285 research outputs found

    Function based control for bilateral systems in tele-micromanipulation

    Get PDF
    Design of a motion control system should take into account (a) unconstrained motion performed without interaction with environment or any other system, and (b) constrained motion with system in contact with environment or other systems. Control in both cases can be formulated in terms of maintaining desired system configuration what makes essentially the same structure for common tasks: trajectory tracking, interaction force control, compliance control etc. The same design approach can be used to formulate control in bilateral systems aimed to maintain desired functional relations between human and environment through master and slave motion systems. Implementation of the methodology is currently being pursued with a custom built Tele-micromanipulation setup and preliminary results concerning force/position tracking and transparency between master and slave are clearly demonstrated

    Novel observers for compensation of communication delay in bilateral control systems

    Get PDF
    The problem of communication delay in bilateral or teleoperation systems is even more emphasized with the use of the internet for communication, which may give rise to loss of transparency and even instability. To address the problem, numerous methods have been proposed. This study is among the few recent studies taking a disturbance observer approach to the problem of time delay, and introduces a novel sliding-mode observer to overcome specifically the effects of communication delay in the feedback loop. The observer operates in combination with a PD+ controller which controls the system dynamics, while also compensating load torque uncertainties on the slave side. To this aim, an EKF based load estimation algorithm is performed on the slave side. The performance of this approach is tested with computer simulations for the teleoperation of a 1-DOF robotic arm. The simulations reveal an acceptable amount of accuracy and transparency between the estimated slave and actual slave position under both constant and random measurement delay and variable and step-type load variations on the slave side, motivating the use of the approach for internet-based bilateral control systems

    Experimental Evaluation of Novel Master-Slave Configurations for Position Control under Random Network Delay and Variable Load for Teleoperation

    Get PDF
    This paper proposes two novel master-slave configurations that provide improvements in both control and communication aspects of teleoperation systems to achieve an overall improved performance in position control. The proposed novel master-slave configurations integrate modular control and communication approaches, consisting of a delay regulator to address problems related to variable network delay common to such systems, and a model tracking control that runs on the slave side for the compensation of uncertainties and model mismatch on the slave side. One of the configurations uses a sliding mode observer and the other one uses a modified Smith predictor scheme on the master side to ensure position transparency between the master and slave, while reference tracking of the slave is ensured by a proportional-differentiator type controller in both configurations. Experiments conducted for the networked position control of a single-link arm under system uncertainties and randomly varying network delays demonstrate significant performance improvements with both configurations over the past literature

    Output Feedback Bilateral Teleoperation with Force Estimation in the Presence of Time Delays

    Get PDF
    This thesis presents a novel bilateral teleoperation algorithm for n degree of freedom nonlinear manipulators connected through time delays. Teleoperation has many practical uses, as there are many benefits that come from being able to operate machines from a distance. For instance, the ability to send a remote controlled robotic vehicle into a hazardous environment can be a great asset in many industrial applications. As well, the field of remote medicine can benefit from these technologies. A highly skilled surgeon could perform surgery on a patient who is located in another city, or even country. Earth to space operations and deep sea exploration are other areas where teleoperation is quite useful. Central to the approach presented in this work is the use of second order sliding mode unknown input observers for estimating the external forces acting on the manipulators. The use of these observers removes the need for both velocity and force sensors, leading to a lower cost hardware setup that provides all of the advantages of a position-force teleoperation algorithm. Stability results for this new algorithm are presented for several cases. Stability of each of the master and slave sides of the teleoperation system is demonstrated, showing that the master and slave are both stabilized by their respective controllers when the unknown input observers are used for state and force estimation. Additionally, closed loop stability results for the teleoperation system connected to a variety of slave side environments are presented. Delay-independent stability results for a linear spring-damper environment as well as a general finite-gain stable nonlinear environment are given. Delay-dependent stability results for the case where the slave environment is a liner spring-damper and the delays are commensurate are also presented. As well, stability results for the closed loop under the assumption that the human operator is modeled as a finite-gain stable nonlinear environment are given. Following the theoretical presentation, numerical simulations illustrating the algorithm are presented, and experimental results verifying the practical application of the approach are given

    Characterization and evaluation of a bilateral command architecture for a tele-operated system

