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Spreading phenomena on networks are essential for the collective dynamics of various natural and technolog-
ical systems, from information spreading in gene regulatory networks to neural circuits or from epidemics to
supply networks experiencing perturbations. Still, how local disturbances spread across networks is not yet
quantitatively understood. Here we analyze generic spreading dynamics in deterministic network dynamical
systems close to a given operating point. Standard dynamical systems’ theory does not explicitly provide
measures for arrival times and amplitudes of a transient, spreading signal because it focuses on invariant sets,
invariant measures and other quantities less relevant for transient behavior. We here change the perspective
and introduce effective expectation values for deterministic dynamics to work out a theory explicitly quanti-
fying when and how strongly a perturbation initiated at one unit of a network impacts any other. The theory
provides explicit timing and amplitude information as a function of the relative position of initially perturbed
and responding unit as well as on the entire network topology.

Networked systems characterize a large number
of natural and man-made systems. Transient
spreading phenomena fundamentally underlie the
dynamics of these systems: an outbreak of a dis-
ease at one place may spread through a human
mobility network on continental scales and a load
shedding of a single power plant impacts distant
parts of the power grid. It thus constitutes a nat-
ural question when, how long and how strongly
such a perturbation affects other units in the net-
work. Interestingly, this question does not pos-
sess a simple answer in standard dynamical sys-
tems theory, which often neglects such transient
dynamics. In this article we introduce and ana-
lyze intuitive measures for typical response times
and magnitudes via effective expectation values,
interpreting the activity of each unit in the net-
work as a probability density over time. We de-
rive simple analytical expressions for these mea-
sures in linear dynamical systems. Across model
systems, this makes it possible to analytically
quantify transient spreading dynamics as a func-
tion of the network’s interaction topology.

I. INTRODUCTION

Many collective transient phenomena are initiated by
perturbing some simple base state, for instance, a fixed
(operating) point in a deterministic dynamical system or
a stationary probability distribution of a Markov chain.
For network dynamical systems, such initial perturba-

tions often affect only a single unit and are thus local in
the topology of the network. Examples range from the
start of an epidemic in a population of susceptible agents
(natural or artificial)1,2 to the failure of a single infras-
tructure in a supply network3–7. If a single unit’s vari-
able is initially perturbed from a given fixed point value,
other units in the network will be transiently affected
by such a perturbation, with relevant consequences only
at some later time. Natural questions thus include ‘At
which time does a transient signal reach a given unit?’
and ‘How strongly does the signal affect that unit?’

Despite the growing interest in spreading and propa-
gation processes, non-trivial waves, and other transient
phenomena1,7–16, there is no general answer to these
questions. For certain stochastic systems, there is re-
cent mathematical progress on quantifying first arrival
and routing times in stochastic systems2,17–19. For sim-
ple deterministic dynamical systems major questions re-
main open, mainly because existing mathematical the-
ory of such systems is restricted to mostly two relevant
classes of general statements: one about long term behav-
ior, characterized by different types of invariant sets such
as attractors in dissipative systems, and a second about
statistical properties such as those captured by invariant
measures in chaotic and stochastic dynamical systems.
These two classes of statements both do not explicitly
capture transient phenomena.

Mathematically, for instance, it becomes impossible to

provide an explicit formula for the time tpeaki of the max-
imum magnitude of the transient signal at a given unit
i as soon as the network topology becomes non-trivial.
Even for linear dynamics this impossibility persists be-
cause the task is equivalent to solving a transcendental
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equation. The same problem transfers to the signal am-
plitude at that time such that quantifying arrival times
and perturbation impact in network dynamical systems
constitutes an open challenge.

Here we propose an alternative perspective to charac-
terize transient spreading dynamics in network dynam-
ical systems. We do not attempt to approximate peak
positions of maxima of the units’ variables in time and
the respective peak heights. For a class of local dynam-
ics close to given operating (fixed) points, we instead in-
terpret the units’ state trajectories xi(t) as if they were
measure densities and, once suitably normalized, yield ef-
fective probability densities. From these we analytically
derive integral expressions (effective expectation values
representing zeroth, first and second moments) that de-
fine typical times and response magnitudes as an explicit
function of the matrix determining the network topology.

II. NETWORK DYNAMICAL SYSTEM AND PROBLEM
SETTING

Consider a network dynamical system

dy

dt
= F(y) (1)

of N coupled units whose collective dynamics is close to
a stable operating point y∗ ∈ RN where F(y∗) = 0. The
system’s dynamics can then be specified in new difference
variables x(t) = y(t) − y∗ satisfying linear equations of
the type

dx

dt
= Mx , (2)

where x(t) = (x1(t), . . . , xN (t))
T ∈ RN defines the states

xi(t) of the unit i at time t ∈ R and M = DF(y∗) ∈
RN×N is a weighted matrix. We consider M to have only
non-negative off-diagonal elements with Mij = 0 if there
is no direct interaction from unit j to unit i. Wherever
an element Mij > 0 for j 6= i, unit i is directly coupled
to j. Such systems arise not only in network dynamical
systems [Eq. (1)] of coupled units i near fixed (operating)
points, but also naturally occur in time-continuous mas-
ter equations for probabilities Pi(t) ≡ xi(t) of the system
to be in state i at time t20.

For a specific example class that we use for illustration
below, consider a strongly connected directed graph G
with weighted graph adjacency matrix A with elements
Aii = 0 and Aij ≥ 0 for i 6= j. A graph is strongly
connected if there are directed paths k → ... → j from
every unit k to every other j. If a graph has several dis-
connected, strongly connected components, we consider
each strongly connected component separately. If and
only if the underlying graph has a directed edge from
unit j to unit i, we have Aij = αij > 0. The associated
graph Laplacian is L = D−A where the diagonal matrix

D has entries

Dii =

N∑

j=1

Aij (3)

for i ∈ {1, . . . , N} and Dij = 0 for i 6= j. The matrix
M = −L− diagi∈{1,...,N} (βi) then describes internal dy-

namics of the individual units (βi) as well as the coupling
between the units (αij).

