14,313 research outputs found

    Robustness of Complex Networks To Global Perturbations

    Get PDF
    This thesis studies the robustness of complex dynamical networks with non-trivial topologies against global perturbations, following Robert May’s seminal work on network stability, in order to find critical stability thresholds of global perturbations and to determine if their impact varies across different network topologies. Numerical analysis is used as the primary research method. Dynamical networks are randomly generated in the form of a coefficient matrix of stable linear differential equations. The networks are then inflicted with global perturbation (i.e., addition of another random matrix with varying magnitudes) and their stabilities are tested for each perturbation magnitude, to determine at what scale of global perturbation they are jarred to instability. The results show a monotonic decrease of the instability threshold over increasing link density for all network topologies. For a given link density, random regular networks show highest robustness against global perturbation, closely followed by Watts-Strogatz small-world networks and Erdos-Renyi random graphs, and then Barabasi-Albert scalefree networks are least robust among the four topologies tested. Fully connected networks used in May’s original work are found to be consistently unstable in the presence of global perturbation of any magnitude. These findings offer useful implications for the robustness and sustainability/vulnerability of real-world complex networks with nontrivial topologies

    Preserving Link Privacy in Social Network Based Systems

    Full text link
    A growing body of research leverages social network based trust relationships to improve the functionality of the system. However, these systems expose users' trust relationships, which is considered sensitive information in today's society, to an adversary. In this work, we make the following contributions. First, we propose an algorithm that perturbs the structure of a social graph in order to provide link privacy, at the cost of slight reduction in the utility of the social graph. Second we define general metrics for characterizing the utility and privacy of perturbed graphs. Third, we evaluate the utility and privacy of our proposed algorithm using real world social graphs. Finally, we demonstrate the applicability of our perturbation algorithm on a broad range of secure systems, including Sybil defenses and secure routing.Comment: 16 pages, 15 figure

    Quantifying Transient Spreading Dynamics on Networks

    Get PDF
    Spreading phenomena on networks are essential for the collective dynamics of various natural and technological systems, from information spreading in gene regulatory networks to neural circuits or from epidemics to supply networks experiencing perturbations. Still, how local disturbances spread across networks is not yet quantitatively understood. Here we analyze generic spreading dynamics in deterministic network dynamical systems close to a given operating point. Standard dynamical systems' theory does not explicitly provide measures for arrival times and amplitudes of a transient, spreading signal because it focuses on invariant sets, invariant measures and other quantities less relevant for transient behavior. We here change the perspective and introduce effective expectation values for deterministic dynamics to work out a theory explicitly quantifying when and how strongly a perturbation initiated at one unit of a network impacts any other. The theory provides explicit timing and amplitude information as a function of the relative position of initially perturbed and responding unit as well as on the entire network topology.Comment: 9 pages and 4 figures main manuscript 9 pages and 3 figures appendi

    The Regularizing Capacity of Metabolic Networks

    Full text link
    Despite their topological complexity almost all functional properties of metabolic networks can be derived from steady-state dynamics. Indeed, many theoretical investigations (like flux-balance analysis) rely on extracting function from steady states. This leads to the interesting question, how metabolic networks avoid complex dynamics and maintain a steady-state behavior. Here, we expose metabolic network topologies to binary dynamics generated by simple local rules. We find that the networks' response is highly specific: Complex dynamics are systematically reduced on metabolic networks compared to randomized networks with identical degree sequences. Already small topological modifications substantially enhance the capacity of a network to host complex dynamic behavior and thus reduce its regularizing potential. This exceptionally pronounced regularization of dynamics encoded in the topology may explain, why steady-state behavior is ubiquitous in metabolism.Comment: 6 pages, 4 figure

    Pattern invariance for reaction-diffusion systems on complex networks

    Get PDF
    Given a reaction-diffusion system interacting via a complex network, we propose two different techniques to modify the network topology while preserving its dynamical behaviour. In the region of parameters where the homogeneous solution gets spontaneously destabilized, perturbations grow along the unstable directions made available across the networks of connections, yielding irregular spatio-temporal patterns. We exploit the spectral properties of the Laplacian operator associated to the graph in order to modify its topology, while preserving the unstable manifold of the underlying equilibrium. The new network is isodynamic to the former, meaning that it reproduces the dynamical response (pattern) to a perturbation, as displayed by the original system. The first method acts directly on the eigenmodes, thus resulting in a general redistribution of link weights which, in some cases, can completely change the structure of the original network. The second method uses localization properties of the eigenvectors to identify and randomize a subnetwork that is mostly embedded only into the stable manifold. We test both techniques on different network topologies using the Ginzburg-Landau system as a reference model. Whereas the correlation between patterns on isodynamic networks generated via the first recipe is larger, the second method allows for a finer control at the level of single nodes. This work opens up a new perspective on the multiple possibilities for identifying the family of discrete supports that instigate equivalent dynamical responses on a multispecies reaction-diffusion system

    Dynamics of Unperturbed and Noisy Generalized Boolean Networks

    Full text link
    For years, we have been building models of gene regulatory networks, where recent advances in molecular biology shed some light on new structural and dynamical properties of such highly complex systems. In this work, we propose a novel timing of updates in Random and Scale-Free Boolean Networks, inspired by recent findings in molecular biology. This update sequence is neither fully synchronous nor asynchronous, but rather takes into account the sequence in which genes affect each other. We have used both Kauffman's original model and Aldana's extension, which takes into account the structural properties about known parts of actual GRNs, where the degree distribution is right-skewed and long-tailed. The computer simulations of the dynamics of the new model compare favorably to the original ones and show biologically plausible results both in terms of attractors number and length. We have complemented this study with a complete analysis of our systems' stability under transient perturbations, which is one of biological networks defining attribute. Results are encouraging, as our model shows comparable and usually even better behavior than preceding ones without loosing Boolean networks attractive simplicity.Comment: 29 pages, publishe
    • …
    corecore