

circuit adversary that has the following additional ability: after each ith round A gets

some partial information about the internal state of the computation via the noisy leakage

functions. More precisely: let (X1, . . . , Xℓ) be the random variable denoting the values

on the wires of Γ(k) in the ith round. Then A plays the role of a δ-noisy adversary

in a game against (X1, . . . , Xℓ) (see Definition 8.7). Namely, he choses a sequence

{LNoisyi : F→ Y}ℓi=1 of functions such that every LNoisyi is δi-noisy for some δi ≤ δ and

he receives LNoisy1(X1), . . . , LNoisyℓ(Xℓ). Let out

(
A

noisy

⇆ Γ(k)

)
denote the output of such

an A after interacting with Γ whose initial memory state is k0 = k.

Similarly, we replace the δ-noisy adversary with an ǫ-random probing adversary and

obtain the following definition.

Definition 9.8 (ǫ-random probing circuit adversary). An ǫ-random probing circuit ad-

versary A is a black-box circuit adversary that has the following additional ability: after

each ith round A gets some partial information about the internal state of the compu-

tation via ǫi-identity functions. More precisely: let (X1, . . . , Xℓ) be the random variable
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denoting the values on the wires of Γ(k) in the ith round. Then A plays the role of a ǫ-

random probing adversary in a game against (X1, . . . , Xℓ) (see Definition 8.3). Namely,

after each ith round, A choses a sequence (ǫ1, . . . , ǫℓ) such that each ǫi ≤ ǫ and he learns

ϕ1(X1), . . . , ϕℓ(Xℓ), where each ϕi is the ǫi-identity function. Let out

(
A

rnd

⇆ Γ(k)

)
de-

note the output of such A after interacting with Γ whose initial memory state is k0 = k.

Analogously we can replace the “δ-noisy adversary” with the “t-threshold probing ad-

versary” to obtain the following definition.

Definition 9.9 (t-threshold probing circuit adversary). An t-threshold probing circuit

adversaryA is a black-box circuit adversary that has the following additional ability: after

each ith round A gets some partial information about the internal state of the computa-

tion by learning at most t values from each encoding. More precisely: let (X1, . . . , Xℓ)

be the random variable denoting the values on the wires of Γ(k) in the ith round. Then

A plays the role of a t-threshold probing adversary in a game against (X1, . . . , Xℓ) (see

Definition 8.1). Namely, after each ith round A learns t elements of (X1), . . . , (Xℓ).

Let out

(
A

thr

⇆ Γ(k)

)
denote the output of such A after interacting with Γ whose initial

memory state is k0 = k.

We can now define properly the resilience of a circuit against leakage. As a preliminary,

we define formally the implementation of a circuit.

Definition 9.10 (Implementation of a circuit). Consider two stateful circuits Γ and

Γ′ (over some field F) and a randomized encoding function Enc. We say that Γ′ is

a implementation of a circuit Γ w.r.t. Enc if for every k ∈ F
|Γ.inp|: the input-output

behavior of Γ(k) and Γ′(Enc(k)) is identical, i.e., for every sequence of inputs a1, . . . , am
and outputs b1, . . . , bm we have

Pr[Γ(k, a1, . . . , am) = (b1, . . . , bm)] = Pr[Γ′(Enc(k), a1, . . . , am) = (b1, . . . , bm)] .

Definition 9.11 ((δ, ξ)-noise resilient implementation of a circuit). Consider two stateful

circuits Γ and Γ′ (over some field F) and a randomized encoding function Enc. We say

that Γ′ is a (δ, ξ)-noise resilient implementation of a circuit Γ w.r.t. Enc if Γ′ is an

implementation of Γ w.r.t. Enc and for every δ-noisy circuit adversary A there exists a

black-box circuit adversary S such that

∆

(
out

(
S

bb

⇆ Γ(k)

)
; out

(
A

noisy

⇆ Γ′(Enc(k))

))
≤ ξ . (9.18)

Definition 9.12 ((ǫ, ξ)-random probing resilient implementation of a circuit). Consider

two stateful circuits Γ and Γ′ (over some field F) and a randomized encoding function

Enc. We say that Γ′ is a (ǫ, ξ)-random probing resilient implementation of a circuit Γ

w.r.t. Enc if Γ′ is an implementation of Γ w.r.t. Enc and for every ǫ-random-probing
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circuit adversary A there exists a black-box circuit adversary S such that

∆

(
out

(
S

bb

⇆ Γ(k)

)
; out

(
A

rnd

⇆ Γ′(Enc(k))

))
≤ ξ .

Definition 9.13 ((t, ξ)-threshold probing resilient implementation of a circuit). Con-

sider two stateful circuits Γ and Γ′ (over some field F) and a randomized encoding func-

tion Enc. We say that Γ′ is a (t, ξ)-threshold probing resilient implementation of a circuit

Γ w.r.t. Enc if Γ′ is an implementation of Γ w.r.t. Enc and for every t-threshold-probing

circuit adversary A there exists a black-box circuit adversary S such that

∆

(
out

(
S

bb

⇆ Γ(k)

)
; out

(
A

thr

⇆ Γ′(Enc(k))

))
≤ ξ .

Definition 9.14 (Implementation of a circuit with efficient simulation). In all the cases

above, we will say that Γ′ is an implementation Γ with efficient simulation if the simulator

S works in time polynomial in Γ′ · |F| as long as A is poly-time and the noise functions

specified by A are efficiently decidable.

9.6.2 Implementing a Secure Circuit Compiler

In this section, we describe the circuit compiler of [ISW03], generalized to larger fields

in [RP10]. As seen in the previous section, we need to define first an encoding function.

We will use the following standard function.

Definition 9.15 (Additive masking (Enc+)). Let d ∈ N be a parameter. An element

x ∈ F is encoded with the additive masking encoding function Enc+ as Enc+(x) :=

(X1, . . . , Xd), where X1, . . . , Xd are uniformly distributed in F such that X1+ · · ·+Xd =

x. We denote the inverse operation Dec+.

Let Γ be a stateful arithmetic circuit. At a high level, each wire w in the original circuit

Γ is represented by a wire bundle in Γ′, consisting of d wires w = (w1, . . . , wd), that

carry an encoding of w. The gates in C are replaced gate-by-gate with so-called gadgets,

computing on encoded values. The main difficulty is to construct gadgets that remain

“secure” even if their internals may leak.

Because the transformed gadgets in Γ′ operate on encodings, Γ′ needs to have a subcircuit

at the beginning that encodes the inputs and another subcircuit at the end that decodes

the outputs. We will now show how to convert every gate into a gadget.

Input encoding. The input encoding is easy to implement for our encoding function

Enc+: to encode an input x one simply uses the random gates to generate d − 1 field

elements x1, . . . , xd−1 and then computes xd as x1 + · · · + xd−1 − x. Clearly, this can

be done using d addition and subtraction gates. Recall that the memory gates of Γ are

assumed to be preloaded with field elements that already encode k using the encoding

Enc+, hence there is no need to encode k.
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Constant gates. Each constant gate γconstc in Γ can be transformed into d constant

gates in Γ′, the first of them being γconstc and the remaining ones being γconst0 . This is

trivially correct as c = c+ 0 + · · ·+ 0.

Random gates. Every random gate γrand in Γ is transformed into d random gates

in Γ′. This works as, clearly, a uniformly random encoding (X1, . . . , Xd) encodes a

uniformly random element of F.

What remains to show is how the operation (addition, subtraction, and multiplication)

gates are handled. Consider a gate γ in Γ. Let a and b be its input wires and let

a = (a1, . . . , ad) and b = (b1, . . . , bd) be their corresponding wire bundles in Γ′. Let the

output wire bundle in Γ′ be (c1, . . . , cd). The cases when γ is an addition or subtraction

gate are actually easy to deal with, thanks to the linearity of the encoding function.