Definition 1. We consider the linear system of coupled
units described by

dxi
dt

= (Mx)i = −βixi +

N∑

j=1

αij (xj − xi) , (4)

xi(0) ≥ 0 ,

where at least one node k ∈ {1, . . . , N} is initially per-
turbed xk(0) > 0. Further, we assume αij ≥ 0 and
βi > 0, such that the matrix M is irreducible, negative di-
agonally dominant and consequently all eigenvalues have
negative real part.

This definition assures that x∗ = (0, 0, . . . , 0)T is a
stable fixed point and the system describes a strongly
connected network where a perturbation of one unit can
reach any other.

How does a perturbation applied at some unit k spread
across the network? When and how strongly do other
units i respond to the initial perturbation? How do these
responses depend on the relative locations of the units
and the features of the network topology? For the linear
dynamical system (Def. 1) with a single perturbed node

x0 := x(0) = (0, 0, . . . , 1︸︷︷︸
xk(0)

, 0, . . . , 0) (5)

the complete time-dependent trajectory

xi(t) = [exp(Mt)x0]i = [exp(Mt)]ik (6)

is known analytically [here exp(·) = e· is the matrix ex-
ponential]. Yet, a number of key obstacles hinder imme-
diate answers, as we will see below. In the current article,
we contribute to exactly specifying and analytically an-
swering the open questions raised above by changing the
perspective about how to address them.

III. TRANCENDENTAL EQUATIONS DETERMINE
STANDARD RESPONSE TIMES

Direct numerical simulations across a range of random
and regular network topologies (Figure 1) suggest that
the units respond to an initial perturbation in a charac-
teristic way: we observe that, as expected, all but the
initially perturbed units’ state variables grow from zero
to positive values, then decay to zero exponentially and
thus exhibit (at least) one maximum in between. In this
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Figure 1. (color online) Dynamics of a transient perturbation spreading in a network of coupled units. (a) Network
with N = 8 units and |E| = 16 links describing directed interactions with αij = 1 and βi = β = 0.5 (Def. 1). (b) Response for
an initial perturbation at unit k = 1, i.e., with initial condition xi(0) = δi,1. The response of each node is colored according
to the node color in panel (a). Whereas the activity of the initially perturbed unit k = 1 (red curve) decays exponentially, the
activity dynamics of all other units are non-monotonic and generically exhibit (at least) one maximum.

article, we focus on the question of how to characterize
and quantify such transient dynamics, in particular by
determining the unit-dependent response times and re-
sponse strengths (Figure 1b).

One natural characteristic measure for the response
time that may be interpreted as the time of signal arrival

at unit i is the peak time tpeaki where

dxi
dt

∣∣∣∣
tpeak
i

= 0 and
d2xi
dt2

∣∣∣∣
tpeak
i

< 0 (7)

and the activity amplitude xi(t
peak
i ) at that time. In the

general case when there may be multiple extrema sat-

isfying Eq. (7), we define tpeaki as the time of the first
maximum. Despite knowing the complete analytic solu-
tion [Eq. (6)], an analytic expression for these times does
not exist. In fact, the equations

N∑

j=1

Mij

(
eMtpeak

i x0

)
j

!
= 0 (8)

that determine the maximum times tpeaki contain differ-
ently weighted sums of different exponentially decaying
functions and are not only implicit but also typically
transcendental. Only under strong conditions, for in-
stance if the system is very sparse such that unit i re-
ceives only one connection from one other unit in the

network, Eq. (8) becomes analytically solvable for tpeaki .
A second candidate measure for a characteristic re-

sponse time is the time t
(c)
i until the activity at unit i in-

creased above a certain predefined constant xi(t
(c)
i ) ≥ c.

In analogy to tpeaki in Eq. (7), the time

t
(c)
i = arg min

t>0

{(
eMtx0

)
i
≥ c
}

(9)

is again given implicitly by a transcendental equation.

Moreover, this time t
(c)
i depends on an arbitrary param-

eter c that is additionally introduced and, if chosen too

large, t
(c)
i may not even exist for some units i.

IV. ALTERNATIVE PERSPECTIVE ON RESPONSE
TIMES

In the following, we propose an alternative perspective
to characterize typical response times and response mag-
nitudes in linear network dynamical systems of arbitrary
interaction topology. Instead of attempting to approxi-
mate peak positions or threshold crossing times discussed
above, we first show that the units’ state trajectories xi(t)
are positive for all times t > 0. Normalizing them we can
interpret the new quantity ρi(t) ∝ xi(t) as a probabil-
ity density and use analogues to expectation values such
as 〈t〉i :=

∫∞
0
tρi(t)dt to define typical response times,

response durations and response magnitudes.
To be able to exploit the analogy to probability densi-

ties, we first establish positivity.

Lemma 1 (All component dynamics are positive). The
system given in Def. 1 has positive activities of all units
for all positive times: the solution x(t) of Eq. (4) satisfies
xi(t) > 0 for all t ∈ (0,∞) and all i ∈ {1, . . . , N}.

