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A B S T R A C T   

Partially automated vehicles present interface design challenges in ensuring the driver remains alert should the 
vehicle need to hand back control at short notice, but without exposing the driver to cognitive overload. To date, 
little is known about driver expectations of partial driving automation and whether this affects the information 
they require inside the vehicle. Twenty-five participants were presented with five partially automated driving 
events in a driving simulator. After each event, a semi-structured interview was conducted. The interview data 
was coded and analysed using grounded theory. From the results, two groupings of driver expectations were 
identified: High Information Preference (HIP) and Low Information Preference (LIP) drivers; between these two 
groups the information preferences differed. LIP drivers did not want detailed information about the vehicle 
presented to them, but the definition of partial automation means that this kind of information is required for 
safe use. Hence, the results suggest careful thought as to how information is presented to them is required in 
order for LIP drivers to safely using partial driving automation. Conversely, HIP drivers wanted detailed infor-
mation about the system’s status and driving and were found to be more willing to work with the partial 
automation and its current limitations. It was evident that the drivers’ expectations of the partial automation 
capability differed, and this affected their information preferences. Hence this study suggests that HMI designers 
must account for these differing expectations and preferences to create a safe, usable system that works for 
everyone.   

1. Introduction 

The automotive industry has begun the transition to driverless car 
technology (Muller, 2016). Currently, driving automation known as SAE 
Level 2, or Partial Automation (SAE, 2018), such as Tesla’s ‘Autopilot’ 
(Endsley, 2017), Mercedes’ Distronic Plus system (Singh et al., 2019) are 
emerging on the market. According to the SAE definitions, the re-
sponsibility for the vehicle’s driving performance on the road at Level 2 
still remains with the driver (Banks and Stanton, 2016). Through con-
stant monitoring of the driving automation, the driver must be able to 
recognise the operational design domain (ODD) of the system and 
intervene appropriately (SAE, 2018). 

However, it is well recognised in many previous studies that typically 
humans can have difficulty with being a monitor of an automated pro-
cess (Brookhuis et al., 2001; Dzindolet et al., 2003; Kaber and Endsley, 

2004; Sheridan, 1995). This has been attributed to the denser cognitive 
demand when the user is asked to monitor an automated process as 
opposed to driving it themselves (Rafferty and Stanton, 2017; Walker 
et al., 2010). 

Ensuring humans are able to safely use Level 2 partially automated 
driving systems is important because these systems will increasingly be 
responsible for the safety of the vehicle’s occupants and other road 
users. Without careful design consideration, they can present many 
challenges for the driver, for example: mode confusion, where the driver 
is unsure of the parts of the driving task that are within the system’s ODD 
(Banks et al., 2018; Martens and van den Beukel, 2013); over- and 
under-reliance on the system caused by an inappropriate level of trust 
(Khastgir et al., 2018; Hoff and Bashir, 2015); increased cognitive 
workload (Stapel et al., 2019) and consequently usability (Ulahannan 
et al., 2018). 
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An appropriately designed human machine interface (HMI) has been 
recognised as a method to mitigate these problems, by supporting and 
communicating with the driver to understand the system’s ODD (Choi 
and Ji, 2015; Schaefer et al., 2016). For example, the most prevalent 
Level 2 system available today is the Tesla Autopilot and its approach to 
HMI design has been to present the driver with a variety of different 
information about the driving automation (Olsen, 2018). This is, how-
ever, an example of inappropriate communication as this approach to 
driver communication has been shown to be ineffective, causing either 
cognitive over- or under-load, over trust and consequently increase the 
risk for accidents (Banks et al., 2018; Lyu et al., 2017; Manawadu et al., 
2018). This is illustrated aptly by the incident of a Tesla driver who after 
activating Autopilot, moved into the passenger seat-far exceeding the 
ODD of the system. The challenge for the HMI is to educate drivers on 
this new system and paradigm for driving (Kyriakidis et al., 2019). 

To better understand how drivers can be supported through the ve-
hicle’s HMI, driving simulators are often used-providing a safe and 
repeatable environment. How driver experience and trust effect the use 
of Level 2 automated driving have been investigated using driving 
simulators (Beller et al., 2013; Hergeth et al., 2016; Lyu et al., 2017). 
More exploratory qualitative methods have been used to assess the 
specific information preferences of such HMI (Beggiato et al., 2015; 
Richardson et al., 2018). These studies have used a combination of in-
terviews, expert focus groups and ethnographic methods. Beggiato et al. 
(2015) used a static driving simulator with a 180� field of view, which 
may have limited the immersion of the scenarios and hence the results. 
There was an opportunity to apply these qualitative methods to inves-
tigate and validate these information preferences in a more immersive 
driving simulator. 

