797 research outputs found

    Small-Scale Fading Analysis of the Vehicular-to-Vehicular Channel inside Tunnels

    Get PDF
    [EN] We present a small-scale fading analysis of the vehicular-to-vehicular (V2V) propagation channel at 5.9 GHz when both the transmitter (Tx) and the receiver (Rx) vehicles are inside a tunnel and are driving in the same direction. This analysis is based on channel measurements carried out at different tunnels under real road traffic conditions. The Rice distribution has been adopted to fit the empirical cumulative distribution function (CDF). A comparison of the K factor values inside and outside the tunnels shows differences in the small-scale fading behavior, with the K values derived from the measurements being lower inside the tunnels. Since there are so far few published results for these confined environments, the results obtained can be useful for the deployment of V2V communication systems inside tunnels.The authors want to thank J. A. Campuzano, D. Balaguer, and L. Morag on for their support during the measurement campaign, as well as B. Bernardo-Clemente and A. VilaJimenez for their support and assistance in the laboratory activities. This work has been funded in part by Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia delMinisterio de Economia y Competitividad, Spain, TEC2013-47360-C3-3-P, and Departamento Administrativo de Ciencia, Tecnologia e Innovacion COLCIENCIAS en Colombia.Loredo, S.; Del Castillo, A.; Fernandez, H.; Rodrigo Peñarrocha, VM.; Reig, J.; Rubio Arjona, L. (2017). Small-Scale Fading Analysis of the Vehicular-to-Vehicular Channel inside Tunnels. Wireless Communications and Mobile Computing (Online). 2017:1-6. https://doi.org/10.1155/2017/1987437S16201

    Experimental investigation of V2I radio channel in an arched tunnel

    Get PDF
    This paper describes the results of the experimental radio channel sounding campaign performed in an arched road tunnel in Le Havre, France. The co-polar and cross-polar channels measurements are carried out in the closed side lane, while the lane along the center of the tunnel is open to traffic. We investigate the channel characteristics in terms of: path loss, fading distribution, polarization power ratios and delay spread. All these parameters are essential for the deployment of vehicular communication systems inside tunnels. Our results indicate that, while the H-polar channel gain attenuates slower than the V-polar channel due to the geometry of the tunnel, the mean delay spread of the H-polar channel is larger than that of the V-polar channel

    Experimental Analysis of Ultra Wideband In Vivo Radio Channel

    Get PDF
    In this paper, we present the experimental analysis of in vivo wireless channel response on Ultra-Wideband (UWB) with the frequencies between 3.1-10.6 GHz. The analysis proves the location dependent based characteristics of in vivo channel. The results clearly show the highly multipath scenario. It can also be observed that the multipath effect of the channel is much higher in the denser areas, i.e. an antenna placed within the intestine area or inside the stomach. Results prove that in vivo channel is different from a conventional communication channel and therefore extensive studies need to be done to understand the channel

    Experimental characterization of non-stationary V2I radio channel in tunnels

    Get PDF
    The fading process in vehicular communications is inherently non-stationary. In this paper, vehicle-to-infrastructure (V2I) radio channel measurements are performed inside a tunnel for low and medium traffic conditions to estimate the stationarity time, in addition to the time-varying RMS delay and Doppler spreads. Furthermore, we show the good fit of the spreads to a lognormal distribution, as well as for the Rician K-factor of the fading amplitude. From our analysis we conclude that the traffic density has an impact on the large-scale parameters as it increases delay and Doppler spreads, while reducing the correlation between them as well as the average K-factor. Larger traffic densities may be required to impact the stationarity time

    Experimental study on the impact of antenna characteristics on non-stationary V2I channel parameters in tunnels

    Get PDF
    This paper analyses the experimentally-assessed dual-polarized (DP) mobile channel in a tunnel environment at 1.35 GHz under traffic conditions. We investigate the impact of antenna polarization and radiation pattern on the non-stationary vehicle-to-infrastructure (V2I) channel. Basic channel evaluation metrics are examined including path gain, co-polarization ratio (CPR), and cross-polarization discrimination (XPD). In addition, the stationarity region is estimated using the channel correlation function approach, and used to calculate the time-varying delay and Doppler power profiles. Statistical models are presented for parameters like CPR, XPD, RMS delay and Doppler spreads, where the lognormal distribution provides the best fit. The polarization and the opening angle of the antennas into the propagation channel are found to strongly influence the observed non-stationarity of the channel. They impact the degree of multipath richness that is captured, thus providing different path gain, delay and Doppler spreads. Based on our analysis, the directional antenna with vertical polarization provides the longest stationarity time of 400 ms at 90 km/h, as well as the highest path gain and lowest dispersion. Furthermore, the DP channel capacity is calculated and its dependence on different normalization approaches is investigated. We propose a more accurate normalization for the DP channels that takes the conservation of energy into account. Moreover, the subchannels correlation coefficients are determined. While the condition number is found to be low on average, the correlation results show high correlation among the DP subchannels. As conclusion, we show how the CPR and XPD play the main role in providing multiplexing gain for DP tunnel channels