Addition gates. If γ is an addition gate γ+, each ci can be computed using an addition

gate γ+ in Γ′ with input wires ai and bi (this is obviously correct as (a1 + b1) + · · · +
(ad + bd) = (a1 + . . . ad) + (b1 + · · ·+ bd)).

Subtraction gates. If γ is an subtraction gate γ−, each ci can be computed using

an subtraction gate γ− in Γ′ with input wires ai and bi (this is obviously correct as

(a1 − b1) + · · ·+ (ad − bd) = (a1 + . . . ad)− (b1 + · · ·+ bd)).

Multiplication gates. When γ is the multiplication gate γ×, the change is more

tricky. In this case, the circuit Γ′ generates for every 1 ≤ i < j ≤ d a random field

element zi,j (this is done using the random gates in Γ′). Then, for every 1 ≤ j < i ≤ d

it computes

zi,j := aibj + ajbi − zj,i ,

and finally it computes each ci (for i = 1, . . . , d) as

ci := aibi +
∑

j 6=i

zi,j .

In other words, we have

ci := ai
∑

j 6=i

bj + bi
∑

j 6=i

aj + aibi +
∑

j 6=i

{
−zj,i if j < i

zi,j else.

To see why this computation is correct, consider the sum c = c1 + · · ·+ cd and observe

that, for i < j, every zi,j in it appears exactly once with plus sign and once with a minus

sign, and hence it cancels out. Moreover each term aibj appears in the formula for c
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exactly once. Hence c is equal to

d∑

i,j=1

aibj =

(
d∑

i=1

ai

)


d∑

j=1

bj


 = ab .

It is straightforward to verify that the total number of gates in this gadget is 3.5 · d2.

Refreshing. The multiplication gadget above turns out to be useful as a building

block for “refreshing” of the encoding. More concretely, suppose we have a wire bundle

a = (a1, . . . , ad) and we wish to obtain another bundle b = (b1, . . . , bd) such that b is a

fresh encoding of Dec+(a). This can be achieved by a Refresh sub-gadget constructed as

follows. First, create an encoding (1, 0, . . . , 0) of 1 (using d constant gates), and multiply

(1, 0, . . . , 0) and a together using the multiplication protocol above. As (1, 0, . . . , 0) is

an encoding of 1, hence the result will be an encoding of 1 · a = a. The multiplication

can be done with 3.5 ·d2 gates, and hence altogether this gadget uses 3.5 ·d2+2 ·d gates.

Output gates. We can now use the Refresh sub-gadget to construct the output gadgets

in Γ′. Let γout be an output gate in Γ with an input wire a. Then in Γ′ it is transformed

into the following: let a be the wire bundle corresponding to a. First apply the Refresh

sub-gadget, and then calculate the sum b1 + · · ·+ bd, where (b1, . . . , bd) is the output of

Refresh, and output the result.

Memory gates. The refreshing gadget is also useful to provide security of the memory

encoding in the multi-round scenario. More precisely, we assume that every memory

state gets refreshed at the end of each round by the Refresh procedure. It is easy to

see that without this “refreshing”, the contents of the memory would eventually leak

completely to the adversary even if he probes a very limited number (e.g., 1) of wires in

each round.

This concludes the description of the compiler. For more details, we refer the reader to

the original paper [ISW03].

9.6.3 Security in the Probing Model [ISW03]

In [ISW03], it is shown that the compiler from the previous section is secure against

probing attacks in which the adversary can probe at most ⌊(d − 1)/2⌋ wires in each

round.4 This parameter may be a bit disappointing as the number of probes that the

adversary needs to break the security does not grow with the size of the circuit. This

assumption may seem particularity unrealistic for large circuits Γ. Fortunately, [ISW03]

also shows a small modification of the construction from Section 9.6.2 that is resilient

to a larger number of probes, provided that the number of probes from each gadget is

4Strictly speaking, the proof of [ISW03] considers only the case when F = GF(2). It was observed in
[RP10] that it can be extended to any finite field, as the only properties of GF(2) that are used in the
proof are the field axioms.
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bounded. Before we present it, let us argue why the original construction is not secure

against such attacks. To this end, assume that our circuit Γ has a long sequence of wires

a1, . . . , am, where each ai (for i > 1) is the result of adding to ai−1 (using an addition

gate) a 0 constant (that was generated using a γconst0 gate). It is easy to see that in

the circuit Γ′ all the wire bundles a1, . . . ,am (where each ai corresponds to ai) will be

identical. Hence, the adversary that probes even a single wire in each addition gadget

in Γ′ will learn the encoding of a1 completely as long as m ≥ d. Fortunately, one can

deal with this problem by “refreshing” the encoding after each subtraction and addition

gate exactly in the same way as done before, i.e. by using the Refresh sub-gadget.

Lemma 9.16 ([ISW03]). Let Γ be an arbitrary stateful arithmetic circuit over some

field F. Let Γ′ be the circuit that results from the procedure described above. Then Γ′

is a (⌊(d − 1)/2⌋ · |Γ|, 0)-threshold-probing resilient implementation of a circuit Γ (with

efficient simulation), provided that the adversary does not probe each gadget more than

⌊(d− 1)/2⌋ times in each round.

We notice that [ISW03] also contains a second transformation with blow-up Õ(d|Γ|).
It may be possible that this transformation can provide better noise parameters as is

achieved by Theorem 9.20. However, due to the hidden parameters in the Õ-notation we

do not get a straightforward improvement of our result. In particular, using this trans-

formation the size of the transformed circuit depends also on an additional statistical

security parameter, which will affect the tolerated noise level.

9.6.4 Resilience to Noisy Leakage from the Wires

We now show that the construction from Section 9.6.3 is secure against the noisy leakage.

More precisely, we show the following:

Theorem 9.17. Let Γ be an arbitrary stateful arithmetic circuit over some field F. Let

Γ′ be the circuit that results from the procedure described in Section 9.6.3. Then Γ′ is

a (δ, |Γ| · exp(−d/12))-noise-resilient implementation of Γ (with efficient simulation),

where

δ := ((28d+ 16)|F|)−1 = O(1/(d · |F|)).

Proof. Let A be a δ-noisy circuit adversary attacking Γ′. We construct an efficient

black-box simulator S such that for every k it holds that

∆

(
out

(
S

bb

⇆ Γ(k)

)
; out

(
A

noisy

⇆ Γ′(Enc(k))

))
≤ |Γ| · exp(−d/12) . (9.19)

Observe that in our construction, every gate gets transformed into a gadget of at most

3.5·d2+2·d gates. As each gate can have at most 2 inputs hence the total number of wires

in a gadget is ℓ := 7 · d2 + 4 · d. Let γ1, . . . , γ|Γ| be the gates of Γ. For each i = 1, . . . , ℓ

let the wires in the gadget in Γ′ that corresponds to γi be denoted (xi1, . . . , x
i
ℓ). As
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δ = d/(4ℓ|F|), we can use Corollary 9.4 and simulate the noise from each (xi1, . . . , x
i
ℓ)

by a (d/2 − 1)-threshold-probing adversary Si working in time polynomial in ℓ · |X |.
The simulation is perfect, unless Si outputs ⊥, which, by Corollary 9.4 happens with

probability at most exp(−d/12). Hence, by the union-bound the probability that some

Si outputs ⊥ is at most |Γ| · exp(−d/12). Denote this event E .
From Lemma 9.16, we know that every probing adversary that attacks Γ′ by probing

at most ⌊(d − 1)/2⌋ ≥ d/2 − 1 wires from each gadget can be perfectly simulated in

polynomial time by an adversary S with a black-box access to Γ . Hence, A can also be

simulated perfectly by a black-box access to Γ conditioned on the fact that E did not

occur. Hence we get

∆

(
out

(
S

bb

⇆ Γ(k)

)
|¬E ; out

(
A

noisy

⇆ Γ′(Enc(k))

))
= 0 .