1.1. Methodological approaches to investigating information preferences 

Qualitative methods enable a broader, more exploratory inquiry into 
challenges around user experience and preferences than can typically be 
achieved through quantitative methods (such as questionnaires) (Choy, 
2014; Parker et al., 2007; Yauch and Steudel, 2016). Semi-structured 
interviews can give a richness of data to enable the exploration of 
driver expectations and preferences. This is achieved through the coding 
of participant responses and subsequently developing themes and noting 
trends in language style and the vocabulary used (Louise Barriball and 
While, 1994). This depth of data is typically difficult to obtain through 
Likert scales or more structured interview formats. Then by refining the 
qualitative data against theoretical frameworks, there can be greater 
structure and validity given to the data (Dubois and Gadde, 2002; Pat-
ton, 2014). Combining qualitative methods with a high fidelity driving 
simulator can enable the exploration of information preferences and 
expectations of partially automated vehicles. Furthermore, designing for 
automotive usability is an inherently holistic challenge (Mescht-
scherjakov et al., 2011; Steinberger et al., 2015) and consequently a high 
fidelity simulated environment provides opportunities to capture a 
richer range of data. 

Models such as Michon’s Levels of Driving (Michon, 1985) or Ras-
mussen’s Skills, Rules, Knowledge (Rasmussen, 1983) (SRK), all recog-
nise that information can be interpreted and acted upon in different 
ways by different users (Kirwan, 2017; Vicente and Rasmussen, 1988). 
Considering the SRK model by Rasmussen (1983), this categorises 
human action into intuitive behaviour that requires little cognitive 
exertion (Skills), to more cognitively demanding action (Knowledge). 
Taking the example of a learner driver, it is likely the action of changing 
gears will require a lot of cognitive effort (hence knowledge behaviour), 
whereas an experienced driver will find the same process intuitive, 
requiring little to no cognitive effort (Skills) (Harwood and Sanderson, 
1986). This also applies to the interpretation of new vehicle information, 
for example, energy usage inside an electric vehicle. Often this is pre-
sented to the user as a combination of Watt-hours used per mile (Wh/mi 
with the Tesla Model 3 or miles/kWh in the Nissan Leaf). Research by 

Birrell et al. (2014) showed that a common theme from the subjective 
comments of novice EV users was the unpredictable nature of the range 
estimations, with little understanding as to what is the actual root cause 
of the inaccuracies, resulting in increased anxiety about how far their 
vehicle could travel (Birrell et al., 2014). This is an example of how 
information is presented can effect the user’s experience of the system. 

Consequently, it is of interest to this study to understand the infor-
mation preferences for drivers of a partially automated vehicle and 
hence how these are affected by their expectations of the technology. In 
comparison to manual driving, it has been found that drivers using Level 
2 automated driving systems are more likely to engage in a secondary 
task that can draw their attention away from the road (Lin et al., 2018; 
Llaneras et al., 2017). Further, large differences in drivers’ expectations 
for the development of automated driving systems have been found 
(Kyriakidis et al., 2015) with some drivers expected SAE Level 3 con-
ditional automation as early as last year (2018) and SAE Level 4 by 
2025, which can cause issues with over-reliance and misplaced expec-
tations (Underwood, 2014). 

Using this information, there can be more informed design choices 
made to ensure partially automated vehicle interfaces can be used 
effectively by a wide array of drivers. Therefore there is an opportunity 
to investigate these varying driver expectations of partially automated 
driving and their subsequent effects on information preferences in the 
vehicle. 

1.2. Aim 

This study aimed to investigate the drivers’ information preferences 
for Level 2, partial automation, and how their expectations of the sys-
tem’s capability affected their information preferences, using semi- 
structured interviews in an immersive driving simulator. 

2. Materials and methods 

In order to investigate information preferences, an 8 min driving 
scenario was developed and presented to participants in the driving 
simulator at WMG, University of Warwick. Within this scenario, 5 
driving events occurred. The WMG 3xD Simulator for Intelligent Vehi-
cles (thereinafter 3xD) featured a Range Rover Evoque Built Up Cab 
(thereinafter BUC) (Figs. 1 and 2). The BUC was positioned in the centre 
of a 360� projected screen. The scenario presented in the 3xD was 
controlled from an external control room adjacent the simulator. 
Further, all existing vehicle interfaces were turned off to prevent par-
ticipants from being influenced by what was already present inside the 
vehicle. 

