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Pattern invariance for reaction-
diffusion systems on complex 
networks
Giulia Cencetti   1,2,3, Pau Clusella4,2 & Duccio Fanelli2,3

Given a reaction-diffusion system interacting via a complex network, we propose two different 
techniques to modify the network topology while preserving its dynamical behaviour. In the region of 
parameters where the homogeneous solution gets spontaneously destabilized, perturbations grow 
along the unstable directions made available across the networks of connections, yielding irregular 
spatio-temporal patterns. We exploit the spectral properties of the Laplacian operator associated to 
the graph in order to modify its topology, while preserving the unstable manifold of the underlying 
equilibrium. The new network is isodynamic to the former, meaning that it reproduces the dynamical 
response (pattern) to a perturbation, as displayed by the original system. The first method acts directly 
on the eigenmodes, thus resulting in a general redistribution of link weights which, in some cases, 
can completely change the structure of the original network. The second method uses localization 
properties of the eigenvectors to identify and randomize a subnetwork that is mostly embedded only 
into the stable manifold. We test both techniques on different network topologies using the Ginzburg-
Landau system as a reference model. Whereas the correlation between patterns on isodynamic 
networks generated via the first recipe is larger, the second method allows for a finer control at the level 
of single nodes. This work opens up a new perspective on the multiple possibilities for identifying the 
family of discrete supports that instigate equivalent dynamical responses on a multispecies reaction-
diffusion system.

Networks of interacting elements provide a formal representation to model the structure of many complex sys-
tems1,2, such as social interactions3, transportation models4, ecological systems5, and neuronal functions6. The 
dynamical behavior of such systems cannot be explained as a simple superposition of the dynamics of the sin-
gle units: one also needs to account for how the different elements interact (type of coupling) and which con-
nectivity structure links the elements (network topology). Dynamical systems on complex networks have been 
widely studied7. However, a general theory to fully resolve the subtle interplay between network structure and 
ensuing dynamics is still lacking, notwithstanding notable efforts which combine fundamental8–10 and applied 
expertise11,12.

In the particular case of reaction-diffusion systems with identical single node dynamics, the coupling between 
the units always admits a homogeneous state where all the nodes are synchronized. If such equilibrium proves 
unstable, any arbitrary perturbation grows through the unstable directions giving rise to irregular spatio-temporal 
patterns13–16. This irregular behaviour represents the functional response to a given input which can be traced 
back to the structural characteristics of the underlying network17.

Whereas, in general, a random change on the network topology would lead to a modification of its dynamical 
response, it is also presumable that a specific outcome is not unique from a particular network, so that similar pat-
terns might arise from different isodynamic topologies. The identification of different compatible structures that 
give rise to the same dynamical behavior represents an important leap forward in the study of complex networks 
dynamics. For instance, it paves new roads to devise network reconstruction protocols, in cases where more than 
one network can correspond to the same dynamical output. Upon analyzing the common topological properties 
that contain the dynamical information of the system, one might overlook the inaccessible details of the topology.
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In this work we propose two different methods to, given a specific network, generate a second network iso-
dynamic to the first one, so that they share the same dynamical response. A method to generate isodynamic 
networks for the heterogeneous Kuramoto model was already introduced in18. Here we assume instead a generic 
class of systems characterized by identical single-node dynamics and nonlinear diffusive coupling. The system 
admits a homogeneous equilibrium solution, whose stability reflects the underlying network topology as stored 
in the spectrum of the associated Laplacian operator19,20. We exploit the idea that, in the vicinity of an unstable 
(homogeneous) equilibrium, only a limited subportion of the overall network architecture proves significant for 
the emergence of a specific dynamical behavior21–23.

The first method is exact, since it directly acts on the subspace generated by the Laplacian eigenvectors char-
acterizing the stability of the equilibrium state. On the other hand, the second technique relies on a Monte-Carlo 
algorithm that allows for a neater control in terms of network topology. In brief, the goal of this work is to prove 
that it is possible to provide two (or more) structurally different complex networks so that inserting the same 
input on them can lead to the same output.