This, by Lemma 2.5 (Section 2.5), implies (9.19). Obviously S works in time polynomial

in |Γ| · d2 · |F|, which is polynomial in Γ′ · |F|. This finishes the proof.

In short, this theorem is proven by combining Corollary 9.4 that reduces the noisy

adversary to the probing adversary, with Lemma 9.16 that shows that the construction

from Section 9.6.3 is secure against probing.

9.6.5 Resilience to Noisy Leakage from the Gates

The model of Prouff and Rivain [PR13] is actually slightly different than the one con-

sidered in the previous section. The difference is that they assume that the noise is

generated by the gates, not by the wires. This can be formalized by assuming that each

noise function LNoisy is applied to the “contents of a gate”. Observe that the contents

of each gate γ can be described by at most 2 field elements: obviously if γ is a random

gate, output gate, or memory gate then its entire state in a given round can be described

by one field element, and if γ is an operation gate, then it can be described by two field

elements that correspond to γ’s input. Hence, without loss of generality we can assume

that the noise function is defined over the domain F× F.

To be more formal, we need to define an adversary that exploits leakage from gates.

Definition 9.18 (δ-gate-noisy circuit adversary). We define a δ-gate-noisy circuit ad-

versary A as a machine that, besides of having black box access to a circuit Γ(k), can,

after each ith round, get some partial information about the internal state of the compu-

tation via δ-noisy leakage functions applied to the gates As described above, the content

of a gate can be modeled as an element in F× F.

Let out

(
A

g-noisy

⇆ Γ(k)

)
denote the output of such A after interacting with Γ whose initial

memory state is k0 = k.

We can accordingly modify the definition of noise-resilient circuit implementations (as

in Definition 9.11).
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Definition 9.19 ((δ, ξ)-gate-noise resilient implementation of a circuit). We say that Γ′

is a (δ, ξ)-gate-noise resilient implementation of a circuit Γ w.r.t. Enc if it is a imple-

mentation of Γ and if for every k and every δ-gate-noisy circuit adversary A described

above there exists a black-box circuit adversary S working in time polynomial in Γ′ · |F|
such that

∆

(
out

(
S

bb

⇆ Γ(k)

)
; out

(
A

g-noisy

⇆ Γ′(Enc(k))

))
≤ ξ . (9.20)

It turns out that the transformation from Section 9.6.3 also works in this model, although

with different parameters. More precisely we have the following theorem.5

Theorem 9.20. Let Γ be an arbitrary stateful arithmetic circuit over some field F. Let

Γ′ be the circuit that results from the procedure described in Section 9.6.3. Then Γ′ is a

(δ, |Γ| · exp(−d/24))-gate-noise-resilient implementation of Γ (with efficient simulation),

where

δ :=
(
(28d+ 16) · |F|2

)−1
= O(1/(d · |F|2)) . (9.21)

Proof. The proof is similar to the one of Theorem 9.17 so we only describe the key

differences. Let A be a δ-noisy adversary. The number ℓ corresponds now to the number

of gates in each gadget, and hence it is equal to 3.5·d2+2·d. It is therefore straightforward
to calculate that δ defined in (9.21) is equal to (d/2)/(4ℓ·|F|2). As the LNoisy function has

domain of size |F|2, we can use Corollary 9.4 obtaining that A can be simulated by an

adversary S that probes each gadget in less that d/2 positions. As now each “position”

corresponds to a gate in the circuit, hence the adversary needs to probe up to two wires

to determine its value. Therefore S probes less than d wires in each gadget. As d is

now 1/2 of what it was in the proof of Corollary 9.4, hence the error probability changes

from exp(−d/12) to exp(−d/24).

Comparison with [PR13]

As described in the introduction, our main advantage over [PR13] is the removal of

the assumption about the existence of the leak-free gates, a stronger security model —

chosen message attack, instead of a random message attack, and a more meaningful

security statement. Still, it is interesting to compare our noise parameters with the

parameters of [PR13]. Let us analyze how much noise is needed by [PR13] to ensure

that the adversary obtains exponentially small information from leakage. The reader

should keep in mind that both in our work and in [PR13] “more noise” means that a

5Note that our result holds only when the number of shares is large. For small values of d (e.g.,
d = 2, 3, 4) like those considered in [SVCO+10], our result does not give meaningful bounds. This
is similar to the work of Prouff and Rivain [PR13] and it is an interesting open research question to
develop security models that work for small security parameters. We show a step towards that direction
in Chapter 10.
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certain quantity, δ, in our case, is smaller. Hence, the larger δ is, the stronger the result

becomes (as it means that less noise is required for the security to hold).

The main result of [PR13] is Theorem 4 on page 154. Unfortunately, the statement of

this theorem is asymptotic treating |F| as constant, and hence to get a precise bound on

how much noise is required one needs to inspect the proof. The bound on the noise can

be deduced from the part of the proof entitled “Security of Type 3 Subsequences”, where

the required noise is inversely-proportional to“λ(d)”, and this last value is linear in d·|F|3
(note that |F| is denoted by N in [PR13], and d is a security parameter identical to ours).

Hence their δ isO(1/(d·|F|3)). Our Lemma 9.20 requires a more liberal bound (cf. (9.21)),

and hence can be viewed as stronger, however, as explained in Section 9.4, the notion of

distance in [PR13] is slightly different than the standard “statistical distance” that we

use. Fortunately, one can use (8.3) to translate our bound into their language. It turns

out that in this case our and their bounds are asymptotically identical (O(1/(d · |F|3))).
This is shown in Corollary 9.21 below. Note that this translation is unidirectional, in

the sense that their “O(1/(d · |F|3))” bound does not imply a bound “O(1/(d · |F|2))” in
our sense.

Corollary 9.21. Let Γ be an arbitrary stateful arithmetic circuit over some field F. Let

Γ′ be the circuit that results from the procedure described in Section 9.6.3. Then Γ′ is a

(δ′, |Γ| · exp(−d/24))-gate-noise-resilient implementation of Γ (with efficient simulation)

when the noise is defined using the β distance, where

δ′ =
(
(14d+ 8) · |F|3

)−1
= O(1/(d · |F|3)) .

Proof. From (8.3) with X = F × F it follows that if LNoisy is δ′-noisy with respect to

the β distance, then it is (|F| · δ′/2)-noisy in the standard sense. As this last value

is equal to δ defined in (9.21), hence we can use Theorem 9.20 obtaining that Γ′ is a

(δ′, |Γ| · exp(−d/24))-noise-resilient implementation of Γ when the noise is defined using

the β distance.

97





Chapter 10

From Theory to Practice

This chapter presents part of some joint work with Prof. S. Faust and Prof. F.-X.

Standaert which was published in [DFS15a].

10.1 Assessing Security of Concrete Devices

In view of what was shown in the previous chapter, one of the main remaining ques-

tions regarding the security of the masking countermeasure is whether its proofs can be

helpful in the security evaluation of concrete devices. That is, can we state theorems for

masking so that the hypotheses can be easily fulfilled by hardware designers, and the

resulting guarantee is reflective of the actual security level of the target implementation.

For this purpose, we first observe that the proofs from the previous chapter as well as the

proofs in [PR13] express their hypothesis for the amount of noise in the shares’ leakages

based on a statistical distance. This is in contrast with the large body of published

work where the mutual information metric introduced in [SMY09] is estimated for vari-

ous implementations (e.g. [BFGV12, CDGM14, FMPR10, GM11, GSP13, MS11, PR10,

RKSF11, RP12, SPV12, VMKS12]). The latter metric generally carries more intuition

(see, e.g. [BJV04] in the context of linear cryptanalysis), and benefits from recent ad-

vances in leakage certification, allowing to make sure that its estimation is accurate and

based on sound assumptions [DSV14]. Hence, in this chapter, we first provide a useful

link between the statistical distance and mutual information, and also connect them with

easy-to-interpret (but more specialized) tools such as the Signal-to-Noise Ratio (SNR).

