4,048 research outputs found

    Small sample deep learning for newborn gestational age estimation

    Get PDF
    A baby’s gestational age determines whether or not they are preterm, which helps clinicians decide on suitable post-natal treatment. The most accurate dating methods use Ultrasound Scan (USS) machines, but these machines are expensive, require trained personnel and cannot always be deployed to remote areas. In the absence of USS, the Ballard Score can be used, which is a manual postnatal dating method. However, this method is highly subjective and results can vary widely depending on the experience of the rater. In this paper, we present an automatic system for postnatal gestational age estimation aimed to be deployed on mobile phones, using small sets of images of a newborn’s face, foot and ear. We present a novel two-stage approach that makes the most out of Convolutional Neural Networks trained on small sets of images to predict broad classes of gestational age, and then fuse the outputs of these discrete classes with a baby’s weight to make fine-grained predictions of gestational age. On a purpose- collected dataset of 88 babies, experiments show that our approach attains an expected error of 6 days and is three times more accurate than the manual postnatal method (Ballard). Making use of images improves predictions by 30% compared to using weight only. This indicates that even with a very small set of data, our method is a viable candidate for postnatal gestational age estimation in areas were USS is not available

    Machine learning guided postnatal gestational age assessment using new-born screening metabolomic data in south Asia and sub-Saharan Africa

    Get PDF
    Background: Babies born early and/or small for gestational age in Low and Middle-income countries (LMICs) contribute substantially to global neonatal and infant mortality. Tracking this metric is critical at a population level for informed policy, advocacy, resources allocation and program evaluation and at an individual level for targeted care. Early prenatal ultrasound examination is not available in these settings, gestational age (GA) is estimated using new-born assessment, last menstrual period (LMP) recalls and birth weight, which are unreliable. Algorithms in developed settings, using metabolic screen data, provided GA estimates within 1-2 weeks of ultrasonography-based GA. We sought to leverage machine learning algorithms to improve accuracy and applicability of this approach to LMICs settings.Methods: This study uses data from AMANHI-ACT, a prospective pregnancy cohorts in Asia and Africa where early pregnancy ultrasonography estimated GA and birth weight are available and metabolite screening data in a subset of 1318 new-borns were also available. We utilized this opportunity to develop machine learning (ML) algorithms. Random Forest Regressor was used where data was randomly split into model-building and model-testing dataset. Mean absolute error (MAE) and root mean square error (RMSE) were used to evaluate performance. Bootstrap procedures were used to estimate confidence intervals (CI) for RMSE and MAE. For pre-term birth identification ROC analysis with bootstrap and exact estimation of CI for area under curve (AUC) were performed.Results: Overall model estimated GA had MAE of 5.2 days (95% CI 4.6-6.8), which was similar to performance in SGA, MAE 5.3 days (95% CI 4.6-6.2). GA was correctly estimated to within 1 week for 85.21% (95% CI 72.31-94.65). For preterm birth classification, AUC in ROC analysis was 98.1% (95% CI 96.0-99.0; p \u3c 0.001). This model performed better than Iowa regression, AUC Difference 14.4% (95% CI 5-23.7; p = 0.002).Conclusions: Machine learning algorithms and models applied to metabolomic gestational age dating offer a ladder of opportunity for providing accurate population-level gestational age estimates in LMICs settings. These findings also point to an opportunity for investigation of region-specific models, more focused feasible analyte models, and broad untargeted metabolome investigation

    Achieving accurate estimates of fetal gestational age and personalised predictions of fetal growth based on data from an international prospective cohort study: A population-based machine learning study