Proof. The solution dynamics [Eq. (6)] of unit i are
given by

xi(t) =

N∑

j=1

(
eMt

)
ij
xj(0). (10)

Define a matrix

C := M + bIN , (11)

where b > maxi{|Mii|} and IN ∈ RN×N denotes the iden-
tity matrix. Then C is an irreducible matrix with strictly
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positive diagonal entries Cii > 0 and non-negative off-
diagonal entries. Consequently, all entries [Cn]ij ≥ 0
for all n ≥ 0 and there exists n∗ ∈ N such that, for all
n ≥ n∗, Cn is strictly positive, that means [Cn]ij > 0 for
all i, j ∈ {1, 2 . . . N} (C is a primitive matrix). Con-
sequently, the matrix exponential is also strictly posi-
tive,

(
eCt
)
ij

=
∑∞
n=0 t

n [Cn]ij /n! > 0, for all i, j ∈
{1, . . . , N} and all positive t. Thus, we have for all t > 0

xi(t) =

N∑

j=1

(
eMt

)
ij
xj(0)

=

N∑

j=1

[
eCt−bIN t

]
ij
xj(0)

=

N∑

j=1

e−bt
(
eCt
)
ij
xj(0) > 0 (12)

for all i, k ∈ {1, . . . , N}.
Understanding that the response of a unit is always

positive, it is natural to define the total response strength
Zi.

Definition 2 (Total response strength). The total re-
sponse strength Zi of a unit i is given by

Zi :=

∫ ∞

0

xi(t)dt . (13)

Since the analytical solution for xi(t) is known
[Eq. (6)], we can express Zi in terms of the matrix M
defining the system in Def. 1).

Lemma 2 (Total response strength). The total response
strength Zi of a unit i is given by

Zi = −
(
M−1x0

)
i
. (14)

Proof.

Zi =

∫ ∞

0

xi(t)dt

(6)
=

[∫ ∞

0

exp(Mt)x0

]

i

=
[
M−1 exp(Mt)x0

∣∣∞
0

]
i

= −
(
M−1x0

)
i
.

Alternatively, we can simply integrate the differential
equation [Eq. (4)], see Appendix A.

In particular, for initial perturbation of a single unit k
[Eq. (5)], we obtain

Zi = −(M−1)ik . (15)

Given this definition of the response strength and the
positivity of the units’ response dynamics xi(t) estab-
lished in lemma 1, we interpret the response density

ρi(t) :=
xi(t)

Zi
(16)

σi
Hi

Zi

Zi :=

∫ ∞

0

xi(t)dt = −(M−1)ik

σi :=
√

⟨t2⟩i − ⟨t⟩2i

Hi :=
Zi

σi

⟨t⟩i t

xi

tpeaki

xi(⟨t⟩i)
xi(t

peak
i )

⟨t⟩i :=
1

Zi

∫ ∞

0

t xi(t)dt = − (M−2)ik

(M−1)ik

Figure 2. (color online) Quantifying the response to
perturbations. Illustration of the typical response charac-
teristics derived from the interpretation of the response xi(t)
to a perturbation at unit k as a probability density over t
[Eq. (16)]. The effective expectation value 〈t〉i describes the
typical response time and the standard deviation σi describes
the typical response duration. Assuming a response with fixed
magnitude for the duration σi with total impact Zi, Hi then
describes the typical response magnitude. Standard measures
such as the peak response time tpeaki and the response ampli-

tude xi(t
peak
i ) correspond to the mode of the “distribution”.

as a probability density. Note that standard response

characteristics, such as the peak response time tpeaki , cor-
respond to standard characteristics of a probability dis-
tribution, such as the mode of distribution. We follow
this similarity and interpret also the expectation values
as typical response characteristics, all of which are illus-
trated and summarized in Fig. 2.

We interpret the effective expectation value of t with
respect to ρi(t) as the typical response time of unit i.

Definition 3 (Typical response time). The typical re-
sponse time 〈t〉i of a unit i is given by

〈t〉i :=

∫ ∞

0

tρi(t)dt (17)

Lemma 3 (Typical response time). The typical response
time 〈t〉i of a unit i is given by

〈t〉i = − (M−2x0)i
(M−1x0)i

(18)
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Proof. We first calculate

∫ ∞

0

txi(t)dt =

∫ ∞

0

t [exp(Mt)x0]i dt

=
[
M−1t exp(Mt)x0

∣∣∞
0

−
∫ ∞

0

M−1 exp(Mt)x0 dt
]
i

=
[
−M−2 exp(Mt)x0

∣∣∞
0

]
i

=
(
M−2x0

)
i
.

Together with lemma 2 and the definition of ρi(t) [Eq.
(16)] we arrive at the result.

In particular, for initial perturbation of a single unit
[Eq. (5)] we obtain

〈t〉i = − (M−2)ik
(M−1)ik

. (19)

This provides information on the time when a pertur-
bation affects a unit. In order to also obtain a measure
describing how strongly this unit is affected, we similarly
interpret the standard deviation as the typical response
duration.

Definition 4 (Typical response duration). The typical
response duration σi of a unit i is given by

σi :=

√∫ ∞

0

(t− 〈t〉i)2ρi(t)dt (20)

Lemma 4 (Typical response duration). The typical re-
sponse duration σi of a unit i is given by

σi =

√
2(M−3x0)i
(M−1x0)i

−
(

(M−2x0)i
(M−1x0)i

)2

(21)

Proof. We first calculate

∫ ∞

0

t2 exp(Mt)x0dt = t2M−1 exp(Mt)x0

∣∣∞
0

−
∫ ∞

0

2tM−1 exp(Mt)x0dt

= −2tM−2 exp(Mt)x0

∣∣∞
0

+

∫ ∞

0

2M−2 exp(Mt)x0dt

= +2M−3 exp(Mt)x0

∣∣∞
0

= −2M−3x0 . (22)

We thus obtain
〈
t2
〉
i

=
−2(M−3x0)

i

Zi
. The lemma then fol-

lows directly from
〈

(t− 〈t〉i)
2
〉
i

=
〈
t2
〉
i
− 〈t〉2i and equa-

tions (14) and (18).

For the particular initial condition [Eq. (5)] this be-
comes

σi =

√
2(M−3)ik(M−1)ik − (M−2ik )2

−(M−1)ik
. (23)

The definition of the typical response magnitude, de-
scribing how strongly a unit is affected by the initial
perturbation, then follows naturally as the quotient of
the total strength Zi and the duration σi, illustrated in
Fig. 1.