We then re-state some theorems presented in Chapter 9 based on the mutual information

metric in two practically relevant scenarios. Namely, we consider both the security of

an idealized implementation with a “leak-free refreshing” of the shares, and the one of a

standard ISW-like encoding (i.e. capturing any type of leaking computation).

Interestingly, the implementation with leak-free refreshing corresponds to the frequently

investigated (practical) context where a side-channel attack aims at key recovery, and

only targets the d shares’ leakage of a so-called sensitive intermediate variable (i.e. that

depends on the plaintext and key) [CPR07]. So, despite being less interesting from a
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theoretical point of view, this scenario allows us to compare the theorem bounds with

concrete attacks. Taking advantage of this comparison, we discuss the bounds’ tightness

and separate parameters that are physically motivated from more “technical ones” (that

most likely result of proof artifacts).

In [DFS15a], we also discuss the independence requirement between the leakages used

in most theoretical work included what we presented in the previous chapter. We sug-

gested there some heuristics to analyze non-independent leakages. Indeed, concrete

experiments have shown that some deviations from this assumption frequently occur in

practice (see, e.g., [BGG+14, CGP+12b, MPG05, RSV+11]). We also consider there

the tradeoff between measurement complexity and time complexity when dealing with

divide-and-conquer attacks. Previously known approaches for this purpose were based on

launching key enumeration and/or rank estimation algorithms for multiple attacks, and

to average results to obtain a success rate [VGRS12, VGS13]. We provide in [DFS15a]

an alternative solution, where success rates (possibly obtained from estimations of the

mutual information metric) are estimated/bounded for all the target key bytes of the

divide-and-conquer attack first, and the impact of enumeration is evaluated only once af-

terwards. We connect the problem with a non-linear programming problem and provided

heuristics to estimate good bounds on the enumeration cost. However, we will not cover

these results in this thesis as they are mainly heuristic and recommend the interested

reader to read [DFS15a].

Summarizing, the combination of these observations highlights that the security evalu-

ation of a masked implementation boils down to the estimation of the mutual information

between its shares and their corresponding leakages. Incidentally, the tools introduced

in this chapter apply identically to unprotected implementations, or implementations

protected with other countermeasures, as long as one can estimate the same mutual

information metric for the target intermediate values. Therefore, our results clarify the

long standing open question whether the (informal) link between information theoretic

and security metrics in the Eurocrypt 2009 evaluation framework [SMY09] can be proved

formally. They also have important consequences for certification bodies, as they trans-

late the (worst-case) side-channel evaluation problem into the well-defined challenge of

estimating a single metric, leading to significantly reduced evaluation costs.

10.2 Background

We recall that we use an additive masking scheme (see Section 8.1) to protect a sensitive

value against side-channel attacks. A typical example of such a sensitive value would

be the output of an S-box computation. Like in the previous chapter, a value y ∈ F is

shared using d shares y1, . . . , yd. As before, we will assume that each share leaks. In this

chapter, we will represent the leakage as the output of a noisy leakage function LNoisy as

it is the most meaningful model in practice.
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10.2.1 Evaluation Metrics

In general, i.e., without assumptions on the leakage distribution), the noise condition on

the shares can be expressed with an information theoretic metric. The Mutual Informa-

tion (MI) advocated in [SMY09] is the most frequently used candidate for this purpose

in the practical community. For this we need to recall some well-known definitions from

information theory.

Definition 10.1 (Entropy). Let Y be a discrete random variable over the set Y. Then,

the entropy of Y (written H[Y ]) is

H[Y ] := −
∑

y∈Y

Pr[Y = y] log (Pr[Y = y]) .

Definition 10.2 (Conditional Entropy). Let X (resp. Y ) be a discrete random variable

over the set X (resp. Y). Then, the condition entropy of Y given X (written H[Y |X])

is

H[Y | X] :=
∑

x∈X

Pr[X = x] H[Y | X = x] .

We can finally define mutual information.

Definition 10.3 (Mutual Information). Let X (resp. Y ) be a discrete random variable

over the set X (resp. Y). Then, the mutual information between X and Y (written

MI(X;Y )) is

MI(X;Y ) := H[X]−H[X | Y ] = H[X] + H[Y ]−H[X,Y ]

= −
∑

x∈X

Pr[X = x] +
∑

x∈X

∑

y∈Y

Pr[X = x, Y = y] log(Pr[X = x | Y = y]) .

We recall that we will sometimes use the notation Pr[y] := Pr[Y = y] when clear from

the context.

We can now express the mutual information between the share and its leakage in the

following way:

MI(Yi; LNoisy(Yi))

= H[Yi] +
∑

yi∈Y

Pr[yi] ·
∑

ℓ∈L

Pr[LNoisy(Yi) = ℓ | yi] · log Pr[yi | LNoisy(Yi) = ℓ] , (10.1)

where the support of each share is Y and the support of the leakage L. Note that

whenever trying to compute this quantity from an actual implementation, evaluators

face the problem that the leakage’s probability density function (PDF) is unknown and

can only be sampled and estimated. As a result, one then computes the Perceived

Information (PI), which is the evaluator’s best estimate of the MI [RSV+11]. For sim-

plicity, we will ignore this issue and use the MI in our discussions. Our conclusions would
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be identical with the PI.

We can now formally define an adversary working in this model.

Definition 10.4 (t-MI-advesary). For t ≥ 0, a t-MI-adversary on X ℓ is an algorithm

A that plays the following scenario against an oracle that knows (x1, . . . , xℓ) ∈ X ℓ:

1. A specifies a sequence {LNoisyi : X → Y}ℓi=1 of noisy functions such that for every

LNoisyi we have MI(xi; LNoisyi(xi)) ≤ t and mutually independent noises.

2. A receives LNoisy1(x1), . . . , LNoisyℓ(xℓ) and outputs some value that we denote by

outA(x1, . . . , xℓ).

Like before, outA(x1, . . . , xℓ) is a random variable combining A and the randomness of

the functions LNoisyi.

The SNR introduced by Mangard at CT-RSA 2004 in [Man04] is of particular interest

for our following discussions.

Definition 10.5 (Signal-to-Noise Ratio (SNR)). Let X be some secret random variable

and LX := f(X) + N (σ2) be its leakage, where f is an arbitrary function and N fol-

lows a Gaussian distribution with expected value 0 and variance σ2. The signal-to-noise

ratio (SNR) is defined as

SNR :=
var(f(X))

σ2
, (10.2)

i.e., as the ratio between the variance of the signal and the variance of the noise.

Given N samples LX = {f(X1) + n1, . . . , f(XN ) + nN}, the SNR can be estimated as

SNR =
v̂arX

(
Ên(LX)

)

ÊX (v̂arn(LX))
, (10.3)

where Ê is the sample mean operator1 and v̂ar is the sample variance2.

Summarizing, stating the noise condition based on the MI metric is more general (as

it can capture any leakage PDF). By contrast, the SNR provides a simpler and more

intuitive condition in a more specific but practically relevant context.

As previously mentioned, some of these metrics can be related under certain conditions.

For example, in the context of univariate Gaussian random variables, the MI can be

approximated from Pearson’s correlation coefficient [MOS11], which was also connected

to the SNR by Mangard [Man04]. The combination of those links corresponds to the

classical MI bound that can be found in any information theory book, e.g., in Cover and

1Given samples x1, . . . , xN , the sample mean is defined as (1/N)
∑

i xi.
2Given samples x1, . . . , xN , the sample variance is defined as (1/N)

∑

i(xi−x̄)2, where x̄ is the sample
mean of x1, . . . , xN .
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Thomas [CT06]:

MI(Yi; LNoisy(Yi)) ≈ −
1

2
log


1−


 1√

(1 + 1
SNR)




2
 ≤ 1

2
log (1 + SNR) · (10.4)

In Section 10.3.1, we show that the MI and SD metrics can be connected as well.

