2,820 research outputs found

    Graph classes with linear Ramsey numbers

    Get PDF
    The Ramsey number RX(p,q)R_X(p,q) for a class of graphs XX is the minimum nn such that every graph in XX with at least nn vertices has either a clique of size pp or an independent set of size qq. We say that Ramsey numbers are linear in XX if there is a constant kk such that RX(p,q)≀k(p+q)R_{X}(p,q) \leq k(p+q) for all p,qp,q. In the present paper we conjecture that if XX is a hereditary class defined by finitely many forbidden induced subgraphs, then Ramsey numbers are linear in XX if and only if XX excludes a forest, a disjoint union of cliques and their complements. We prove the "only if" part of this conjecture and verify the "if" part for a variety of classes. We also apply the notion of linearity to bipartite Ramsey numbers and reveal a number of similarities and differences between the bipartite and non-bipartite case

    Bipartite, Size, and Online Ramsey Numbers of Some Cycles and Paths

    Get PDF
    The basic premise of Ramsey Theory states that in a sufficiently large system, complete disorder is impossible. One instance from the world of graph theory says that given two fixed graphs F and H, there exists a finitely large graph G such that any red/blue edge coloring of the edges of G will produce a red copy of F or a blue copy of H. Much research has been conducted in recent decades on quantifying exactly how large G must be if we consider different classes of graphs for F and H. In this thesis, we explore several Ramsey- type problems with a particular focus on paths and cycles. We first examine the bipartite size Ramsey number of a path on n vertices, bΛ†r(Pn), and give an upper bound using a random graph construction motivated by prior upper bound improvements in similar problems. Next, we consider the size Ramsey number RΛ† (C, Pn) and provide a significant improvement to the upper bound using a very structured graph, the cube of a path, as opposed to a random construction. We also prove a small improvement to the lower bound and show that the r-colored version of this problem is asymptotically linear in rn. Lastly, we give an upper bound for the online Ramsey number R˜ (C, Pn)

    On Size Multipartite Ramsey Numbers for Stars Versus Paths and Cycles

    Full text link
    Let KlΓ—tK_{l\times t} be a complete, balanced, multipartite graph consisting of ll partite sets and tt vertices in each partite set. For given two graphs G1G_1 and G2G_2, and integer jβ‰₯2j\geq 2, the size multipartite Ramsey number mj(G1,G2)m_j(G_1,G_2) is the smallest integer tt such that every factorization of the graph KjΓ—t:=F1βŠ•F2K_{j\times t}:=F_1\oplus F_2 satisfies the following condition: either F1F_1 contains G1G_1 or F2F_2 contains G2G_2. In 2007, Syafrizal et al. determined the size multipartite Ramsey numbers of paths PnP_n versus stars, for n=2,3n=2,3 only. Furthermore, Surahmat et al. (2014) gave the size tripartite Ramsey numbers of paths PnP_n versus stars, for n=3,4,5,6n=3,4,5,6. In this paper, we investigate the size tripartite Ramsey numbers of paths PnP_n versus stars, with all nβ‰₯2n\geq 2. Our results complete the previous results given by Syafrizal et al. and Surahmat et al. We also determine the size bipartite Ramsey numbers m2(K1,m,Cn)m_2(K_{1,m},C_n) of stars versus cycles, for nβ‰₯3,mβ‰₯2n\geq 3,m\geq 2

    Density theorems for bipartite graphs and related Ramsey-type results

    Full text link
    In this paper, we present several density-type theorems which show how to find a copy of a sparse bipartite graph in a graph of positive density. Our results imply several new bounds for classical problems in graph Ramsey theory and improve and generalize earlier results of various researchers. The proofs combine probabilistic arguments with some combinatorial ideas. In addition, these techniques can be used to study properties of graphs with a forbidden induced subgraph, edge intersection patterns in topological graphs, and to obtain several other Ramsey-type statements

    On-line Ramsey numbers

    Get PDF
    Consider the following game between two players, Builder and Painter. Builder draws edges one at a time and Painter colours them, in either red or blue, as each appears. Builder's aim is to force Painter to draw a monochromatic copy of a fixed graph G. The minimum number of edges which Builder must draw, regardless of Painter's strategy, in order to guarantee that this happens is known as the on-line Ramsey number \tilde{r}(G) of G. Our main result, relating to the conjecture that \tilde{r}(K_t) = o(\binom{r(t)}{2}), is that there exists a constant c > 1 such that \tilde{r}(K_t) \leq c^{-t} \binom{r(t)}{2} for infinitely many values of t. We also prove a more specific upper bound for this number, showing that there exists a constant c such that \tilde{r}(K_t) \leq t^{-c \frac{\log t}{\log \log t}} 4^t. Finally, we prove a new upper bound for the on-line Ramsey number of the complete bipartite graph K_{t,t}.Comment: 11 page
    • …
    corecore