Definition 5 (Typical response magnitude). The typical
response magnitude Hi of a unit i is given by

Hi := Zi/σi =
((M−1x0)i)

2

√
2(M−3x0)i(M−1x0)i − ((M−2x0)i)2

(24)

For the particular initial condition [Eq. (5)] this be-
comes

Hi =
(M−1ik )2√

2(M−3)ik(M−1)ik − (M−2ik )2
. (25)

The above definitions Eq. (13), (17), and (24) thus
yield explicit analytically derived quantifiers for the total
response strength, the typical response time and the typi-
cal response magnitude of unit i. They hold for arbitrary
strongly connected network topologies. We note again
that a graph is strongly connected if there is a directed
path from every unit to every other unit, not implying
anything about the coupling strength between units. If
there is no directed path from unit k to i, the perturba-
tion cannot reach this node and xi(t) = 0 for all t. Con-
sequently, we have a total impact of Zi = (M−1)ik = 0
such that the arrival time and the other measures are not
defined.

V. ILLUSTRATING EXAMPLES

A. Directed homogeneous chains

To illustrate these response quantifiers we consider a
basic example, a directed chain network which consist
of N units coupled only to one neighboring unit via a
directed link with identical coupling strength αij ≡ α
[Fig. 3(a)]. We assume for each unit i identical internal
dynamics βi ≡ β. The dynamics of the directed homoge-
neous chain is then given by

ẋ =




−β 0 . . . 0
α −(β + α) . . . 0
...

. . .
. . .

...
0 . . . α −(β + α)


x . (26)
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Figure 3. (color online) Perturbation spreading in a directed chain. Illustration of the measures introduced above,
describing approximate time and impact of the perturbation. (a) Illustration of the network topology, a directed with N = 100
nodes and β = 1. The node at the beginning of the chain was perturbed. (b) Response dynamics of the first 5 nodes in the

chain. (c) Comparison of the typical response time 〈t〉i and the peak response time tpeaki for α = 1. Both values scale identically
with increasing distance from the perturbation and the absolute difference is almost constant. The perturbation spreads with
a constant speed, as predicted by Eq. (33) and shown as the black dashed line. For large distances the approximation becomes
more and more accurate, the relative distance decays for increasing d, independent of α (see inset). (d) Measurements of the
strength of the perturbation given by the typical response magnitude Hi, the response at the typical response time xi

(
〈t〉i

)
and the response amplitude xi

(
tpeaki

)
. All values scale identically with increasing distance from the perturbation. The height

Hi overestimates xi
(
tpeaki

)
by a constant factor, when the distance is large compared to the coupling strength (see inset).

We consider the initial condition x0 = (1, 0, . . . , 0),
perturbing the first unit k = 1 in the chain. In this
particular case, all quantities characterizing the response
behavior can be written explicitly as functions of the
parameters α and β and the position of the node i.
This allows us to gain intuition about how the measures
proposed in the previous section quantify perturbation
spreading in networks and to see how they compare to
the standard measures.

The trajectory of each node i can be solved analyti-
cally, which reads

xi(t) =





e−βt for i = 1

e−βt


1− e−αt

i−2∑

j=0

(αt)j

j!


 for i ≥ 2 .

(27)

As discussed in Sec. III, the measures characterizing the

network response latency, the signal arrival time tpeaki

and the activity amplitude xi(t
peak
i ), cannot be deter-

mined analytically via Eq. (7).

Alternatively, we analytically quantify the network re-
sponse times and response magnitudes from the prob-
abilistic perspective we proposed in Sec. IV. Using
Eqns. (13), (16), (17), (20), and (24), we obtain the
effective partition function Zi, the effective probability
density ρi(t), the typical response time 〈t〉i, the typical
response duration σi, and the typical response magnitude
Hi as follows:

Zi =
1

β

(
α

α+ β

)i−1
, (28)

ρi(t) =

(
α

α+ β

)1−i
βe−βt


1− e−αt

i−2∑

j=0

(αt)j

j!


 ,

(29)

〈t〉i =
α+ iβ

αβ + β2
, (30)
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Figure 4. (color online) Consistent quantification of perturbation spreading in random networks. Illustration of
the measures introduced above, describing approximate time and impact of the perturbation. (a) Illustration of the network
topology, a connected random network with N = 100 nodes, M = 200 and β = 1. All results are averaged over 10 different
realizations of the network topology and perturbation of all nodes. Error bars indicate the standard deviation across these 1000
realizations of transient spreading, indicating a high degree of consistency across network topologies and perturbation sites. (b)
Example response dynamics of 5 nodes in the network with different distances to the initial perturbation. (c) Comparison of

the typical response time 〈t〉i and the peak response time tpeaki for α = 1. (d) Measurements of the strength of the perturbation
given by the typical response magnitude H, the response at the typical response time xi

(
〈t〉i

)
and the response amplitude

xi
(
tpeaki

)
.

σi =

√
α2 + 2αβ + iβ2

(αβ + β2)
, (31)

Hi =
(α+ β)√

α2 + 2αβ + iβ2

(
α

α+ β

)i−1
. (32)

For the detailed calculations see Appendix B. Together
with the graph distance d ≡ d(i, 1) = i− 1 between node
i and the initially perturbed node 1, these equations also
provide an explicit dependence.

How do these novel quantities characterize the per-
turbation spreading in networks compared with the

common measures, i.e., the first peak time tpeaki and the

activity amplitude xi(t
peak
i )?

Fig. 3(b) shows the response of the first few nodes in
the chain. The further from the source of the perturba-
tion, the later the response occurs and the weaker it is.

Both the peak response time tpeaki as well as the typical
response time 〈t〉i show that the perturbation propagates
through the chain with a constant speed [see Fig. 3(c)].

Using Eq. (30) we calculate the speed with respect to the
distance d from the origin of the perturbation as

Cchain :=

(
d〈t〉i
dd

)−1
= α+ β , (33)

which agrees with the speed obtained from the observed
arrival times.

