7,307 research outputs found

    Situational Awareness, Driver’s Trust in Automated Driving Systems and Secondary Task Performance

    Full text link
    Driver assistance systems, also called automated driving systems, allow drivers to immerse themselves in non-driving-related tasks. Unfortunately, drivers may not trust the automated driving system, which prevents either handing over the driving task or fully focusing on the secondary task. We assert that enhancing situational awareness can increase a driver's trust in automation. Situational awareness should increase a driver's trust and lead to better secondary task performance. This study manipulated driversʼ situational awareness by providing them with different types of information: the control condition provided no information to the driver, the low condition provided a status update, while the high condition provided a status update and a suggested course of action. Data collected included measures of trust, trusting behavior, and task performance through surveys, eye-tracking, and heart rate data. Results show that situational awareness both promoted and moderated the impact of trust in the automated vehicle, leading to better secondary task performance. This result was evident in measures of self-reported trust and trusting behavior.This research was supported in part by the Automotive Research Center (ARC) at the University of Michigan, with funding from government contract Department of the Army W56HZV-14-2-0001 through the U. S. Army Tank Automotive Research, Development, and Engineering Center (TARDEC). The authors acknowledge and greatly appreciate the guidance of Victor Paul (TARDEC), Ben Haynes (TARDEC), and Jason Metcalfe (ARL) in helping design the study. The authors would also like to thank Quantum Signal, LLC, for providing its ANVEL software and invaluable development support.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/148141/1/SA Trust - SAE- Public.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/148141/4/Petersen et al. 2019.pdfDescription of Petersen et al. 2019.pdf : Final Publication Versio

    User expectations of partial driving automation capabilities and their effect on information design preferences in the vehicle

    Get PDF
    Partially automated vehicles present interface design challenges in ensuring the driver remains alert should the vehicle need to hand back control at short notice, but without exposing the driver to cognitive overload. To date, little is known about driver expectations of partial driving automation and whether this affects the information they require inside the vehicle. Twenty-five participants were presented with five partially automated driving events in a driving simulator. After each event, a semi-structured interview was conducted. The interview data was coded and analysed using grounded theory. From the results, two groupings of driver expectations were identified: High Information Preference (HIP) and Low Information Preference (LIP) drivers; between these two groups the information preferences differed. LIP drivers did not want detailed information about the vehicle presented to them, but the definition of partial automation means that this kind of information is required for safe use. Hence, the results suggest careful thought as to how information is presented to them is required in order for LIP drivers to safely using partial driving automation. Conversely, HIP drivers wanted detailed information about the system's status and driving and were found to be more willing to work with the partial automation and its current limitations. It was evident that the drivers' expectations of the partial automation capability differed, and this affected their information preferences. Hence this study suggests that HMI designers must account for these differing expectations and preferences to create a safe, usable system that works for everyone. [Abstract copyright: Copyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.

    A proposed psychological model of driving automation

    Get PDF
    This paper considers psychological variables pertinent to driver automation. It is anticipated that driving with automated systems is likely to have a major impact on the drivers and a multiplicity of factors needs to be taken into account. A systems analysis of the driver, vehicle and automation served as the basis for eliciting psychological factors. The main variables to be considered were: feed-back, locus of control, mental workload, driver stress, situational awareness and mental representations. It is expected that anticipating the effects on the driver brought about by vehicle automation could lead to improved design strategies. Based on research evidence in the literature, the psychological factors were assembled into a model for further investigation

    The psychology of driving automation: A discussion with Professor Don Norman

    Get PDF
    Introducing automation into automobiles had inevitable consequences for the driver and driving. Systems that automate longitudinal and lateral vehicle control may reduce the workload of the driver. This raises questions of what the driver is able to do with this 'spare' attentional capacity. Research in our laboratory suggests that there is unlikely to be any spare capacity because the attentional resources are not 'fixed'. Rather, the resources are inextricably linked to task demand. This paper presents some of the arguments for considering the psychological aspects of the driver when designing automation into automobiles. The arguments are presented in a conversation format, based on discussions with Professor Don Norman. Extracts from relevant papers to support the arguments are presented

    Examining the effects of emotional valence and arousal on takeover performance in conditionally automated driving

    Get PDF
    In conditionally automated driving, drivers have difficulty in takeover transitions as they become increasingly decoupled from the operational level of driving. Factors influencing takeover performance, such as takeover lead time and the engagement of non-driving-related tasks, have been studied in the past. However, despite the important role emotions play in human-machine interaction and in manual driving, little is known about how emotions influence drivers’ takeover performance. This study, therefore, examined the effects of emotional valence and arousal on drivers’ takeover timeliness and quality in conditionally automated driving. We conducted a driving simulation experiment with 32 participants. Movie clips were played for emotion induction. Participants with different levels of emotional valence and arousal were required to take over control from automated driving, and their takeover time and quality were analyzed. Results indicate that positive valence led to better takeover quality in the form of a smaller maximum resulting acceleration and a smaller maximum resulting jerk. However, high arousal did not yield an advantage in takeover time. This study contributes to the literature by demonstrating how emotional valence and arousal affect takeover performance. The benefits of positive emotions carry over from manual driving to conditionally automated driving while the benefits of arousal do not

    User expectations of partial driving automation capabilities and their effect on information design preferences in the vehicle

    Get PDF
    Partially automated vehicles present interface design challenges in ensuring the driver remains alert should the vehicle need to hand back control at short notice, but without exposing the driver to cognitive overload. To date, little is known about driver expectations of partial driving automation and whether this affects the information they require inside the vehicle. Twenty-five participants were presented with five partially automated driving events in a driving simulator. After each event, a semi-structured interview was conducted. The interview data was coded and analysed using grounded theory. From the results, two groupings of driver expectations were identified: High Information Preference (HIP) and Low Information Preference (LIP) drivers; between these two groups the information preferences differed. LIP drivers did not want detailed information about the vehicle presented to them, but the definition of partial automation means that this kind of information is required for safe use. Hence, the results suggest careful thought as to how information is presented to them is required in order for LIP drivers to safely using partial driving automation. Conversely, HIP drivers wanted detailed information about the system’s status and driving and were found to be more willing to work with the partial automation and its current limitations. It was evident that the drivers’ expectations of the partial automation capability differed, and this affected their information preferences. Hence this study suggests that HMI designers must account for these differing expectations and preferences to create a safe, usable system that works for everyone

    Look Who's Talking Now: Implications of AV's Explanations on Driver's Trust, AV Preference, Anxiety and Mental Workload

    Full text link
    Explanations given by automation are often used to promote automation adoption. However, it remains unclear whether explanations promote acceptance of automated vehicles (AVs). In this study, we conducted a within-subject experiment in a driving simulator with 32 participants, using four different conditions. The four conditions included: (1) no explanation, (2) explanation given before or (3) after the AV acted and (4) the option for the driver to approve or disapprove the AV's action after hearing the explanation. We examined four AV outcomes: trust, preference for AV, anxiety and mental workload. Results suggest that explanations provided before an AV acted were associated with higher trust in and preference for the AV, but there was no difference in anxiety and workload. These results have important implications for the adoption of AVs.Comment: 42 pages, 5 figures, 3 Table
    • …
    corecore