    Get PDF
    Background: Preterm birth is a major global health challenge, the leading cause of death in children under 5 years of age, and a key measure of a population\u27s general health and nutritional status. Current clinical methods of estimating fetal gestational age are often inaccurate. For example, between 20 and 30 weeks of gestation, the width of the 95% prediction interval around the actual gestational age is estimated to be 18-36 days, even when the best ultrasound estimates are used. The aims of this study are to improve estimates of fetal gestational age and provide personalised predictions of future growth.Methods: Using ultrasound-derived, fetal biometric data, we developed a machine learning approach to accurately estimate gestational age. The accuracy of the method is determined by reference to exactly known facts pertaining to each fetus-specifically, intervals between ultrasound visits-rather than the date of the mother\u27s last menstrual period. The data stem from a sample of healthy, well-nourished participants in a large, multicentre, population-based study, the International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). The generalisability of the algorithm is shown with data from a different and more heterogeneous population (INTERBIO-21st Fetal Study).Findings: In the context of two large datasets, we estimated gestational age between 20 and 30 weeks of gestation with 95% confidence to within 3 days, using measurements made in a 10-week window spanning the second and third trimesters. Fetal gestational age can thus be estimated in the 20-30 weeks gestational age window with a prediction interval 3-5 times better than with any previous algorithm. This will enable improved management of individual pregnancies. 6-week forecasts of the growth trajectory for a given fetus are accurate to within 7 days. This will help identify at-risk fetuses more accurately than currently possible. At population level, the higher accuracy is expected to improve fetal growth charts and population health assessments.Interpretation: Machine learning can circumvent long-standing limitations in determining fetal gestational age and future growth trajectory, without recourse to often inaccurately known information, such as the date of the mother\u27s last menstrual period. Using this algorithm in clinical practice could facilitate the management of individual pregnancies and improve population-level health. Upon publication of this study, the algorithm for gestational age estimates will be provided for research purposes free of charge via a web portal.Funding: Bill & Melinda Gates Foundation, Office of Science (US Department of Energy), US National Science Foundation, and National Institute for Health Research Oxford Biomedical Research Centre

    Achieving accurate estimates of fetal gestational age and personalised predictions of fetal growth based on data from an international prospective cohort study: a population-based machine learning study.

    Get PDF
    Background: Preterm birth is a major global health challenge, the leading cause of death in children under 5 years of age, and a key measure of a population's general health and nutritional status. Current clinical methods of estimating fetal gestational age are often inaccurate. For example, between 20 and 30 weeks of gestation, the width of the 95% prediction interval around the actual gestational age is estimated to be 18-36 days, even when the best ultrasound estimates are used. The aims of this study are to improve estimates of fetal gestational age and provide personalised predictions of future growth. Methods: Using ultrasound-derived, fetal biometric data, we developed a machine learning approach to accurately estimate gestational age. The accuracy of the method is determined by reference to exactly known facts pertaining to each fetus-specifically, intervals between ultrasound visits-rather than the date of the mother's last menstrual period. The data stem from a sample of healthy, well-nourished participants in a large, multicentre, population-based study, the International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). The generalisability of the algorithm is shown with data from a different and more heterogeneous population (INTERBIO-21st Fetal Study). Findings: In the context of two large datasets, we estimated gestational age between 20 and 30 weeks of gestation with 95% confidence to within 3 days, using measurements made in a 10-week window spanning the second and third trimesters. Fetal gestational age can thus be estimated in the 20-30 weeks gestational age window with a prediction interval 3-5 times better than with any previous algorithm. This will enable improved management of individual pregnancies. 6-week forecasts of the growth trajectory for a given fetus are accurate to within 7 days. This will help identify at-risk fetuses more accurately than currently possible. At population level, the higher accuracy is expected to improve fetal growth charts and population health assessments. Interpretation: Machine learning can circumvent long-standing limitations in determining fetal gestational age and future growth trajectory, without recourse to often inaccurately known information, such as the date of the mother's last menstrual period. Using this algorithm in clinical practice could facilitate the management of individual pregnancies and improve population-level health. Upon publication of this study, the algorithm for gestational age estimates will be provided for research purposes free of charge via a web portal. Funding: Bill & Melinda Gates Foundation, Office of Science (US Department of Energy), US National Science Foundation, and National Institute for Health Research Oxford Biomedical Research Centre