Dispersion Relation and Pattern Formation
Let us consider a generic system composed of N identical entities linked through a complex network. At time t the 
activity of node j is described by an m-dimensional variable wj(t) ∈ m. Starting from a specific initial state wj(0), 
the dynamics of wj evolves according to

∑= + − = …
=
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jk k j
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where A denotes the adjacency matrix of the network, and  →: m m  and   →: m m are generic continu-
ous functions. The first term on the right hand side of the equation describes the self-dynamics of each individual 
node j, and it is denoted as reaction term. The second term instead, defines the interaction of node j with the other 
nodes of the network: the existence of a coupling is set by the adjacency matrix A, while the interaction shape is 
established by function . Our analysis requires two assumptions: (i) there exists an equilibrium wj = w* for the 
uncoupled problem =w w( )j j , and (ii) function  annihilates in zero ( =0 0( ) ). The uncoupled equilibrium 
w* can be either a stationary fixed point or a limit cycle. Whatever the case, the second condition ensures that w* 
becomes a homogeneous solution of the system (1). A wide class of models corresponding to this setup are 
reaction-diffusion systems, where   is a linear function. This constraints can be also generalized in order to 
include networks of homogeneous Kuramoto-Daido systems with arbitrary coupling functions24–26.

At the homogeneous equilibrium w* no information is flowing through the network. However, if such state 
proves unstable, a generic small perturbation δw of w* can develop to an irregular spatio-temporal pattern. A 
linearization of equation (1) around w* provides the time evolution of the perturbation δwj ∈ Nm as a system of 
Nm linear ordinary differential equations,

δ δ= ∗ẇ J w w( ) , (2)

where J ∈ Nm × Nm is the Jacobian matrix of the system. Therefore, the stability analysis of w* turns into study-
ing the high-dimensional operator J(w*). Nevertheless, it is possible to link the diagonalization of the Jacobian to 
that of a simpler operator. In the linearized regime, the flow of the quantity δwj to another node i of the underly-
ing network is described by δ∆ = −A kij ij i

in
ij

( ) , where ki
in( ) is the in-degree of node i and δij the Kronecker delta. 

The resulting N × N matrix Δ is known as Laplacian of the network. The Laplacian matrix always has a zero 
eigenvalue associated to a uniform eigenvector φ φ φ= … ∝ …( , , ) (1, , 1)N

(0)
1
(0) (0) , and all remaining eigenval-

ues are negative.
By expressing δwj in the basis of the Laplacian eigenvectors Φ = (φ(α)), and making use of the corresponding 

eigenvalues Λ = (Λ(α)) it is possible to decouple the Nm equations from system (2), thus reducing the problem to N 
uncoupled m-dimensional systems indexed by α (see Supplementary information). Each of the reduced systems is 
described by the reduced Jacobian ∂ ∂≡ + Λα

α∗J w K0( ) ( )w w
( )F G . If Jα is time independent, as when w* is a fixed 

point, the stability analysis is simply assessed by its m eigenvalues λ λ=α α( )k
( ) ( ) . Therefore, the stability of w* in the 

full Nm dimensional problem is ultimately controlled by the relation λ α λ= α( ) : max ( )k k
( ) . If instead the Jacobian 

has a periodic dependence on time, one needs to obtain the m Floquet exponents µ µ=α α( )k
( ) ( )  of the system27–29, 

which represent the analogue of λ(α) for a time-dependent Jacobian (see Supplementary information). In this case, 
the exponents controlling the stability of w* are given by λ(α) : = maxk µ α( )k

( )  In both instances, λ provides the sta-
bility of w* as a function of the Laplacian eigenvalues. Such relation takes the name of dispersion relation. If the 
dispersion relation of a subportion Nc of the total N eigenvalues Λ(α) is positive, then any perturbation would grow 
through the unstable modes. The resulting irregular spatio-temporal pattern thus represents the unpredictable 
response of the system to a specific input signal. It is however reasonable to suppose that most of the relevant infor-
mation is stored into the unstable manifold of the homogeneous solution w*, as we will prove later on.

Topology Modification
In this section we propose two methods to modify a given discrete support of the system while preserving the 
relevant directions for the emergence of the pattern.

Eigenmode randomization.  The first method for network modification consists of preserving a subpor-
tion n of the total N eigenmodes of the original network Laplacian whereas all the others are modified. Let us 
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suppose, without loss of generality, that the subset of modes to be left invariant are the first n. We define the diag-
onal matrix Λ∼, such that
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The corresponding eigenvectors are modified by performing a change of basis
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where I n is the identity matrix of dimension n and RN−n∈SO(N − n) is a random rotation matrix. In order to 
practically obtain such rotation we perform QR decomposition of a random matrix. Taking care of preserving the 
uniform mode, which corresponds to an identical perturbation acting independently on each node, the 
transformation

Δ ΦΛΦ=
∼ ∼∼∼ −

:
1

defines a new Laplacian matrix.