    Get PDF
    The objective of the stage was the evaluation of a bilateral teleoperation benchmark for a tele-echography system and the final goal was to test the effectiveness of the wave variables formulation on this architecture. When communicating over a channel that introduces a time delay we need to encode the signals in a way that helps prevent instability of the system: in this thesis we used the so called wave variables formulation applied on a real tele-echography architecture (used to perform an echography on a patient that is in a different location from the doctor performing it). As an additional aid (other than visual feedback) we realized a force feedback from the patient robot to the doctor's probe using data collected by a force sensorope

    Delay compensation in bilateral teleoperation using predictor observers

    Get PDF
    Destabilization and performance degradation problems caused by the time delay in communication channel is a serious problem in bilateral teleoperation. In particular, variability of the delay due to limited bandwidth, long distance or congestion in transmission problems has been a real challenge in bilateral teleoperation research since the internet communication has become prevalent. Many existing delay compensation techniques are designed for linear teleoperator systems. In order to implement them on real bilateral systems, the nonlinear dynamics of the robots must first be linearized. For this purpose feedback linearization is usually employed. In this thesis, the delay compensation problem is tackled in an observer framework by designing two observers. Integration of a disturbance observer to the slave side implies a linearized slave dynamics with nominal parameters. Disturbance observer estimates the total disturbance (nonlinear terms, parametric uncertainties and external disturbances) on the slave system. A second observer is designed at the master side to predict states of the slave. This observer can be designed using a variety of linear or nonlinear methods. In order to have finite-time convergence, a sliding mode observer is designed at the master side. It is shown that this observer predicts the future positions and/or velocities of the slave and use of such predictions in the computation of a simple PD control law implies stable operation for the bilateral system. Since the disturbance observer increases the robustness of the slave system, the performance of the resulting bilateral system is quite satisfactory. Force reflecting bilateral teleoperation is also considered in this thesis. Integrating the proposed observer based delay compensation technique into the well known four-channel control architecture not only stable but also transparent bilateral teleoperation is achieved. Simulations with bilateral systems consisting of 2 DOF scara robots and pantograph robots, and experiments with bilateral systems consisting of a pair of single link robots and a pair of pantograph robots validate the proposed method

    Teleoperated and cooperative robotics : a performance oriented control design

    Get PDF

    The Shape of Damping: Optimizing Damping Coefficients to Improve Transparency on Bilateral Telemanipulation

    Get PDF
    This thesis presents a novel optimization-based passivity control algorithm for hapticenabled bilateral teleoperation systems involving multiple degrees of freedom. In particular, in the context of energy-bounding control, the contribution focuses on the implementation of a passivity layer for an existing time-domain scheme, ensuring optimal transparency of the interaction along subsets of the environment space which are preponderant for the given task, while preserving the energy bounds required for passivity. The involved optimization problem is convex and amenable to real-time implementation. The effectiveness of the proposed design is validated via an experiment performed on a virtual teleoperated environment. The interplay between transparency and stability is a critical aspect in haptic-enabled bilateral teleoperation control. While it is important to present the user with the true impedance of the environment, destabilizing factors such as time delays, stiff environments, and a relaxed grasp on the master device may compromise the stability and safety of the system. Passivity has been exploited as one of the the main tools for providing sufficient conditions for stable teleoperation in several controller design approaches, such as the scattering algorithm, timedomain passivity control, energy bounding algorithm, and passive set position modulation. In this work it is presented an innovative energy-based approach, which builds upon existing time-domain passivity controllers, improving and extending their effectiveness and functionality. The set of damping coefficients are prioritized in each degree of freedom, the resulting transparency presents a realistic force feedback in comparison to the other directions. Thus, the prioritization takes effect using a quadratic programming algorithm to find the optimal values for the damping. Finally, the energy tanks approach on passivity control is a solution used to ensure stability in a system for robotics bilateral manipulation. The bilateral telemanipulation must maintain the principle of passivity in all moments to preserve the system\u2019s stability. This work presents a brief introduction to haptic devices as a master component on the telemanipulation chain; the end effector in the slave side is a representation of an interactive object within an environment having a force sensor as feedback signal. The whole interface is designed into a cross-platform framework named ROS, where the user interacts with the system. Experimental results are presented
    corecore