10.2.2 Metrics to Quantify the Security Result

Quantifying security requires defining the adversary’s goal. Current practical side-

channel attacks published in the literature mostly focus on key recovery. In this context,

one can easily evaluate the exploitation of the leakages with the success rate defined

in [SMY09], i.e. the probability that an adversary recovers the key given the observa-

tion of some (typically known or chosen) plaintexts, ciphertexts and leakages.

Definition 10.6 (Success rate for key recovery (SRkr)). Let x1, . . . , xd be leaking shares

of a sensitive value x. We denote by SRkr the success rate for key recovery, i.e., the

probability that any adversary A recovers x only given the leakage from the shares.

Key recovery is a weak security notion from a cryptographic point of view. As a result,

rigorous proofs for masking such as the one presented in Chapter 9 rather define security

using the standard real/ideal world paradigm, which considers two settings: the ideal

world where the adversary attacks the algorithm of a cryptographic scheme in a black-

box way, and the real world where he additionally obtains leakages. A scheme is said

to be secure in the real world, if for any adversary in the real world there exists an

adversary in the ideal world. In other words: any attack that can be carried out given

the leakages can also be carried out in a black-box manner. A proof of security usually

involves constructing an efficient simulator that is able to simulate the leakages just

giving black-box access to the attacked cryptographic scheme. Whenever considering

this (standard) indistinguishability-based security notion, we will denote the adversary’s

success probability of distinguishing the two worlds with SRdist. More formally:

Definition 10.7 (Success rate for distinguishing (SRdist)). Let Γ be an arithmetic circuit

over some field F and Γ′ be a leakage-resilient implementation of Γ in the noisy model.

Let S be an efficient black-box simulator that simulates the leakage. We denote by SRdist

the success rate for distinguishing between the two worlds, i.e.,

SRdist := ∆

(
out

(
S

bb

⇆ Γ(k)

)
; out

(
A

noisy

⇆ Γ′(Enc(k))

))
.

10.3 Making Proofs Concrete: Theory

In this section, we discuss theoretical tweaks allowing to improve the concreteness of

masking proofs. Recall that the noisy leakage model describes many realistic side-channel
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attacks and allows an adversary to obtain each intermediate value perturbed with a

δ-noisy leakage function. As mentioned previously, a leakage function LNoisy is called δ-

noisy if for a uniformly random variable Y (over the field F) we have ∆(Y ;Y |LNoisy(Y )) =

δ. In contrast with the conceptually simpler ǫ-probing model, the adversary obtains

noisy leakages on each intermediate variable. For example, in the context of a masking

y = y1 ⊕ · · · ⊕ yd, he obtains leakage for all the shares yi, which is more reflective

of actual implementations where the adversary can potentially observe the leakage of

all these shares, as they are all present in leakage traces. Recall that in Chapter 9,

we showed that security against probing attacks implies security against noisy leakages

up to a factor |F|. In this section, we first connect the statistical distance (SD) with

the mutual information metric (MI), which shows that both can be used to quantify

the noise condition required for masking. Next, we provide alternative forms for the

theorems presented in Chapter 9 and express

1. the security of the encoding used in (e.g. Boolean) masking and

2. the security of a complete circuit based on the ISW compiler.

10.3.1 From Statistical Distance to Mutual Information

The results from Chapter 9 require to have a bound on the SD between the shares and

the shares given the leakage. For different reasons, expressing this distance based on

the MI metric may be more convenient in practice (as witnessed by the numerous works

where this metric has been computed, for various types of devices, countermeasures and

technologies – see the list given in the introduction of this chapter). For example, the MI

metric is useful to determine whether the leakage model used in a standard DPA is sound

and for analyzing the impact of key enumeration in divide-and-conquer attacks. Very

concretely, Equation (10.1) is also expressed in a way that requires summing over the

intermediate values first and on the leakages afterwards, which corresponds to the way

security evaluations are performed (i.e. fix the target device’s state, and then perform

measurements). Thus, we now show how to express the SD in function of the MI. We

use a previous result from Dodis [Dod12], which proof follows [BTV12], that we rephrase

with our notations.

Lemma 10.8 ([Dod12], Lemma 6). Let X ∈ X and Y ∈ Y be two (possibly dependent)

random variables. Then:

1

2


 ∑

(x∈X ,y∈Y)

|Pr[X = x, Y = y]− Pr[X = x] Pr[Y = y]|




2

≤ MI(X;Y ) .

In the following, we will typically consider Y as the leakage of X. Using this lemma, we

can now express the SD in function of the MI as follows.
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Theorem 10.9. Let X ∈ X and Y ∈ Y be two (possibly dependent) random variables.

Then:

2 ·∆(X;X | Y )2 ≤ MI(X;Y ) .

Proof. The proof follows the proof of [BTV12, Lemma 4.4]. We have:

∑

(x∈X ,y∈Y)

|Pr[X = x, Y = y]− Pr[X = x] Pr[Y = y]| ,

=
∑

y∈Y

Pr[Y = y]
∑

x∈X

|Pr[X = x | Y = y]− Pr[X = x]| ,

= 2 ·∆(X;X | Y ) .

The final result directly derives from Lemma 10.8.

If we apply Theorem 10.9 to a noisy leakage function and take X := Yi, Y := LNoisy(Yi),

we obtain the following corollary:

Corollary 10.10. Let Yi be a share and LNoisy(Yi) its noisy leakage. Then:

2 ·∆(Yi;Yi | LNoisy(Yi))2 ≤ MI(Yi; LNoisy(Yi)) .

10.3.2 Security of the Encoding

In this section, we analyze the security of an encoding when m measurements are per-

formed and the encoding is refreshed between each measurements using a leak-free gate.

More precisely, we assume that a secret y is secret-shared into d shares y1, . . . yd, using

an additive masking scheme over a finite field F. Between each measurement, we assume

that we take fresh y1, . . . , yd values such that y = y1 + · · · + yd (e.g. it could be the

Boolean encoding of Section 8.1). We also assume that this refreshing process does not

leak. We recall Lemma 9.2 from Chapter 9 that relates the random probing model to

the noisy model.

Lemma 9.2 enables us to work directly in the random-probing model instead of the

noisy leakage model. Next, we study the security of the encoding. As mentioned in

introduction, the adversary’s goal in this case is to recover the encoded value, which

is equivalent to key recovery if this value is a key. In order to make it completely

comparable with actual attacks, we also add the number of measurements m used by

the adversary as a parameter in our bounds.

Theorem 10.11. Let d be the number of shares used for a key encoding, m be the number

of measurements, and t ≤ 2/|F|2. Then, if we refresh the encoding in a leak-free manner
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between each measurement, the probability of success of a key recovery t-MI-adversary

under independent leakage is:

SRkr ≤ 1−
(
1−

(
|F|
√
t/2
)d)m

. (10.5)

Proof. In the random probing model with parameter ǫ, an adversary learns nothing

about the secret if there is at least one share that did not leak. As all the measurements

are independent and we use leak-free refreshing gates, we have:

SRkr ≤ 1−
(
1− ǫd

)m
. (10.6)

Let A be a t-MI-adversary on F
d. From Corollary 10.10, we know that A implies a√

t/2-noisy-adversary on F
d and, by Lemma 9.2, we obtain a |F|

√
t/2-random-probing

adversary on F
d. Letting ǫ := |F|

√
t/2 in (10.6) gives us the result.