Local rewiring.  The previous method does not provide any control whatsoever on the topological modifi-
cations introduced in the new Laplacian. For this reason, we propose a secondary route that acts at the level of 
single nodes. For many network structures, the Laplacian eigenvectors are well localized on the network, i.e., their 
coordinates in the original vectorial space mostly involve a small subset of nodes, different for each eigenvector30. 
Therefore, modifying some eigenvectors means acting mainly on the connections of a specific subnetwork, and 
vice versa. With this method we aim to identify and modify links among nodes that are poorly involved on the 
n-dimensional manifold we want to preserve.

We rely on a Monte-Carlo algorithm that proceeds as follows. Given the original network, we choose a ran-
dom non-diagonal entry of the adjacency matrix, Aij. If the entry indicates the existence of a link between node i 
and node j, such link is removed, otherwise it is created. We then compare the n eigenvalues and eigenvectors of 
the modified network with those of the original one, and only if they prove similar according to a chosen thresh-
old τ the change is accepted (see Supplementary information for further details). The process is repeated selecting 
new random entries over the modified adjacency matrix until a desired number of links have been changed or the 
method fails to detect new entries that lead to small error.

Results and Discussion
The Ginzburg-Landau model.  In order to test the different methods we use the Stuart-Landau oscillator as 
a reference system for the dynamics of each node. Such model is the canonical form of the Hopf bifurcation, i.e., it 
describes a generic limit-cycle at the vicinity of a bifurcation where a fixed point becomes unstable through a pair 
of complex conjugate eigenvalues crossing the imaginary axis. Therefore, it has been studied in a wide number of 
applications where periodic oscillatory behavior is relevant.

We consider an ensemble of Stuart-Landau oscillators occupying the nodes of an undirected network with a 
diffusive coupling (for a case with a directed network see Supplementary information). The equation governing 
the dynamics of each node j, which takes the name of complex Ginzburg-Landau (CGL) equation31–33, is
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where c1,c2,K∈ and wj∈. Such system always accepts a homogeneous time-dependent solution, corresponding 
to the limit-cycle of a single decoupled element of the network = = −⁎w t w t e( ) ( ) :j

ic t2 . We focus our analysis on 
this globally synchronous state.

Even though w* is time-dependent, the Jacobian Jα is constant in time, and following the procedure indicated 
in the Supplementary information, we obtain the dispersion relation characterizing the linear stability analysis of 
the limit cycle solution,

λ − Λ = Λ − + − Λ + Λ + .α α α αK K c K c c K( ) 1 ( ) 2 1 (4)( ) ( )
1
2 2 ( ) 2

1 2
( )

Depending on the system parameters, function λ might have a positive part, corresponding to the smaller 
Laplacian eigenvalues in absolute value. Therefore, a particular network with N nodes might have Nc < N 
Laplacian eigenvalues associated to unstable modes. From now on, we assume that the Laplacian eigenvalues are 
sorted in descending order, Λ(0) = 0 > Λ(1) > … > Λ(N), so that the Nc unstable modes correspond to the Laplacian 
eigenvalues with index ranging from 1 to Nc.

Eigenmode randomization.  Erdös-Rènyi networks.  We first test the eigenmode randomization method 
using as original topology an Erdös-Rènyi (ER) network with N = 100 nodes and average node degree 〈k〉 = 3.5. 
For system parameters K = 1, c1 = 1, and c2 = −3, the dispersion relation associated to this network has Nc = 44 
modes corresponding to unstable directions (see blue open circles in Fig. 1). We integrate the system using as 
initial condition a randomly generated small perturbation of the homogeneous limit-cycle solution. After a short 
transient, the system reaches a dynamical regime characterized by an irregular spatio-temporal pattern depicted 
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in Fig. 1(g). Notice that throughout the paper we focus only on each oscillator modulus, since the frequency of 
rotation does not seem to contain relevant spatial structure (see Supplementary information for more details).