    Using AMANHI-ACT cohorts for external validation of Iowa new-born metabolic profiles based models for postnatal gestational age estimation

    Get PDF
    Background: Globally, 15 million infants are born preterm and another 23.2 million infants are born small for gestational age (SGA). Determining burden of preterm and SGA births, is essential for effective planning, modification of health policies and targeting interventions for reducing these outcomes for which accurate estimation of gestational age (GA) is crucial. Early pregnancy ultrasound measurements, last menstrual period and post-natal neonatal examinations have proven to be not feasible or inaccurate. Proposed algorithms for GA estimation in western populations, based on routine new-born screening, though promising, lack validation in developing country settings. We evaluated the hypothesis that models developed in USA, also predicted GA in cohorts of South Asia (575) and Sub-Saharan Africa (736) with same precision.Methods: Dried heel prick blood spots collected 24-72 hours after birth from 1311 new-borns, were analysed for standard metabolic screen. Regression algorithm based, GA estimates were computed from metabolic data and compared to first trimester ultrasound validated, GA estimates (gold standard).Results: Overall Algorithm (metabolites + birthweight) estimated GA to within an average deviation of 1.5 weeks. The estimated GA was within the gold standard estimate by 1 and 2 weeks for 70.5% and 90.1% new-borns respectively. Inclusion of birthweight in the metabolites model improved discriminatory ability of this method, and showed promise in identifying preterm births. Receiver operating characteristic (ROC) curve analysis estimated an area under curve of 0.86 (conservative bootstrap 95% confidence interval (CI) = 0.83 to 0.89); P \u3c 0.001) and Youden Index of 0.58 (95% CI = 0.51 to 0.64) with a corresponding sensitivity of 80.7% and specificity of 77.6%.Conclusion: Metabolic gestational age dating offers a novel means for accurate population-level gestational age estimates in LMIC settings and help preterm birth surveillance initiatives. Further research should focus on use of machine learning and newer analytic methods broader than conventional metabolic screen analytes, enabling incorporation of region-specific analytes and cord blood metabolic profiles models predicting gestational age accurately

    Deep clinical and biological phenotyping of the preterm birth and small for gestational age syndromes: The INTERBIO-21 st Newborn Case-Control Study protocol.

    Get PDF
    Background: INTERBIO-21 st is Phase II of the INTERGROWTH-21 st Project, the population-based, research initiative involving nearly 70,000 mothers and babies worldwide coordinated by Oxford University and performed by a multidisciplinary network of more than 400 healthcare professionals and scientists from 35 institutions in 21 countries worldwide. Phase I, conducted 2008-2015, consisted of nine complementary studies designed to describe optimal human growth and neurodevelopment, based conceptually on the WHO prescriptive approach. The studies generated a set of international standards for monitoring growth and neurodevelopment, which complement the existing WHO Child Growth Standards. Phase II aims to improve the functional classification of the highly heterogenous preterm birth and fetal growth restriction syndromes through a better understanding of how environmental exposures, clinical conditions and nutrition influence patterns of human growth from conception to childhood, as well as specific neurodevelopmental domains and associated behaviors at 2 years of age. Methods: In the INTERBIO-21 st Newborn Case-Control Study, a major component of Phase II, our objective is to investigate the mechanisms potentially responsible for preterm birth and small for gestational age and their interactions, using deep phenotyping of clinical, growth and epidemiological data and associated nutritional, biochemical, omic and histological profiles. Here we describe the study sites, population characteristics, study design, methodology and standardization procedures for the collection of longitudinal clinical data and biological samples (maternal blood, umbilical cord blood, placental tissue, maternal feces and infant buccal swabs) for the study that was conducted between 2012 and 2018 in Brazil, Kenya, Pakistan, South Africa, Thailand and the UK. Discussion: Our study provides a unique resource for the planned analyses given the range of potentially disadvantageous exposures (including poor nutrition, pregnancy complications and infections) in geographically diverse populations worldwide. The study should enhance current medical knowledge and provide new insights into environmental influences on human growth and neurodevelopment