Similarly, all measures of the response strength scale
identically with increasing distance. Fig. 3(d) illustrates
this scaling for the first nodes in the chain and shows
that the typical response magnitude Hi and the response

amplitude xi(t
peak
i ) differ by a constant factor, when the

distance is large.
Together, this shows that the proposed measures ac-

curately characterize the response strength and time.

B. Consistent quantification across topologies and
perturbed units

Can these measures also characterize the response for
complex coupling topologies? To investigate how consis-
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tent the quantifiers are across different network topolo-
gies and the choice of the perturbed unit, we study 100
systems (Def. 1) with random topologies, for each topol-
ogy perturbing each unit one by one and measuring the
responses. Fig. 4 shows that, no matter which node is
perturbed initially, the response is accurately character-
ized by the typical response time and magnitude. As for
the chain, the typical response time 〈t〉i is slightly larger

than the peak response time tpeaki by a constant and the
typical response magnitude Hi is larger than the response

amplitude xi(t
peak
i ) by a constant factor. Across all 100

random topologies tested and all units perturbed in each
network, the quantifiers consistently indicate the same
distance-dependent response times and response magni-
tudes with only small deviations.

Results for other interaction topologies are qualita-
tively the same as shown in the appendix (see section
C).

In all figures we compare our measures to the time and
height of the first peak of xi(t). Given a general network
with general coupling strengths it is possible that xi(t) is
not in fact unimodal and may have multiple peaks, espe-
cially in scale-free or star-like networks. Still, measures
such as the total response strength and the expected ar-
rival time describe the dynamics of the perturbation with
only a few numbers. If needed, one can easily extend the
above definitions to include higher-order measures such
as skewness to more accurately describe the perturbation.

VI. SUMMARY AND CONCLUSIONS

How networked systems transiently respond to ex-
ternal signals fundamentally underlies their robustness
against perturbations. For instance, for a range of tran-
sient phenomena, such as the spreading of perturba-
tions in power grids21 or of viral infections during an
epidemic9, the transients are relevant because brief devia-
tions may cause system-wide failures or undesired states,
from overloads of transmission lines to power outages and
from an increased number of infected individuals to sec-
ondary outbreaks. Yet dynamical systems theory so far
mainly focuses on steady states, thereby neglecting the
dynamics during transients. In particular it remained un-
clear how to analytically quantify arrival time or impact
of a perturbation in a setting of deterministic network
dynamical systems.

In this article, we changed the perspective on how to
interpret transient trajectories and proposed quantitative
measures for the arrival times and response strengths to
perturbations, revealing how suitably normalized trajec-
tories xi(t) may be viewed as equivalent to probability
densities. This enabled us to intuitively define measures
for the arrival times as the effective expectation values
〈t〉i and the impact of the perturbation via the standard
deviation σi and resulting response magnitude Hi.

We remark that already the total response Zi is a valid
measure of response strength. However, which quantity

is appropriate will depend on the system and the ques-
tion about the transients to be answered. For instance, if
a voltage excursion in an electric signal may not exceed
a certain maximum to protect an electric device from
shutdown, the magnitude of a response Hi might be a
relevant quantity, whereas if a current charges a device
that cannot safely store more than a certain amount of
electrical charge, the total response Zi is more suitable.
In alternative settings, for instance, the total response
strength Zi is clearly valuable describing the total num-
ber of infected individuals at a given location in models
of epidemics and the expected value 〈t〉i and standard de-
viation σi provide key information about its arrival time
and duration, indicating when the outbreak is most se-
vere. Such quantities may provide valuable information
across systems and, e.g., help suggesting periods and lo-
cations where additional preventive measures should be
taken.

For basic linear dynamical systems, we derived sim-
ple analytical expressions writing all of those measures
as direct functions of the inverse of the effective cou-
pling matrix. We demonstrated that these expected value
quantifiers accurately describe the spreading of the per-
turbation across different network topologies and system
parameters. They scale with distance in the same way
as standard measures such as the time and height of the
largest perturbation. As such, these measures provide
an efficient analytical tool to predict and study transient
spreading dynamics.

Finally, we remark that these expected value quan-
tities can in principle be applied also to more general
linear systems, independent even of the positivity
of the trajectory, and may serve as qualitative and
sometimes quantitative evaluators for nonlinear systems
as well. For instance, in systems where a perturbation
causes damped oscillations with alternating positive
and negative periods of the state variables xi(t) or
observable g(xi(t)), computing the average 〈t〉i would
often still provide a reasonable estimator for the order
of magnitude of the typical response time. Moreover,
nonlinear systems where the nonlinearities do not alter
the qualitative form of the trajectory substantially until
after the signal variation has almost ended, may be
equally evaluated, because of the only minor influence
of the tail of ρi(t) on the effective expected values. How
to extend the concept of expected value quantifiers to
reveal further information about transient dynamics and
how to generalize some of them to broader classes of
linear and nonlinear systems needs to be explored in
future research.
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Appendix A: Alternative derivation of the analytical expressions

In this section we give an alternative proof for expression for the total response strength Zi given by Eq. (14) via
integration of the linear differential equation defined in Eq. (4). Therefore we start by integrating Eq. (4) which gives

x(t) = MX(t), (A1)

where we substituted the definition of the indefinite integral

X(t) =

∫
x(t)dt. (A2)

We obtain

X(t) = M−1x(t) (A3)

which we substitute into the definition of the total response strength Zi from Eq. (13)

Zi =

∫ ∞

0

xi(t)dt (A4)

= [Xi(t)]
∞
0 (A5)

= [
(
M−1x(t)

)
i
]∞0 (A6)

= −
(
M−1x0

)
i

(A7)

so that we obtain the same expression for the total response strength as derived in Eq. (14).