We aim to generate a new topology that reproduces such dynamical behavior by leaving invariant a subset of 
the original network modes. Taking into account that the Laplacian eigenvalues are sorted in descending order, 
we preserve the first n modes and modify the rest using the eigenmode randomization method. As an illustra-
tive example, in Fig. 1(a) we show the pattern resulting from a network where only the first n = 10 modes of the 
original topology are preserved and all the others have been randomized. Manifestly, such outcome has little 
similarity with that of the original network (cf. with Fig. 1(g)). In Fig. 1(b) we plot a zoom on the unstable part of 
the dispersion relation for the modified network (red dots), and that of the original topology (blue open circles). 
Overall is plausible to explain the disagreement between the dynamical behavior of the two networks from the 
large difference between the corresponding tangent space of the synchronized solution. Repeating the procedure 
with n = 40 preserved modes instead, leads to the pattern from Fig. 1(d). In this case, the behavior of the modified 
topology resembles much better that of the original network, an observation which is to be traced to the similarity 
between the dispersion relations of the respective unstable manifolds (see Fig. 1(e)).

Figure 1.  Results corresponding to an Erdös-Rènyi undirected network with N = 100 nodes and average 
degree 〈k〉 = 3.5. (a–f) Outcome of the implementation of the eigenmode randomization preserving 10 (a–c) 
and 40 (d–f) modes. (a,d) Time evolution of the modulus for each node of the modified network. (b,e) Section 
of the dispersion relation λ showing the unstable eigenvalues for the original (red open circles) and modified 
network (blue closed circles). A full plot of λ for the original network is depicted in the Supplementary 
information. (c,f) Relation between the time-averaged modulus of each node on the modified network and that 
of the original network. (g) Time evolution of the modulus of each node of the original network. (h) Squared 
correlation coefficient between the time-average modulus of each node on the modified network and that of 
the original network for different number of preserved modes. Purple circles correspond to networks where 
the first n Laplacian eigenvalues are preserved. Grey squares and grey triangles are the outcome of two different 
realizations where the n preserved modes of the modified networks are selected at random.
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In order to make the comparison between different patterns more transparent, we compute the time-average 
modulus of each node, 〈|wj|〉 after discarding a transient of 1000 time units. In Fig. 1(c,f) we report the resulting 
mean node activity of the modified networks versus that of the original one for n = 10 and n = 40 respectively. 
An outcome from two identical patterns would lie exactly on the diagonal, while two completely independent 
processes would provide a random collection of points. One can then quantify the similarity between the modi-
fied and original patterns in terms of squared Pearson correlation coefficient R2, which is 0.38 for n = 10 and 0.97 
for n = 40. In Fig. 1(h) we show the outcome of repeating this analysis systematically for increasing number of 
preserved modes n. When the modes to be preserved are selected to be the first n, the correlation between the 
patterns of the modified and original networks increases quickly with n, reaching a very good agreement when 
approximately all the 44 unstable modes are preserved (see red circles). On the other hand, if the n invariant 
modes are randomly selected among all the N, even when a large number of directions are maintained, there is no 
guarantee that the modified network will respond similarly to the original one (see gray triangles and squares).

The eigenmode randomization technique does not provide, a priori, any information about the structure of 
the resulting network. In Fig. 2(a,b) we show the topologies of the original network and a modified version where 
all the 44 unstable modes have been preserved. The first obvious difference is the existence of weighted links, 
including negative ones (see blue edges), which are absent in the original network. The adjacency matrix loses its 
sparsity and the network becomes highly connected, although most of the new links are very weak. In order to 
compare the two networks we focus on the strength sj of each node, defined as = ∑ =s Aj m

N
jm1 , which extends the 

concept of node degree to weighted topologies. In Fig. 2(c,d) we plot the degree distribution of the original net-
work, and the strength distribution of the modified topology, respectively. Although the distribution of the new 
network looks different from the original one, it does not present any particular structure, as expected for a ran-
dom topology. In fact, the average strength of the new network coincides with the average degree of the initial 
support.