After each event, semi-structured interviews were conducted. The 
semi-structured approach was chosen as it allowed for a more effective 
exploration of the information preferences. This 360� simulated envi-
ronment around the BUC allowed the participants to notice things 
outside of the primary driving task, such as what was happening at the 
vehicle’s rear, or at the sides. 

Ethical approval for this study was granted by the University of 
Warwick’s Biomedical and Scientific Research Ethics Committee for the 
study REGO-2016-1788. 

2.1. Participants 

All 25 participants completed the user trial. 8 participants mentioned 
feeling nauseous during the first event but recovered and were happy to 
proceed with the study. No participants withdrew from the study. A 
breakdown of the participant demographics can be found below in 
Table 1. 

2.2. Driving scenario 

A section of LiDAR scanned, photorealistic simulation incorporating 
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a real-world residential arterial road in a city (A4114, Coventry, UK) was 
used to increase the immersion of participants in the driving scenario. It 
provided 1.5 miles of a single lane urban environment through a resi-
dential area. One uninterrupted run of the scenario took 8 min to 
complete. 

The simulator software (provided by XPI Simulation Ltd) was then 

used to add pedestrians and other road vehicles onto the map to increase 
the authenticity of the replication. All vehicles in the scenario were 
manually scripted to follow a predetermined path. The scenario featured 
five events, detailed in Table 2, these were not emergency events, but 
designed to reflect real-world situations that Level 2 vehicle could be 
expected to handle. 

Fig. 1. Schematic for the WMG 3xD Driving Simulator (note, not all the equipment detailed in the diagram was used for this study).  

Fig. 2. 3xD with LiDAR scanned imagery displayed.  

Table 1 
Participant demographic information.  

Number of Participants 25 
Percentage Male/Female 64%/35% 
Nationality 32% UK, 68% Non-UK 
Age Ranges 18-24 (12), 25–29 (10), 30–34 (2), 

35–39 (1) 
Highest education level 100% Degree level 
Previous Experience with Driving 

Simulators Yes/No 
1/24 (participants)  

Table 2 
Event descriptions and corresponding interview prompts.  

Event Description 

1 Vehicle offers automated driving to driver and is activated. 
2 Vehicle autonomously navigates heavy traffic 
3 Vehicle navigates through a junction 
4 Vehicle follows another vehicle in steady state 
5 Vehicle requests and hands back control to the driver  

A. Ulahannan et al.                                                                                                                                                                                                                            



Applied Ergonomics 82 (2020) 102969

4

2.3. Topic guide 

The study used a semi-structured interview format. To explore in-
formation preferences for partial driving automation, the following 
topic guide was developed and used after each of the five events:  

� What information would you expect to see?  
� Where would the information be presented?  
� When would the information be presented?  
� How would the information be presented?  
� How would you expect to interact with the information? 

A set of probes were planned to aid the participant in elaborating on 
their response and to help build rapport, following guidance by Leech 
(2002) and Turner III (2010). The following phrases were used “Would 
you elaborate on that point?“, “Could you give an example of that?“, this 
was important as the 3xD Simulator environment was likely unfamiliar 
and novel to most participants and the interview probes would help 
participants struggling to engage in the interview (Leech, 2002; Turner 
III, 2010). 

2.4. Experimental procedure 

The experimental procedure was as follows:  

(1) Participants were invited into the WMG 3xD Simulator room and 
reviewed the procedure with the investigator. Written consent 
was taken from the participant at this point, however they were 
free to withdraw at any point. All participants were volunteers 
and did not receive payment for participation.  

(2) Participants were invited to sit inside the BUC in the WMG 3xD 
Simulator and were briefed on the potential side effects of motion 
sickness. They were then given a lay summary of the vehicle’s 
partially automated capabilities, including its limitations and 
were instructed to monitor the driving task as they would be 
required in a real partially automated vehicle.  

(3) After each of the five events in the simulation (detailed in 
Table 2), the playback was paused and the participants were 
interviewed using the interview schedule. The total time for the 
scenario playback was 8 min, with each event being approxi-
mately 1 min long. In total, participants spent approximately 
30–40 min in the simulator, depending on how long responses 
were.  

