799 research outputs found

    Statistical modeling of skewed data using newly formed parametric distributions

    Full text link
    Several newly formed continuous parametric distributions are introduced to analyze skewed data. Firstly, a two-parameter smooth continuous lognormal-Pareto composite distribution is introduced for modeling highly positively skewed data. The new density is a lognormal density up to an unknown threshold value and a Pareto density for the remainder. The resulting density is similar in shape to the lognormal density, yet its upper tail is larger than the lognormal density and the tail behavior is quite similar to the Pareto density. Parameter estimation methods and the goodness-of-fit criterion for the new distribution are presented. A large actuarial data set is analyzed to illustrate the better fit and applicability of the new distribution over other leading distributions. Secondly, the Odd Weibull family is introduced for modeling data with a wide variety of hazard functions. This three-parameter family is derived by considering the distributions of the odds of the Weibull and inverse Weibull families. As a result, the Odd Weibull family is not only useful for testing goodness-of-fit of the Weibull and inverse Weibull as submodels, but it is also convenient for modeling and fitting different data sets, especially in the presence of censoring and truncation. This newly formed family not only possesses all five major hazard shapes: constant, increasing, decreasing, bathtub-shaped and unimodal failure rates, but also has wide variety of density shapes. The model parameters for exact, grouped, censored and truncated data are estimated in two different ways due to the fact that the inverse transformation of the Odd Weibull family does not change its density function. Examples are provided based on survival, reliability, and environmental sciences data to illustrate the variety of density and hazard shapes by analyzing complete and incomplete data. Thirdly, the two-parameter logistic-sinh distribution is introduced for modeling highly negatively skewed data with extreme observations. The resulting family provides not only negatively skewed densities with thick tails, but also variety of monotonic density shapes. The advantages of using the proposed family are demonstrated and compared by illustrating well-known examples. Finally, the folded parametric families are introduced to model the positively skewed data with zero data values

    Statistical analysis of samples from the generalized exponential distribution

    Get PDF
    Diplomová práce se zabývá zobecněným exponenciálním rozdělením jako alternativou k Weibullovu a log-normálnímu rozdělení. Jsou popsány základní charakteristiky tohoto rozdělení a metody odhadu parametrů. Samostatná kapitola je věnována testům dobré shody. Druhá část práce se zabývá cenzorovanými výběry. Jsou uvedeny ukázkové příklady pro exponenciální rozdělení. Dále je studován případ cenzorování typu I zleva, který dosud nebyl publikován. Pro tento speciální případ jsou provedeny simulace s podrobným popisem vlastností a chování. Dále je pro toto rozdělení odvozen EM algoritmus a jeho efektivita je porovnána s metodou maximální věrohodnosti. Vypracovaná teorie je aplikována pro analýzu environmentálních dat.Thesis deals with generalized exponential distribution as an alternative distribution to Weibull and log-normal distributions. At first, properties of the generalized exponential distribution are presented, followed by the methods of parameter estimation. Separate chapter describes goodness of fit tests. Second part of the thesis deals with censored samples. Demonstrative examples of censoring on exponential distribution are presented. Moreover the type I left censored case on generalized exponential distribution, which has not been studied before, is elaborated at the end of the chapter. Simulations for this particular case of censoring are presented and studied in detail. EM algorithm is developed and its efficiency is compared to the maximum likelihood method. The derived theory is then applied on set of environmental data.

    Symmetric and Asymmetric Distributions

    Get PDF
    In recent years, the advances and abilities of computer software have substantially increased the number of scientific publications that seek to introduce new probabilistic modelling frameworks, including continuous and discrete approaches, and univariate and multivariate models. Many of these theoretical and applied statistical works are related to distributions that try to break the symmetry of the normal distribution and other similar symmetric models, mainly using Azzalini's scheme. This strategy uses a symmetric distribution as a baseline case, then an extra parameter is added to the parent model to control the skewness of the new family of probability distributions. The most widespread and popular model is the one based on the normal distribution that produces the skewed normal distribution. In this Special Issue on symmetric and asymmetric distributions, works related to this topic are presented, as well as theoretical and applied proposals that have connections with and implications for this topic. Immediate applications of this line of work include different scenarios such as economics, environmental sciences, biometrics, engineering, health, etc. This Special Issue comprises nine works that follow this methodology derived using a simple process while retaining the rigor that the subject deserves. Readers of this Issue will surely find future lines of work that will enable them to achieve fruitful research results

    Non-negative demand in newsvendor models:The case of singly truncated normal samples

    Get PDF
    This paper considers the classical newsvendor model when demand is normally distributed but with a large coefficient of variation. This leads to observe with a non-negligible probability negative values that do not make sense. To avoid the occurrence of such negative values, first, we derive generalized forms for the optimal order quantity and the maximum expected profit using properties of singly truncated normal distributions. Since truncating at zero produces non-symmetric distributions for the positive values, three alternative models are used to develop confidence intervals for the true optimal order quantity and the true maximum expected profit under truncation. The first model assumes traditional normality without truncation, while the other two models assume that demand follows (a) the log-normal distribution and (b) the exponential distribution. The validity of confidence intervals is tested through Monte-Carlo simulations, for low and high profit products under different sample sizes and alternative values for coefficient of variation. For each case, three statistical measures are computed: the coverage, namely the estimated actual confidence level, the relative average half length, and the relative standard deviation of half lengths. Only for very few cases the normal and the log-normal model produce confidence intervals with acceptable coverage but these intervals are characterized by low precision and stability.Inventory Management; Newsvendor model; Truncated normal; Demand estimation; Confidence intervals; Monte-Carlo simulations

    Estimation of the location and the scale parameters of Burr Type XII distribution

    Get PDF
    The aim of this paper is to estimate the location and the scale parameters of Burr Type XII distribution. For this purpose, different estimation methods, namely, maximum likelihood (ML), modified maximum likelihood (MML), least squares (LS) and method of moments (MM) are used. The performances of these estimation methods are compared via Monte-Carlo simulation study under different sample sizes and parameter settings. At the end of the study, the wind speed data set and the annual flow data sets are analyzed for illustration of the modeling performance of Burr Type XII distribution
    • …
    corecore