Scale-Free networks.  In order to further investigate the relation between the Laplacian eigenmodes and network 
topology, we next move to a case where the network has a specific structure. For this purpose we use Scale-Free 
networks (SF), characterized by a typical power law degree distribution. In Fig. 3(a) we show an example of 
such degree distribution for a network composed of 150 nodes built using the Barabasi-Albert34 preferential 
attachment algorithm. Fixing the parameters of the CGL equation as K = 1, c1 = 1.2, and c2 = −10, the dispersion 
relation of this network shows Nc = 76 unstable modes. We apply the eigenmode randomization technique to 
generate a new support taking care to preserve all the unstable directions, but none of the stable (n = Nc). The 
patterns resulting from inserting the same perturbation to the synchronized solution on both networks are highly 
alike, as can be seen from the correlation Fig. 3(d). Differently from the ER case, here the modulus of each node 
gets stationary after some transient, so such time-average activity is free from statistical fluctuations.

The topology of the new network is, again, highly connected and involves negative links. Morevoer, the node 
strength distribution (see Fig. 3(b)) does not preserve the scale-free structure of the original topology. To identify 
the nature of this strong changes, in Fig. 3(c) we plot a one to one comparison between the degree of each node 
of the original support and the corresponding strength on the new topology. This analysis reveals that nodes with 
smaller degree on the original setup have a comparable strength after the modification, whereas the hubs become 
much weaker.

The localization properties of the Laplacian eigenvectors allow us to understand this situation. Inspired by the 
analysis performed by Hata and Nakao in30, we depict in Fig. 3(f) the absolute values of the vector components 
φ| |α

i
( ) , where nodes are sorted according to their degree in descending order (k1 ≥ k2 ≥ ... ≥ kN), whereas the eigen-

mode index α follow the usual descending order of the eigenvalues. The almost diagonal behavior indicates that 
the eigenvectors associated to the eigenvalues with smaller absolute value mostly involve the less connected nodes 
of the network.

Figure 2.  (a) Original ER topology. (b) Network resulting from preserving all the unstable modes. The color of 
the nodes correspond to the time average modulus of wj, each link thickness is associated to its weight and blue 
links indicate negative contributions. (c) Node degree distribution of the original network. (d) Node strength of 
the modified network.
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This implies that all the networks generated with the eigenmode randomization procedure will mostly differ from 
the original one for what concerns the nodes characterized by a large degree kj. For this reason the characteristic shape 
of the degree distribution is not preserved in the second network. Nevertheless, in dynamical systems with a different 
shape of the dispersion relation it might be possible to maintain the tail of the distribution if the stable modes are to be 
found among the first Laplacian eigenmodes (see a specific example in the Supplementary information).

Finally, we repeat the procedure of systematically increasing the number of invariant modes n from 1 to 150 
and tracking the resulting correlation coefficient, Fig. 3(f). For each new network we analyze the dynamical pat-
terns resulting from inserting three different randomly generated perturbations. As for the ER case, the correla-
tion between the dynamics of the original and modified topologies increases quickly with n, being nearly optimal 
when all the unstable modes are preserved (see vertical dashed line). Nevertheless, the choice of the initial condi-
tion is clearly relevant: whereas in one case preserving around 40 modes already provides a good agreement (see 
black crosses), in other situations one might need to preserve also a considerable number of stable directions to 
reproduce the original pattern (see red circles).

Local rewiring.  The second method we present offers the advantage of a larger control on the resulting net-
work topology so that, for instance, one can keep the network binary. On the other hand, one needs to allow for 
some variability also on the unstable manifold due to the non perfect localization of the Laplacian eigenmodes 
on a specific subnetwork.

We first apply the local rewiring technique on a ER network with N = 400 nodes and average degree 〈k〉 = 20. 
For system parameters K = 0.15, c1 = 1, and c2 = −3, the system displays 64 unstable modes. The algorithm stops 
after 100 positions on the adjacency matrix have been changed. For comparison purposes, we also created three 
different networks where 100 entries on the adjacency matrix have been changed totally at random. Blue circles 
in Fig. 4(a) show the correlation between the patterns of the original and the resulting network, whereas the gray 
symbols correspond to that of the random rewired graphs. The dynamical behavior of the network obtained using 
the local rewiring method provides a better agreement with the original pattern. We obtain similar results when 
using SF network generated with the Barabási-Albert algorithm (see Fig. 4(b)). Although these results change 
upon inserting different initial perturbations, the rewiring technique outperform the random modified networks 
in most of the cases (see Supplementary information for additional results).