Note that (10.6) focuses on the impact of the adversary’s measurement complexity m

on the success rate, which is usually the dominating factor in concrete side-channel ana-

lyses. The impact of time complexity when considering key enumeration is discussed

in [DFS15a, Section 4.2]. Besides and for readability, this equation only includes the

terms corresponding to attacks taking advantage of the leakages. We ignore the addi-

tional terms corresponding to mathematical cryptanalysis (e.g. exhaustive search) that

should be added for completeness. In order to allow us comparing this result with the

case where we study the security of a complete circuit encoded with the ISW compiler,

we also write our result according to the following corollary (which is less general than

Theorem 10.11).

Corollary 10.12. Let d be the number of shares used for a key encoding and m the

number of measurements. Then, if we refresh the encoding in leak-free manner between

each measurement and for any α > 0, the probability of success of a key recovery t-MI-

adversary under independent leakage is:

SRkr ≤ m · exp (−αd) , (10.7)

if we have:

t ≤ 2

(
1

eα|F |

)2

. (10.8)

Proof. We have:

1−
(
1− ǫd

)m
≤ melog(ǫ)d .

We want log(ǫ) = −α. Hence, from Theorem 10.11, we get our result.
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10.3.3 Security of the Whole Circuit

In this section, we restate the theorems from Chapter 9 when securing a whole circuit

using the seminal ISW compiler in a more comprehensive way. Theorem 9.17 bounds

the probability of success of a distinguishing adversary in the noisy leakage model. We

provide an alternative version of this theorem and, as in the previous section, we relate

it to the mutual information instead of the statistical distance.

Theorem 10.13. Suppose that we have a circuit of size |Γ| protected with the ISW com-

piler with d shares. Then, the probability of success of a distinguishing t-MI-adversary

under independent leakage is:

SRdist ≤ |Γ| · exp
(
− d

12

)
= |Γ| · 2

(

−
d·log2(e)

12

)

≤ |Γ| · 2−d/9, (10.9)

if we have:

t ≤ 2 ·
(

1

|F | · (28d+ 16)

)2

. (10.10)

Similarly to what we did in the previous section, we also write this corollary.

Corollary 10.14. Suppose that we have a circuit of size |Γ| protected with the ISW

compiler with d shares. Then, a distinguisher t-MI-adversary under independent leakage

needs:

d ≥
1− 16|F |

√
1
2 t

28|F |
√

1
2 t

(10.11)

shares in order to obtain:

SRdist ≤ |Γ| · exp
(
− d

12

)
≤ |Γ| · exp


−

1− 16|F |
√

1
2 t

336|F |
√

1
2 t


 . (10.12)

Note that the ISW compiler can actually be used to efficiently compute any circuit. For

example, the work of Rivain and Prouff at CHES 2010 showed how to adapt the compiler

to |F | = 256 which leads to efficient masked implementations of the AES [RP10] (see

also various following works such as [CGP+12a, CPRR13, GPS14, RP12]).

10.4 Experimental Validation

In this section, we complement the previous theoretical results with an experimental

analysis and provide and empirical evaluation of the encoding scheme in Section 10.3.2,
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which allows us to discuss the noise condition and tightness of the bounds in our proofs.

We use this discussion to conjecture a simple connection between the mutual information

metric and the success rate of a (worst-case) side-channel adversary, and argue that it

can lead to quite accurate approximations of the attacks’ measurement complexity in

practical scenarios.

In order to discuss the relevance of the proofs in the previous section, we take the (usual)

context of standard DPA attacks defined in [MOS11]. More precisely, we are going to

consider the following practically meaningful setup throughout this section in which the

adversary targets a single S-box S from a block cipher (e.g., the AES).

Definition 10.15 (Simple DPA attack setup). Let S be an |F|×|F| S-box. We let x ∈ F

be a plaintext, k ∈ F be a key and we let y := S(x+ k), y ∈ F be the output of the S-box.

We consider now the masked version of this scheme. We let y1, . . . , yd be the shares of the

output, i.e., y := y1⊕· · ·⊕ yd, let x1, . . . , xd be the shares of the input, and let k1, . . . , kd
be the shares of the key. We suppose in the following that the adversary knows x and

sees noisy leakage from y1, . . . , yd which is denoted by LNoisy(y1), . . . , LNoisy(yd) ∈ L.

For convenience, we will mainly consider the context of mathematically-generated Gaus-

sian Hamming weight leakages, where LNoisy(yi) = Hw(yi) +Ni, with Hw the Hamming

weight function and Ni a Gaussian-distributed noise, with variance σ2. In this respect,

we note that we did not mount concrete attacks because we would have had to meas-

ure hundreds of different implementations to observe useful trends in practice. Our

experiments indeed correspond to hundreds of different noise levels. Yet, we note that

devices that exhibit close to Hamming weight leakages are frequently encountered in

practice [MOP07]. Furthermore, such a simulated setting is a well established tool to

analyze masking schemes (see, e.g. [CPRR13] for polynomial masking and [BFGV12] for

inner product masking). Besides, we also consider random Gaussian leakage functions,

of which the deterministic part corresponds to random functions over Y, to confirm that

all the trends we put forward are also observed with leakage functions that radically

differ from the usual Hamming weight one.

10.4.1 Intuition Behind the Noise Condition

Theorems 10.11 and 10.13 both require that the MI between the shares and their cor-

responding leakage is sufficiently small. In other words, they require the noise to be

sufficiently large. In this section, we compute the MI metric for both an unprotected

implementation (i.e., d = 1) and a masked one (i.e., d = 2) in function of different

parameters. In order to illustrate the computation of this metric, we provide a simple

open source code that evaluates the MI between a sensitive variable Y and its Hamming

weights, for different noise levels, both via numerical integration (that is only possible

for mathematically-generated leakages) and sampling (that is more reflective of the eval-

uation of an actual device).3 In the latter case, an evaluator additionally has to make

3Code available on http://perso.uclouvain.be/fstandae/PUBLIS/154.zip.
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sure that his estimations are accurate enough. Tools for ensuring this condition are

discussed in [DSV14].

We start with the simplest possible plot, where the MI metric is computed in function

of the noise variance σ2. Figure 10.1 shows these quantities, both for Hamming weight

leakage functions and for random ones with output range Nl (in the latter context, the

functions for different Nl’s were randomly picked up prior to the experiments, and stable

across experiments). We also considered different secret sizes (n := |F| = 2, 4, 6, 8). Pos-

itively, we see that in all cases, the curves reach a linear behavior, where the slope

corresponds to the number of shares d. As the independent leakage condition is fulfilled

in these experiments, this d corresponds to the smallest key-dependent moment in the

leakage distribution. As the measurement (aka sampling) cost for estimating such mo-

ments is proportional to (σ2)d, we observe that the MI decreases exponentially in d for

large enough noises. Note that this behavior is plotted for d = 1, 2, but was experimented

for d’s up to 4 in [SVCO+10], and in fact holds for any d, as it exactly corresponds to

Theorem 10.11 in a context where its assumptions are fulfilled.

(a) using Hw leakage. (b) using random leakage.

Figure 10.1 – MI metric in function of σ2.

Negatively, we also see that the noise level that can be considered as high enough depends

on the leakage functions. For example, the random leakage functions in the right part of

the figure have signals that vary from approximately 2
4 for Nl = 2 to 16

4 for Nl = 16. It

implies that the linearly decreasing part of the curves is reached for larger noises in the

latter case. Yet, this observation in fact nicely captures the intuition behind the noise

condition. That is, the noise should be high enough for hiding the signal. Therefore, a

very convenient way to express it is to plot the MI metric in function of shares’ signal to

noise ratio (SNR), as in Figure 10.2. Here, we clearly see that as soon as the SNR is below

a certain constant (10−1, typically), the shape of the MI curves gets close to linear. This

corroborates the condition in Theorem 10.11 that masking requires MI(Yi; LNoisy(Yi)) to

be smaller than a given constant. Our experiments with different bit sizes also suggest

that the |F| factor in this noise condition is a proof artifact. A step in this direction
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was recently shown by Dziembowski, Faust and Skorski in [DFS15b]. In their work,

they managed to show the equivalence of the noisy-leakage model to a new model: the

average probing model in which they were able to construct a compiler (using leak-free

gates). In their reductions, there is no |F| factor. We discuss more about their model in

the conclusion of this thesis.