(4) Participant responses were transcribed verbatim during the study 
by the investigator as part of the field notes.  

(5) To add context to the data, participants were asked to complete a 
demographic questionnaire. This completed the study. 

2.5. Participant sampling 

Limited simulator availability (10 days) required quick recruitment 
and access to participants. Therefore convenience sampling was used, 
meaning participants were located at or close to the University of 
Warwick. The study was advertised through a network of colleagues and 
in social areas at WMG and across the University of Warwick campus, 
with a total of 25 participants being recruited (Gender: 16M/9F, all 
students/staff at the University of Warwick). 

2.6. Data analysis 

There were two key parts to the data analysis:  

(1) To understand information preferences in partially automated 
vehicles (based on the topic guide in section 2.3), using an overall 
thematic analysis of all the data during each of the five driving 
events. 

(2) To understand what the driver expectations of partially auto-
mated vehicles are and how these affected their information 
preferences during different driving events using a holistic review 
of all the codes. 

2.6.1. Overall information preferences 
A coding strategy was used for all data: structural, descriptive, pro-

cess and in-vivo coding (Salda~na, 2009). Structural coding was used to 
organise the interview responses by the question answered (Namey 
et al., 2008). The remaining strategies all enabled the discovery of driver 
expectations and their corresponding effect on the information prefer-
ences. Descriptive coding summarised responses into words or phrases. 
Process coding analysed responses by observable and conceptual ac-
tions, such as gestures or areas the participant pointed to (Corbin and 
Strauss, 2014). These actions were noted by the researcher as field notes 
during the interviews and supplemented after the experiment using the 
video recorded footage from inside the BUC. Finally, in-vivo coding 
recorded the exact phrase used by the participant. 

This process was completed independently by two qualitative re-
searchers who then compared results, creating a collaboratively derived 
list of codes. By categorising the type of coding used, it enabled the 
application of a consistent methodology in the coding of the interview 
data. For each type of coding, multiple cycles were ran until a theoretical 
saturation point was reached (to reduce the risk of subjectivity in 
analysis) (Bowen, 2008). 

The second phase of coding explored common themes between the 
codes and synthesised them into categories, providing a conceptual 
model for the user preferences for Level 2 driving automation. This 
process was repeated, creating a more refined list of categories (Corbin 
and Strauss, 2014). An example of this process is shown below in 
Table 3. 

The number of times a code was mentioned by participants was also 
tracked. It can be noted that frequencies are often greater than the 
number of participants. This is because each participant may have 
mentioned the code more than once in their response. 

2.6.2. Driver expectations and their effect on information preferences 
The codes were then reviewed holistically to understand if there 

were groupings in how participants responded beyond the structural 
coding of the topic guide in the first part of the analysis. Differences in 
driver expectations could be identified and hence compared with their 
information preferences for each of the driving events. 

To illustrate any differences in the information preferences, the data 
was categorised according to Geiser’s Model (Geiser, 1985). This de-
scribes how information in the vehicle can be organised into Primary 
information (information related to the directional control of the 
vehicle, e.g. handover notifications), Secondary information (informa-
tion that supplements the control of the vehicle, enabling its safe use, e. 
g. hazard scanner) and Tertiary information (information that enhances 
the driver’s experience, e.g. intelligent suggestions such as petrol 

Table 3 
Example from the coding process: from transcript to final theme.  

Transcript Example 
Descriptive Codes 

Theme 

“Car should give me some 
information about the traffic 
ahead, if I’m not going to 
drive then I need some 
information about what’s 
around. Then I want some 
kind of indication that 
automated driving is 
activated, like some light 
maybe and how long it can 
self-drive for?" 

How long 
automated driving 
can last 

Communication of the 
state of handover 

Self Driving 
Indicator Light 
Information about 
Traffic Ahead 

Communication of the 
vehicle’s awareness of its 
surroundings Information about 

the Environment  
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stations, nearby friends). 

3. Results 

From the interview transcripts, a total of 719 first cycle codes were 
generated, these were thematically grouped according to the interview 
topic guide, then by the driving event. 

Table 4 below shows an overview of all of the themes and the codes 
that comprised them. In addition, the frequency of each code is indicated 
in brackets next to the code as (f ¼ …). The table also indicates for 
which event the code was in relation to. It was found that some were 
unique to the driving event, whereas others were mentioned across all 
driving events. 