Figure 3.  Outcome of the eigenmode randomization technique using as original network a scale-free 
topology with N = 150 nodes. (a) Degree distribution of the original network (blue boxes). The continuous 
red curve corresponds to a numerical fit of the data to an exponential shape P(k) = ck−β, resulting to c = 0.23 
and β = 0.85. (b) Strength distribution on a modified version of the network where the 76 unstables modes 
have been preserved. (c) Node strength sj of the modified network with respect to the node degree of the same 
node kj in the original network. The black dashed line shows the case sj = kj for eye guide. (d) Correlation 
between the dynamical patterns of the original and modified networks, with resulting squared correlation 
coefficient R2 = 0.99. (e) Eigenvectors of the original Scale-Free network Laplacian. The eigenvalues are sorted 
in descending order according to the corresponding Laplacian eigenvalues, and the nodes have been sorted 
in descending order with respect to their degree. The color represents the absolute value of each eigenvector 
component. (f) Squared correlation coefficient as the number of preserved modes n increases. Red circles, blue 
squares and black crosses indicate the results corresponding of three different initial conditions. The vertical 
dashed line indicates the threshold between unstable and stable modes.
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In terms of topology changes, in Fig. 4(c,d) we plot the total number of links that have been modified for each 
node of the network. It is clear that most of the changes correspond to nodes with larger degree which, as shown 
in the previous section, mostly involve the Laplacian eigenvectors associated to stable directions in the case of the 
CGL equation.

Conclusions
In the present work we have devised two specific strategies of network generation so as to mimic the pattern 
obtained by a former sample network when both are subject to the same non-linear reaction-diffusion system. 
The first method is analytical, and provides isodynamic networks at the cost of changing important topological 
features of the original graph. The second technique instead makes use of a Monte-Carlo algorithm, allowing for 
a larger control in terms of network topology, but providing less accurate results. Both methods rely on a prelim-
inary identification of a manifold generated by the Laplacian eigenvectors associated to homogeneous solution 
instability, which has to be preserved during the modifications.

This work sheds light on the strong dependence between network topology and dynamical patterns. The local-
ization properties of the Laplacian eigenvectors unveil the existence of underlying topological features that lead 
the dynamical response of the network. In particular, it is possible, in some cases, to identify a subnetwork or a 
set of nodes that can be acknowledged as practically irrelevant for pattern formation. It is then clear that distinct 
networks with differences solely localized on these particular substructures can, under apt conditions, generate 
the same irregular patterns. As a remarkable example of this situation, we have shown that the SF networks, often 
taken as reference model to describe many real systems, can be, in the case of the Ginzburg-Landau system, 
replaced by graphs characterized by highly different structures.

Arguing on this line, the two methods proposed here may be placed as novel schemes for network generation, 
with a purely functional angle: instead of building the specific network structure brick by brick, paying attention 
to local characteristics of nodes, the complex graph is globally established and constrained to yield an a priori 
chosen dynamical output.

As already mentioned, the issue of generating isodynamics networks has been tackled in18 with reference 
to the heterogeneous Kuramoto model. In this latter work, the focus was placed on preserving global collective 

Figure 4.  Results of the local rewiring method applied to a ER with average degree 〈k〉 = 20 and 64 unstable 
modes (a,c), and to a SF network with 63 unstable modes (b,d). Both topologies consist of N = 400 nodes. 
At each step the tolerance error of the algorithm is τ = 0.1. In total, the new networks present 100 modified 
links with respect to the original topologies. (a,b) Correlation between patterns of the original and modified 
networks. Colored circles correspond to the results obtained using the local rewiring algorithm. Gray pluses, 
crosses, and stars correspond to three different networks generated by random rewiring as many links as the 
network outcoming from the local rewiring procedure. The squared coefficient correlations for the modified ER 
network is 0.98 (blue circles) whereas the randomly rewired networks provide 0.67, 0.62, and 0.94. The modified 
SF network has R2 =  0.86 (red circles), whereas the random networks provide 0.49, 0.50, and 0.67. (c,d) Number 
of link changed for each node of the network. The nodes are sorted in descending degree order.
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variables, as e.g. reflecting the displayed level of synchronization. At variance, we here deal with a local definition 
of “dynamical invariance”, which extends to individual nodes. In carrying out the analysis, we have however pos-
tulated the existence of an underlying homogeneous equilibrium, a working hypothesis which makes the method 
unsuited to deal with quenched disordered, as in18. Extending the proposed technique to include the case of het-
erogeneous equilibria is an intriguing direction of investigation which is left for future work.
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