(a) using Hw leakage. (b) using random leakage.

Figure 10.2 – MI metric in function of the shares’ SNR.

10.4.2 Tightness of the Bounds

Given that the noise is high enough (as just discussed), Theorems 10.11 and 10.13

guarantee that the success rate of a side-channel adversary can be bounded based on

the value of the share’s leakage, measured with MI(Yi; LNoisy(Yi)). This directly leads

to useful bounds on the measurement complexity to reach a given success rate, e.g.

from (10.5) we can compute:

m ≥ log(1− SRkr)

log

(
1−

(
|F|
√

MI(Yi;LNoisy(Yi))
2

)d
) . (10.13)

We now want to investigate how tight this bound is. For this purpose, we compared it

with the measurement complexity of concrete key recovery TA (using a perfect leakage

model).4 As previously mentioned, the |F| factor in this equation can be seen as a proof

artifact related to the reduction in our theorems, so we tested a bound excluding this

factor. For similar reasons, we also tested a bound additionally excluding the square

root loss in the reductions (coming from Theorem 10.9). We believe that for meaningful

4Our attacks exploit the leakages of an S-box output. We took the PRESENT S-box for n = 4, the
AES one for n = 8, and picked up two random S-boxes for n = 2, 6, as we did for the random leakage
functions.
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noises, this square root can be removed. As illustrated in Figure 10.3, the measurement

complexity of the attacks is indeed bounded by Equation (10.13), and removing the

square root loss allows the experimental and theoretical curves to have similar slopes.

The latter observation fits with the upper bound MI(Yi; LNoisy(Yi)) ≤ |F|
ln(2) · ∆(Yi;Yi |

LNoisy(Yi)) given in [PR13] that becomes tight as the noise increases. As expected,

the bounds become meaningless for too low noise levels. Intuitively, this is because

we reach success rates that are stuck to one when we deviate from this condition. For

completeness, we added approximations obtained by normalizing the shares’ MI by H[K]

to the figure, which provide hints about the behavior of a leaking device when the noise

is too low.

(a) d = 1. (b) d = 2.

Figure 10.3 – Measurement complexity and bounds/approximations for concrete TA.

Interestingly, these results also allow us to reach a comprehensive view of the parameters

in Theorem 10.13, where the security of a complete circuit encoded according to the

ISW compiler is proven. That is, in this case as well, we expect the |F| and 1/9 factors

in (10.9) to be due to proof technicalities. By contrast, the |Γ| factor is physically

motivated, as it corresponds to the size of the circuit and fits the intuition that more

computations inevitably means more exploitable leakage. The d factor appearing in the

noise condition of (10.10) can also be explained, as it directly relates to the fact that

in the ISW compiler, any multiplication will require to manipulate each share d times.

It typically reflects the distance between standard (divide-and-conquer) side-channel

attacks (such as analyzed in this section) and more powerful (multivariate) adversaries

trying the exploit the leakage of all the intermediate computations in a block cipher, e.g.

based on algebraic cryptanalysis (see [RS09a, RSV09] and follow up works).

In summary, we informally conjecture the following bound that seem to hold for practical

scenarios:5

5We know that there are some twisted constructions for which this conjecture does not hold (the
MI/SD inequality is tight).
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Conjecture (informal). Suppose that we have a circuit of size |Γ| masked with d shares

such that the information leakage on each of these shares (using all available time

samples) is bounded by MI(Yi; LNoisy(Yi)). Then, the probability of success of a distin-

guishing adversary using m measurements and targeting a single element (e.g. gate) of

the circuit under independent and sufficiently noisy leakage is:

SRdist
1 ≤ 1−

(
1−MI(Yi; LNoisy(Yi))

d
)m

, (10.14)

and the probability of success targeting all |Γ| elements independently equals:

SRdist
|Γ| ≤ 1− (1− SRdist

1 )|Γ| . (10.15)

Interestingly, Equation (10.15) (like Theorem 10.13) assumes that the leakages of the

|Γ| gates (or target intermediate values) are exploited independently. This perfectly cor-

responds to the probing model in which the adversary gains either full knowledge or no

knowledge of such computing elements. Thanks to what was presented in Chapter 9,

it also implies a similar result against noisy leakages if the noise condition is fulfilled.

However, as the noise level decreases, some advanced (e.g. algebraic) side-channel at-

tacks can sometimes take advantage of different computations jointly in a more efficient

manner. Note that this informal conjecture is backed up by the results in [BJV04, The-

orem 6], where a similar bound is given in the context of statistical cryptanalysis. By

using the approximation log(1− x) ≈ −x that holds for x’s close to 0, Equation (10.14)

directly leads to the following simple approximation of a standard DPA’s measurement

complexity for large noise levels:

m ≥ log(1− SRdist
1 )

log(1−MI(Yi; LNoisy(Yi))d)
≈ c

MI(Yi; LNoisy(Yi))d
, (10.16)

where c is a small constant that depends on the target success rate.
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Conclusion and Further Work

In this thesis, we tried to bring practice closer to theory. We did that by

• proposing concrete instances of our HELEN cryptosystem,

• giving the exact complexity of our algorithms solving hard problems,

• unifying a theoretical model with a more realistic model, and

• showing how this latest result could be expressed in a more practically-meaningful

way.

Below, we conclude on each result and discuss further work.

HELEN

In Chapter 5, we presented HELEN which is a code-based public-key cryptosystem based

on the hardness of some well-known problems. As its margin of progression is still large,

HELEN can become a competitive cryptosystem with truly practical parameters. We

take advantage of this thesis to emphasise the importance of giving practical instances

for implementers when proposing a new cryptosystem.

Further Work. HELEN can be extended in multiple ways. A first idea is to use

different H to reduce the probability of error and, hence, to reduce the transmission

overhead. This implies also to verify that Assumption 5.4 holds for this new H. An-

other idea would be to try to link HELEN with the Ring version of the LPN problem:

Ring-LPN [HKL+11, HKL+12, BL12]. Indeed, results have shown that using the Ring

counterpart of LPN (or LWE) often greatly improve the public parameters of a cryptosys-

tem (e.g., [LPR13, SS11, BV11b, BGV12, GHS12b, GHS12a, MP12, GHPS12, LPR13]).

The codes C1 and C2 described in Section 5.2 would need to be modified accordingly as

well as the noise we add so that the match the specifications of the Ring-LPN problem.

A first step in that direction was made in [Cho15] which shows that one should first

study the Ring-LPN problem better. We believe that switching to Ring-LPN might

make HELEN truly practical.
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LWE and LWR

In Chapter 6 and 7, we introduced algorithms which were, when published, the best

algorithms for solving the LWE and the LWR problem. Our algorithms use Fourier

transforms and we provided a careful analysis of the rounded Gaussian distribution which

can be of independent interest. In particular, we studied its variance and the expected

value of its cosine. We obtained our LWR algorithm by applying the LWE algorithm

to an LWR instance when q is prime. This algorithm is the first (and currently only)

concrete LWR-solving algorithm.

Further Work. Further work includes the study of the Ring variants of LWE and

LWR [LPR10, BPR12]. A step in that direction was very recently done in [ELOS15]

in which Elias et al. study some weak instances of Ring-LWE. A useful further step in

that direction would be, thus, to show how to exploit the ring structure of Ring-LWE

to obtain improvements for any Ring-LWE instance.