Appendix B: Network response measures in homogeneous chains

In this section we show the detailed calculation of the network response measures: the total response strength
Zi, the effective probability density pi(t), the typical response time 〈t〉i, the effective standard deviation σi, and the
response height Hi.

1. Total repsonse strength Zi and effective probability density ρi(t)

We start with the total response strength Zi, which allows the calculation of the response density [Eq. (16] and the
typical repsonse time [Eq. (17]. To solve the integral in the definition of Zi [Eq. (13], we have to find the indefinite
integral

Xi(t) :=

∫
xi(t) dt. (B1)

We assume an ansatz

Xi(t) = −e
−βt

β
− e−(α+β)t

i−2∑

j=0

Aj t
j , (B2)

where the coefficients Aj yet need to be determined. Calculating the time derivative of both sides of Eq. (B2) yields

the condition Ẋi(t)
!
= xi(t) given by the definition of Xi(t) [Eq. (B1)] and thereby the coefficients Aj . The time

derivative of the right hand side of Eq. (B2) reads

Ẋi(t) = e−βt − e−(α+β)t


i−2∑

j=0

jAjt
j−1 − (α+ β)

i−2∑

j=0

Ajt
j


 . (B3)

Defining a new index j′ = j + 1 gives

Ẋi(t) = e−βt − e−(α+β)t


i−2∑

j=0

jAjt
j−1 − (α+ β)

i−1∑

j′=1

Aj′−1t
j′−1


 . (B4)
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Now we combine the two sums into one running from 1 to i− 2 and obtain

Ẋi(t) = e−βt − e−(α+β)t



−(α+ β)Ai−2︸ ︷︷ ︸
!
=

αi−2

(i− 2)!
(I)

ti−2 +

i−2∑

j=1

(j Aj − (α+ β)Aj−1)︸ ︷︷ ︸
!
=

αj−1

(j − 1)!
(II)

tj−1



, (B5)

where the relations (I) and (II) follow from the condition that Ẋi(t)
!
= xi(t) with the solutions xi(t) in Eq. (27)

Ẋi(t)
!
= e−βt


1− e−αt

i−2∑

j=0

(αt)j

j!


 (B6)

for i ≥ 2. From relation (I) we obtain

Ai−2 = − αi−2

(i− 2)!

1

(α+ β)
, (B7)

and the remaining coefficients are obtained recursively using relation (II). This procedure yields the coefficients

Aj = −
i−2∑

`=j

α`

j!(α+ β)`−j+1
, (B8)

for j ∈ {0, . . . , i − 2}. We use the indefinite intergral Xi(t) we determined [Eq. (B8) and Eq. (B2)] to calculate the
total repsonse strength by its definition given in Eq.(13)

Zi = Xi(∞)−Xi(0)

= lim
t→∞


−e

−βt

β
− e−(α+β)t

i−2∑

j=0

Ajt
j


−

(
− 1

β
−A0

)
. (B9)

The first term converges to zero, since lim
t→∞

e−ct = 0 for any c ∈ R≥0. So does the second term because

lim
t→∞

e−ct
n∑

i=0

ti = lim
t→∞

∑n
i=0 t

i

ect
L’Hospital’s

=
Rule

lim
t→∞

n!

cnect
= 0 (B10)

holds for finite n ∈ N. Thus we have

Zi =
1

β
+A0

Eq.(B8)
=

1

β
−
m−2∑

j=0

αj

(α+ β)j+1

=
1

β
− 1

α+ β

i−2∑

j=0

αj

(α+ β)j

=
1

β
− 1

α+ β




1−
(

α
α+β

)i−1

1− α
α+β


 (B11)

for all units i ≥ 2. For i = 1 using the solution given in Eq. (27) the total response strength becomes

Z1 =
1

β
. (B12)
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With further simplifications we obtain

Zi =
1

β

(
α

α+ β

)i−1
(B13)

for all i ∈ {1, . . . , N}.
Now we calculate the effective probability density directly following the definition [Eq. (16)]. Using the expression

of the total repsonse strength [Eq. (B13)], we obtain

ρi(t) =

(
α

α+ β

)1−i
βe−βt


1− e−αt

i−2∑

j=0

(αt)j

j!


 . (B14)

2. Typical response time 〈t〉i

As the next step we calculate the typical response time 〈t〉i based on the previous results. Following the definition of
〈t〉i in Eq. (17) and the definition of the effective probability density ρi(t) in Eq. (16), we have by partial integration

〈t〉i =
1

Zi

(
Xi(t)t

∣∣∣
t→∞

t=0
−
∫ ∞

0

Xi(t
′) dt′

)
, (B15)

where Xi(t) is defined in Eq. (B1) and given by Eq. (B2) and Eq. (B8). Substituting Zi with the expression in
Eq. (B2) yields

〈t〉i =
1

Zi


t


−e

−βt

β
− e−(α+β)t

i−2∑

j=0

Ait
i



∣∣∣
t→∞

t=0
+

∫ ∞

0

(
e−βt

′

β
+ e−(α+β)t

′
m−2∑

i=0

Ait
′i
)
dt′
)
. (B16)

It is easy to see that the first term vanishes [cf. Eq. (B10)], hence the expression becomes

〈t〉i =
1

Zi



∫ ∞

0

e−βt
′

β
dt′ +

∫ ∞

0


e−(α+β)t′

i−2∑

j=0

Ajt
′j


 dt′


 . (B17)

The first integral is easy to solve:
∫ ∞

0

e−βt

β
dt =

−e−βt
β2

∣∣∣
∞

0
=

1

β2
, (B18)

whereas the second one can be solved with a similar method as used for calculating the total response strength Zi.
We define

Fi(t) :=

∫ t

−∞


e−(α+β)t′

i−2∑

j=0

Ajt
′j


 dt′ (B19)

so that the typical response time 〈t〉i can be written as

〈t〉i =
1

Zi

(
1

β2
+ Fi(∞)− Fi(0)