    Using Machine Learning to Predict Complications in Pregnancy:A Systematic Review

    Get PDF
    Introduction: Artificial intelligence is widely used in medical field, and machine learning has been increasingly used in health care, prediction, and diagnosis and as a method of determining priority. Machine learning methods have been features of several tools in the fields of obstetrics and childcare. This present review aims to summarize the machine learning techniques to predict perinatal complications. Objective: To identify the applicability and performance of machine learning methods used to identify pregnancy complications. Methods: A total of 98 articles were obtained with the keywords “machine learning,” “deep learning,” “artificial intelligence,” and accordingly as they related to perinatal complications (“complications in pregnancy,” “pregnancy complications”) from three scientific databases: PubMed, Scopus, and Web of Science. These were managed on the Mendeley platform and classified using the PRISMA method. Results: A total of 31 articles were selected after elimination according to inclusion and exclusion criteria. The features used to predict perinatal complications were primarily electronic medical records (48%), medical images (29%), and biological markers (19%), while 4% were based on other types of features, such as sensors and fetal heart rate. The main perinatal complications considered in the application of machine learning thus far are pre-eclampsia and prematurity. In the 31 studies, a total of sixteen complications were predicted. The main precision metric used is the AUC. The machine learning methods with the best results were the prediction of prematurity from medical images using the support vector machine technique, with an accuracy of 95.7%, and the prediction of neonatal mortality with the XGBoost technique, with 99.7% accuracy. Conclusion: It is important to continue promoting this area of research and promote solutions with multicenter clinical applicability through machine learning to reduce perinatal complications. This systematic review contributes significantly to the specialized literature on artificial intelligence and women’s health

    Predictive modeling for perinatal mortality in resource-limited settings

    Get PDF
    Importance: The overwhelming majority of fetal and neonatal deaths occur in low- and middle-income countries. Fetal and neonatal risk assessment tools may be useful to predict the risk of death.Objective: To develop risk prediction models for intrapartum stillbirth and neonatal death.Design, setting, and participants: This cohort study used data from the Eunice Kennedy Shriver National Institute of Child Health and Human Development Global Network for Women\u27s and Children\u27s Health Research population-based vital registry, including clinical sites in South Asia (India and Pakistan), Africa (Democratic Republic of Congo, Zambia, and Kenya), and Latin America (Guatemala). A total of 502 648 pregnancies were prospectively enrolled in the registry.Exposures: Risk factors were added sequentially into the data set in 4 scenarios: (1) prenatal, (2) predelivery, (3) delivery and day 1, and (4) postdelivery through day 2.Main outcomes and measures: Data sets were randomly divided into 10 groups of 3 analysis data sets including training (60%), test (20%), and validation (20%). Conventional and advanced machine learning modeling techniques were applied to assess predictive abilities using area under the curve (AUC) for intrapartum stillbirth and neonatal mortality.Results: All prenatal and predelivery models had predictive accuracy for both intrapartum stillbirth and neonatal mortality with AUC values 0.71 or less. Five of 6 models for neonatal mortality based on delivery/day 1 and postdelivery/day 2 had increased predictive accuracy with AUC values greater than 0.80. Birth weight was the most important predictor for neonatal death in both postdelivery scenarios with independent predictive ability with AUC values of 0.78 and 0.76, respectively. The addition of 4 other top predictors increased AUC to 0.83 and 0.87 for the postdelivery scenarios, respectively.Conclusions and relevance: Models based on prenatal or predelivery data had predictive accuracy for intrapartum stillbirths and neonatal mortality of AUC values 0.71 or less. Models that incorporated delivery data had good predictive accuracy for risk of neonatal mortality. Birth weight was the most important predictor for neonatal mortality
    corecore