    UWB Radio Wireless Communication System Design for Railway Tunnels

    Get PDF
    Railway is an economical and comfortable mode of transportation for long distances. Safety, reliability and good quality of service are the main concern of railway industries which are maintained by railway management and communication system. There are several existing management systems like CCCS, ATCS, PTC and many more. With increasing population, demand for railway services also increases. To full fill these demands railway infrastructure has been developing continuously. By implementing latest technologies for railway communication we can make railway transportation safer, efficient, and more accessible. Ultra wideband radio communication system is amongst those very latest and rapidly growing technologies. This research work focuses on the study of UWB radio based wireless communication system for railway tunnels, whose main task is to maintain an uninterrupted data transmission between train driver to wayside controller

    Propagation and Wireless Channel Modeling Development on Wide-Sense Vehicle-to-X Communications

    Get PDF
    The need for improving the safety and the efficiency of transportation systems has become of extreme importance. In this regard, the concept of vehicle-to-X (V2X) communication has been introduced with the purpose of providing wireless communication technology in vehicular networks. Not like the traditional views, the wide-sense V2X (WSV2X) communications in this paper are defined by including not only vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications but also train-to-X (T2X) communications constituted of train-to-train (T2T) and train-to-infrastructure (T2I) communications. All the information related to the wide-sense V2X channels, such as the standardization, scenarios, characters, and modeling philosophies, is organized and summarized to form the comprehensive understanding of the development of the WSV2X channels

    Large-scale fading characterization in curved modern subway tunnels

    Full text link
    This paper presents extensive propagation measurements conducted in a modern arched tunnel with 300 m and 500 m radii of curvature with horizontal polarizations at 920 MHz, 2400 MHz, and 5705 MHz, respectively. Based on the measurements, statistical metrics of propagation loss and shadow fading in all the measurement cases are extracted. Furthermore, for each of the large-scale fading parameters, extensive analysis and discussions are made to reveal the physical laws behind the observations. The quantitative results and findings are useful to realize intelligent transportation systems in the subway system

    Cognitive Radio Connectivity for Railway Transportation Networks

    Get PDF
    Reliable wireless networks for high speed trains require a significant amount of data communications for enabling safety features such as train collision avoidance and railway management. Cognitive radio integrates heterogeneous wireless networks that will be deployed in order to achieve intelligent communications in future railway systems. One of the primary technical challenges in achieving reliable communications for railways is the handling of high mobility environments involving trains, which includes significant Doppler shifts in the transmission as well as severe fading scenarios that makes it difficult to estimate wireless spectrum utilization. This thesis has two primary contributions: (1) The creation of a Heterogeneous Cooperative Spectrum Sensing (CSS) prototype system, and (2) the derivation of a Long Term Evolution for Railways (LTE-R) system performance analysis. The Heterogeneous CSS prototype system was implemented using Software-Defined Radios (SDRs) possessing different radio configurations. Both soft and hard-data fusion schemes were used in order to compare the signal source detection performance in real-time fading scenarios. For future smart railways, one proposed solution for enabling greater connectivity is to access underutilized spectrum as a secondary user via the dynamic spectrum access (DSA) paradigm. Since it will be challenging to obtain an accurate estimate of incumbent users via a single-sensor system within a real-world fading environment, the proposed cooperative spectrum sensing approach is employed instead since it can mitigate the effects of multipath and shadowing by utilizing the spatial and temporal diversity of a multiple radio network. Regarding the LTE-R contribution of this thesis, the performance analysis of high speed trains (HSTs) in tunnel environments would provide valuable insights with respect to the smart railway systems operating in high mobility scenarios in drastically impaired channels

    Vehicle to vehicle (V2V) wireless communications

    Get PDF
    This work focuses on the vehicle-to-vehicle (V2V) communication, its current challenges, future perspective and possible improvement.V2V communication is characterized by the dynamic environment, high mobility, nonpredective scenario, propagation effects, and also communicating antenna's positions. This peculiarity of V2V wireless communication makes channel modelling and the vehicular propagation quite challenging. In this work, firstly we studied the present context of V2V communication also known as Vehicular Ad-hoc Netwok (VANET) including ongoing researches and studies particularly related to Dedicated Short Range Communication (DSRC), specifically designed for automotive uses with corresponding set of protocols and standards. Secondly, we focused on communication models and improvement of these models to make them more suitable, reliable and efficient for the V2V environment. As specifies the standard, OFDM is used in V2V communication, Adaptable OFDM transceiver was designed. Some parameters as performance analytics are used to compare the improvement with the actual situation. For the enhancement of physical layer of V2V communication, this work is focused in the study of MIMO channel instead of SISO. In the designed transceiver both SISO and MIMO were implemented and studied successfully
    corecore