)
. (B20)

Again we assume an ansatz for the integral

Fi(t) = e−(α+β)t
i−2∑

j=0

Bj t
j . (B21)

According to the definition [Eq. (B19)], the time derivative of Fi(t) has to obey

Ḟi(t)
!
= e−(α+β)t

i−2∑

j=0

Aj t
j . (B22)
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Inserting the ansatz for Fi(t) [Eq. (B21)] into Eq. (B22) and comparing the coefficients allows to determine the
coefficients Bj . We take the time derivative of the ansatz and obtain

Ḟi(t) = e−(α+β)t



i−2∑

j=0

iBjt
j−1 − (α+ β)

i−2∑

j=0

Bjt
j


 . (B23)

Defining a new index j′ = j + 1 for the second sum to shift the order of t yields

Ḟi(t) = e−(α+β)t



i−2∑

j=0

jBjt
j−1 − (α+ β)

i−1∑

j′=1

Bj′−1t
j′−1


 . (B24)

Again we combine the sums into one and compare the coefficients, thus obtain

Ḟi(t) = e−(α+β)t


−(α+ β)Bi−2︸ ︷︷ ︸

!
= Ai−2

ti−2 +

i−2∑

j=1

(jBj − (α+ β)Bj−1)︸ ︷︷ ︸
!
= Aj−1

tj−1


 . (B25)

The cofficients of the highest order of t reads

Bi−2 =
−Ai−2
(α+ β)

. (B26)

The remaining coefficients are again obtained recursively

Bj =
(j + 1)Bj+1

(α+ β)
− Aj

(α+ β)
. (B27)

Hence, the general expression of coefficients can be written as

Bj = −
i−2∑

`=j

A`

(α+ β)
`−j+1

`!

j!
(B28)

for j ∈ {0, · · · , i−2}. Now we calculate the typical response time 〈t〉i using the expression of Fi(t) given by Eq. (B21)
and Eq. (B28). Writing Fi(t) explicitly in Eq. (B20) yields

〈t〉i =
1

Zi


 1

β2
+ lim
t→∞

e−(α+β)t
i−2∑

j=0

Bjt
j −B0


 . (B29)

As discussed [cf. Eq. (B10)], the term in the middle converges to zero, which leaves

〈t〉i =
1

Zi

(
1

β2
−B0

)
. (B30)

Here B0 can be determined using Eq. (B28) and Eq. (B8) as

B0 = −
i−2∑

j=0

Ajj!

(α+ β)
j+1

=

i−2∑

j=0

j!

(α+ β)
j+1

i−2∑

k=j

αk

j!(α+ β)k−j+1

=

i−2∑

j=0

1

(α+ β)
2

i−2∑

k=j

(
α

α+ β

)k
. (B31)
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Noticing that the sums are determined by the formula for summing geometric series, we further simplify the expression
of B0 and obtain

B0 =
1

β2
−

(
α

α+β

)i−1

(α+ β)

(
α+ iβ

β2

)
. (B32)

Using this result and the expression of the total response strength (Eq. B13), we thus obtain the effective response
time

〈t〉i =
α+ iβ

αβ + β2
. (B33)

We notice that 〈t〉i shows a linear dependence on the index of unit i:

d〈t〉i
di

=
1

α+ β
. (B34)

That means, in a homogeneous directed chain, the perturbation spreads with a constant speed 1
α+β , if we measure

the arrival time of the perturbation with the effective response time 〈t〉i.

3. Typical response duration σi and response magnitude Hi

Next we derive the effective standard deviation σi which we interpret as the typical response duration [Eq. (20)]
and the typical response magnitude Hi [Eq. (24)], which quantify the width and the height of the response profile.
First we calculate the second central moment of t and using the result the square of the effective standard deviation
[Eq. (20)]. The second moment of t is given as

〈t2〉i =

∫ ∞

0

ρi(t
′)t′2 dt′

Eq.16
=

1

Zi

∫ ∞

0

xi(t
′)t′2 dt′. (B35)

Partial integration yields

Zi〈t2〉i = Xi(t)t
2
∣∣∞
0
− 2

∫ ∞

0

Xi(t
′)t′ dt′, (B36)

where Xi(t) is defined above in Eq. (B1). To determine the integral in Eq. (B36), we define

F̃i(t) :=

∫ t

−∞
Xi(t

′) dt′. (B37)

Using the expression of Xi(t) [Eq. (B2)] and Fi(t) [Eq. (B19)], we obtain the following relation between F̃i(t) and
Fi(t):

F̃i(t)
Eq.B2

=

∫ t

−∞


−e

−βt′

β
− e−(α+β)t′

i−2∑

j=0

Aj t
′j


 dt′

Eq.B19
=

∫ t

−∞

(
−e
−βt′

β

)
dt′ − Fi(t)

Eq.B18
=

e−βt

β2
− Fi(t). (B38)

Expressing the integral in Eq. (B36) in terms of F̃i(t) and using partial integration again, we have

Zi〈t2〉i = Xit
2
∣∣∞
0
− 2

(
F̃i(t)t

∣∣∞
0
−
∫ ∞

0

F̃i(t
′)dt′

)

= Xit
2
∣∣∞
0
− 2F̃i(t)t

∣∣∞
0︸ ︷︷ ︸

=0

+2

∫ ∞

0

F̃i(t
′)dt′. (B39)
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The first two terms vanish each according to Eq. (B10). We then use the relation Eq. (B38), thus

Zi〈t2〉i = 2

∫ ∞

0

e−βt
′

β2
dt′ − 2

∫ ∞

0

Fm(t′)dt′

= − 2e−βt

β3

∣∣∣∣
∞

0

− 2

∫ ∞

0

Fm(t′)dt′. (B40)

By futher defining

F̄i(t) :=

∫ t

−∞
Fi(t

′) dt′, (B41)

we write Zi〈t2〉i in terms of the integral F̄i(t):

