5,268 research outputs found

    Sleep monitor: A tool for monitoring and categorical scoring of lying position using 3D camera data

    Get PDF
    We present a software package for analysing body positions of a subject when they are lying or sleeping in their bed. The software is designed to interface to inexpensive sensors, such as the Microsoft Kinect, and is thus suitable for monitoring at the subjects own home, rather than a dedicated sleep lab. The system is invariant to bed clothing and levels of ambient lighting. Analysis time for a single night session is under five minutes, a significant improvement over the 30–60 min analysis time reported in the literature

    Video-based Bed Monitoring

    Get PDF

    Under the Cover Infant Pose Estimation using Multimodal Data

    Full text link
    Infant pose monitoring during sleep has multiple applications in both healthcare and home settings. In a healthcare setting, pose detection can be used for region of interest detection and movement detection for noncontact based monitoring systems. In a home setting, pose detection can be used to detect sleep positions which has shown to have a strong influence on multiple health factors. However, pose monitoring during sleep is challenging due to heavy occlusions from blanket coverings and low lighting. To address this, we present a novel dataset, Simultaneously-collected multimodal Mannequin Lying pose (SMaL) dataset, for under the cover infant pose estimation. We collect depth and pressure imagery of an infant mannequin in different poses under various cover conditions. We successfully infer full body pose under the cover by training state-of-art pose estimation methods and leveraging existing multimodal adult pose datasets for transfer learning. We demonstrate a hierarchical pretraining strategy for transformer-based models to significantly improve performance on our dataset. Our best performing model was able to detect joints under the cover within 25mm 86% of the time with an overall mean error of 16.9mm. Data, code and models publicly available at https://github.com/DanielKyr/SMa

    Exploring the Landscape of Ubiquitous In-home Health Monitoring: A Comprehensive Survey

    Full text link
    Ubiquitous in-home health monitoring systems have become popular in recent years due to the rise of digital health technologies and the growing demand for remote health monitoring. These systems enable individuals to increase their independence by allowing them to monitor their health from the home and by allowing more control over their well-being. In this study, we perform a comprehensive survey on this topic by reviewing a large number of literature in the area. We investigate these systems from various aspects, namely sensing technologies, communication technologies, intelligent and computing systems, and application areas. Specifically, we provide an overview of in-home health monitoring systems and identify their main components. We then present each component and discuss its role within in-home health monitoring systems. In addition, we provide an overview of the practical use of ubiquitous technologies in the home for health monitoring. Finally, we identify the main challenges and limitations based on the existing literature and provide eight recommendations for potential future research directions toward the development of in-home health monitoring systems. We conclude that despite extensive research on various components needed for the development of effective in-home health monitoring systems, the development of effective in-home health monitoring systems still requires further investigation.Comment: 35 pages, 5 figure
    • …
    corecore