Another interesting area would be to study variants of LWE, e.g., when the secret

follows a non-uniform distribution (like in [AFFP14]) or when the noise follows a non

Gaussian distribution. In particular, instances in which the noise follows a small uniform

distribution [MP13, DM13] seem to be particularly interesting when trying to implement

it on constrained hardware. A recent paper is also strictly improving our practical values

for LWE [GJS15]. In that paper, Guo et al. adapt their idea of covering codes used for

LPN [GJL14] to LWE. For this, they replaced quite naturally covering codes by lattice

codes. Another recent result that will be presented at CRYPTO’15 is even obtaining an

asymptotic improvement with respect to our work [KF15].

Finally, we want to mention a survey by Albrecht et al. that studies all the existing

algorithms solving the LWE problem [APS15]. In this paper, the authors look both at

lattice reduction techniques and at BKW-based algorithms and compare their perform-

ances in few meaningful case-studies, e.g., fully homomorphic encryption. In our point

of view, this kind of survey is an essential step for the construction of any practical

scheme based on LWE and should be encouraged.

Regarding LWR, we want to motivate the cryptography community to study more this

interesting problem that avoids the tedious usage of randomness and has many great

applications due to its deterministic nature. A first step would be to adapt our algorithm

for non-prime q’s. However, we believe that the biggest improvement might come from

an algorithm that will exploit the deterministic nature of LWR.

Leakage Models

In Chapter 9, we showed how to link the practically meaningful noisy leakage model

to the theoretically extremely convenient threshold-probing model. In particular, we

show the security of the ISW construction [ISW03] in the noisy leakage setting and,

hence, removing most of the shortcomings from the Eurocrypt 13 work of Prouff and
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Rivain [PR13].

Later, in Chapter 10, we show how one can interpret our results in a different way to help

the task of evaluating the security of a masked implementation. In particular, we link

our result with the mutual information metric, a metric which is often used in concrete

physical security evaluations.

Further Work. The leakage-resilient cryptography area is broad and further work can

extend in many diverse directions. One interesting direction is taken by Dziembowski,

Faust, and Skorski in [DFS15b] and the introduction of a new probing model shown to be

equivalent to the noisy leakage model: the average probing model. Recall the definition

of ǫ-identity function in Definition 8.2. In this definition, the probability to obtain ⊥ was

identical for every input. Dziembowski et al. generalized this definition into ǫ-average-

identity functions. In the following definition, we write explicitly the randomness to

show clearly the difference between the two definitions.

Definition 10.16 (ǫ-average-identity function [DFS15b]). A randomized function ϕ :

X ×R → X ∪ {⊥} is an ǫ-average-identity function if Prx←X
r←R

[φ(x, r) 6= ⊥] = ǫ.

Dziembowski et al. then defined an adversary in this model which looks very similar to

the adversary defined in Definition 8.3 except that we use ǫ-average-identity functions.

The major difference with ǫ-identity functions is that the probability distribution of φ(x)

depends now on the input x as well.

Definition 10.17 (ǫ-average-probing adversary [DFS15b]). For ǫ ≥ 0 an ǫ-average-

probing adversary on X ℓ is an algorithm A that plays the following scenario against an

oracle that knows (x1, . . . , xℓ) ∈ X ℓ:

1. A specifies a sequence (ǫ1, . . . , ǫℓ) such that each ǫi ≤ ǫ.

2. A receives (ϕ1(x1, r1), r1), . . . , (ϕℓ(xℓ, rℓ), rℓ) and outputs some value denoted by

outA(x1, . . . , xℓ), where each ϕi is the ǫi-average-identity function with mutually

independent randomness ri.

The advantage of using this model with respect to the threshold probing model used in

Chapter 9 is that the |F| factor in the reduction disappears. While they could show the

security of the ISW compiler using leak free gates, a further step would be to design a

compiler secure in this model even without these gates. It would be also insightful to

find a direct link between the average probing model and the threshold probing model

to understand their relation more.

Another direction that should be studied in more depth is when dealing with non-

independent leakage. Indeed, some concrete experiments have shown that this assump-

tion is frequently not met in practice (e.g., [BGG+14, CGP+12b, MPG05, RSV+11]).

While we present in [DFS15a] some experiments and some heuristics showing how the

security evolves when independence is not met, a more formal approach is needed.
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Finally, we started in [DFS15a] to involve computational power in our analysis. The idea

comes from the following observation showing that mutual information is not enough.

Imagine two hypothetical side-channel attacks that both succeed with probability 1/100.

In the first case, the adversary gains nothing with probability 99/100 and the full key

with probability 1/100. In the second case, he always gains a set of 100 equally likely

keys. Clearly, enumeration will be pretty useless in the first case, while extremely power-

ful in the second one. More generally, such examples essentially suggest that the com-

putational cost of an enumeration does not only depend on the informativeness of the

leakage function (e.g. measured with the MI) but also on its shape. Incidentally, this

example also puts forward some limitations of the probing leakage model when measur-

ing computational cost, as it describes an all-or-nothing strategy which is not the case

for the noisy leakage setting. Hence, whereas the probing model is easier to manipulate

in proofs, and therefore useful to obtain asymptotic results, noisy leakages are a more

accurate tool to quantify concrete security levels as in this section.

The idea we introduced in [DFS15a] is, given a limit on the computational power c, to

aggregate the c most likely keys together to obtain a new random variable. With this

process, the adversary will only learn from the measurements in which class of keys the

real key lies. He will then have to bruteforce all the c keys in the class and, hence, will

use his computational power. By developing this idea, one should be able to characterize

the success rate of an adversary with limited computational power. Further work will,

thus, consist in formalizing completely the introduction of this computational capability.

Once this success rate is found for a single S-box, we show in [DFS15a] that we can

obtain bounds on the success rate of an adversary which is computationally limited and

who is targeting more than one S-box. We showed that the problem is known as a

“separable, non-linear integer programming problem”. We give, then, an algorithm that

heuristically solves it using a downsampling and merging algorithm which can be seen

as an generalization of a greedy algorithm that considers only parts of the solutions

which are locally close to optimal. However, our bound is rather loose in some extreme

cases and based on a weak Maximum Likelihood approach [YEM14, Sta15], i.e., a non-

optimal solution. Hence, one possible direction for further work would be to improve

this estimate when targeting more than one S-box and find a more suitable algorithm.

Final Words

To conclude this thesis, we want to emphasize the need for theory and practice to work

together. In particular, regarding new cryptosystems, we believe that designers should

always put forward concrete parameters so that implementers can then build an instance.

The same holds when showing some clever improvement of algorithms solving a hard

problem. As we base our concrete security on the best attack against a problem, we

need some way of computing the exact complexity of an algorithm to be able to deduce

parameters that are believed secure for a certain security parameter.

Next, when proving security in a convenient model, it might be important to keep in
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mind whether this model is practically meaningful or not. In the negative, one should

try to link it to more physically-understood models. On the other hand, we would love to

see the practical community have a look at these theoretical models and try to interpret

them concretely. However, we believe that the best results can be obtained when both

communities collaborate strongly together.
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[CCD00] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential

Power Analysis in the Presence of Hardware Countermeasures. In CHES,

pages 252–263, 2000. Cited on page: 71.

[CDGM14] Claude Carlet, Jean-Luc Danger, Sylvain Guilley, and Houssem Maghrebi.

Leakage squeezing: Optimal implementation and security evaluation. J.

Mathematical Cryptology, 8(3):249–295, 2014. Cited on page: 99.

[CG13] Ran Canetti and Juan A. Garay, editors. Advances in Cryptology -

CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara, CA,

USA, August 18-22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes

in Computer Science. Springer, 2013.

127



[CGP+12a] Claude Carlet, Louis Goubin, Emmanuel Prouff, Michaël Quisquater, and
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[SS11] Damien Stehlé and Ron Steinfeld. Making NTRU as Secure as Worst-Case

Problems over Ideal Lattices. In Paterson [Pat11], pages 27–47. Cited on

page: 113.
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