Zi〈t2〉i =
2

β3
− 2F̄i(t)

∣∣∞
0

=
2

β3
− 2F̄i(∞) + 2F̄i(0) (B42)

In analogy to the method for deriving Fi(t), we again assume an ansatz for F̄i(t)

F̄i(t) = e−(α+β)t
i−2∑

j=0

Cjt
j , (B43)

which by definition obeys

˙̄Fi(t)
!
= Fi(t)

Eq.B21
= e−(α+β)t

i−2∑

j=0

Bj t
j . (B44)

Again, by taking the derivative of the ansatz of F̄i(t) and comparing the coefficients, as we did before in deriving
Fi(t) [Eq. (B23 - B28)], we obtain the coefficients

Cj = −
i−2∑

`=j

Bj

(α+ β)
`−j+1

`!

j!
. (B45)

Now we determine Zi〈t2〉i by means of the expression of F̄i(t). Inserting Eq. (B43) into Eq. (B40), we have

Zi〈t2〉i =
2

β3
− 0 + 2C0

=
2

β3
+ 2C0. (B46)

Using the expression of Bj [Eq. (B28)] and Aj [Eq. (B8)], we determine C0 as follows:

C0 = −
i−2∑

j=0

Bj

(α+ β)
j+1

j!

=

i−2∑

j=0

j!

(α+ β)
j+1

i−2∑

k=j

k!

j!

1

(α+ β)
k−j+1

i−2∑

`=k

α`

(α+ β)
`−k+1

1

k!

=
1

(α+ β)
3

i−2∑

j=0

i−2∑

k=j

i−2∑

`=k

(
α

α+ β

)`

=
1

β3
−
(

α

α+ β

)i−1
1

β

(
1

β2
+

(i− 1)

(α+ β)β
+

(i− 1)

(α+ β)2
+

(i− 2)(i− 1)

2(α+ β)2

)
. (B47)

In the last equation we executed the geometric sums. Substituting C0 and the total response strength Zi [Eq. (B13)]
into Eq. (B46) gives

〈t2〉i =
2α2 + 2αβ(i+ 1) + iβ2(i+ 1)

(αβ + β2)2
. (B48)
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Now we obtain the typical response duration σi using its definition [Eq. (20)], the expression of the typical response
time 〈t〉i [Eq. (B33)] and the second moment 〈t2〉i [Eq. (B48)]:

σi =

√
α2 + 2αβ + iβ2

(αβ + β2)
. (B49)

Hence, by definition [Eq. (24)], the typical response magnitude Hi is given by

Hi =
(α+ β)√

α2 + 2αβ + iβ2

(
α

α+ β

)i−1
. (B50)

Appendix C: Quantifying spreading across network ensembles

In this section we give additional simulation results. We show that across various network topologies that the
“effective expectation values” we proposed provide consistent measures of the response characteristics independent of
the network topology. We consider different network topologies and perform the same analysis on them as in Sec. V,
averaging the result of a total of 1000 different initial perturbations. For small-world networks [Fig. 5], scale-free
networks [Fig. 6] and random geometric networks [Fig. 7] we observe qualitatively the same results as obtained in
Fig. 3. Thus, also for differing network topologies the typical response time and the typical response magnitude give
a consistent description of the response dynamics.
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Figure 5. (color online) Perturbation spreading in a random small-world network. Illustration of the measures
introduced above, describing approximate time and impact of the perturbation. (a) Illustration of the network topology, a
small-world network22 constructed from a ring of N = 100 nodes. Each node is connected to its two nearest neighbors on
either side (for a total of 4 connections) and 10 links are uniformly randomly added to create shortcuts in the network. As
always, we choose β = 1. All results are averaged over 10 different realizations of the network topology and perturbation of all
nodes. Error bars indicate the standard deviation. (b) Example response dynamics of 5 nodes in the network with different
distances to the initial perturbation. (c) Comparison of the typical response time 〈t〉i and the peak response time tpeak,i for
α = 1. (d) Measurements of the strength of the perturbation given by the typical response strength Hi, the response at the
typical response time xi

(
〈t〉i

)
and the response amplitude xi (tpeak,i).
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Figure 6. (color online) Perturbation spreading in a random scale-free network. Illustration of the measures introduced
above, describing approximate time and impact of the perturbation. (a) Illustration of the network topology, a scale-free network
with N = 100 nodes. The network is constructed by sequentially adding nodes with two links to the network, starting from a
core of 5 fully connected nodes. New nodes are attached to the network following the preferential attachment mechanism23.
As always, we choose β = 1. All results are averaged over 10 different realizations of the network topology and perturbation of
all nodes. Error bars indicate the standard deviation. (b) Example response dynamics of 4 nodes in the network with different
distances to the initial perturbation. (c) Comparison of the typical response time 〈t〉i and the peak response time tpeak,i for
α = 1. (d) Measurements of the strength of the perturbation given by the typical response strength Hi, the response at the
typical response time xi

(
〈t〉i

)
and the response amplitude xi (tpeak,i).
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Figure 7. (color online) Perturbation spreading in a random geometric network. Illustration of the measures
introduced above, describing approximate time and impact of the perturbation. (a) Illustration of the network topology, a
random, geometrically embedded network with N = 100 nodes. The network is constructed as a periodic Delaunay triangulation
of 100 points uniformly randomly distributed in the unit square. As always, we choose β = 1. All results are averaged over 10
different realizations of the network topology and perturbation of all nodes. Error bars indicate the standard deviation. (b)
Example response dynamics of 5 nodes in the network with different distances to the initial perturbation. (c) Comparison of the
typical response time 〈t〉i and the peak response time tpeak,i for α = 1. (d) Measurements of the strength of the perturbation
given by the typical response strength Hi, the response at the typical response time xi

(
〈t〉i

)
and the response amplitude

xi (tpeak,i).
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