3.1. Overall information preferences 

The most popular theme, summarised in Table 4, was concerned with 
the communication of the vehicle’s situation awareness (f ¼ 174). 
Within this, information about traffic conditions and information about 
the road ahead was requested across all the driving events (f ¼ 74). 
Communication of the state of handover was the second most mentioned 
code (f ¼ 95). 

The next three major themes were all concerned with the overall 
presentation of information. Participants were split, requesting either 
that the information was displayed all the time (f ¼ 37) or more intel-
ligently in response to road conditions (f ¼ 59). Participants then 
requested that information should be located in existing interfaces 
(f ¼ 140). There was a consistent theme of the information being easy 

Table 4 
Overview of the codes comprising the themes and corresponding frequencies.  

Event 1 
Handover 

2 
Traffic 

3 
Junction 

4 
Steady State 

5 
Handover 

Theme Communication of the vehicle’s situational awareness (f ¼ 174) 
Thematic 

Codes 
Traffic conditions and environment ahead information (75) 
Knowing what the car will do (19) Traffic light 

notification 
(18) 

Why handover has to occur (3) 

Distance car can self-drive (8) Distance to the next car (8) Car in front 
to follow 
notification 
(3) 

– 

Ensure car is driving correctly 
(7) 

Why the car is speeding up or 
slowing (5) 

Confirmation car sees dangerous 
driving (14) 

– – 

Route and GPS (5) Feeling of safety from real time 
feedback (3) 

Confirmation car knows colour of 
light (6) 

– – 

Theme Communication of the State of Handover (f ¼ 95) 

Thematic 
Codes 

Self-Drive Indicator (19) 
Countdown to takeover (5) Audio notification for unexpected 

belabour (6) 
– If there 

are traffic 
lights, 
then I 
won’t 
self-drive 
(13) 

Notification to take back control (25) 

Checklist confirmation before 
self-drive (2) 

– – Forced 
manual 
mode in 
traffic 
light areas 
(1) 

I need ‘plenty’ of time to get ready (6) 

Understanding who’s in control 
(2) 

– – – Countdown to handover (5) 

Theme Information should be presented intelligently, or all the time (f ¼ 128) 

Thematic 
Codes 

Displayed all the time (37) “In plenty of time” (16) 
When I can self-drive (9) Only in critical situations (5) When traffic lights can 

be seen (13) 
Before reaching a 
problematic area (32) 

Warnings according to driver 
state (9) 

– – – – Multiple notifications on 
approach (7) 

Theme Information should be located in existing interfaces (f ¼ 140) 

Thematic 
Codes 

Centre Console (43) 
Digital Dashboard (42) 
Heads-Up Display (33) 
Easy, familiar access to information (22) 

Theme Information should require minimal learning (f ¼ 117) 

Thematic 
Codes 

Visual Only (47) 
Visual and Audio (39) 
Easy to understand (6) Spoken Audio (25) 

Theme Limited interactions are expected when vehicle is autonomously driving (f ¼ 65) 

Thematic 
Codes 

– No interaction expected (28) – No interaction expected- I would just 
take control (12) 

– Change driving speed/style (18) – – 
– Only in abnormal conditions (7) – –  
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and familiar to access (f ¼ 22) across all the events. Those participants 
who suggested specific locations (such as the centre console or dash-
board), suggested them consistently across all the events. Similar to the 
theme of information being familiar and easy to understand, the theme 
of information requiring minimal learning was present across all par-
ticipants (f ¼ 117). 

The final theme suggested that participants only expected limited 
interactions with the vehicle during driving automation (f ¼ 65). 
Though there was evidence of a split in opinion between the participants 
with some expecting no interaction at all (f ¼ 28) and others expecting to 
work with the system (f ¼ 25). 

In the following section 4, the codes within each of the themes will be 
discussed in more detail with respect to the literature. 

3.2. Driver expectations and their effect on information preferences 

Two groupings of participants were evident in the codes: those with 
High Information Preferences (HIP) and those with Low Information 
Preferences (LIP). Overall, HIP participants wanted detailed information 
presented to them and had more calibrated expectations of the capa-
bility of Level 2 partial automation (the term calibration describes the 
participant’s expectation of the technology aligning with its actual ca-
pabilities). Consequently, they were more willing to work with the Level 
2 system, for example, a HIP participant said, “it would be good if I could 
touch certain objects [on the environmental display] to make the car aware of 
it”. Conversely, LIP participants did not want detailed information and 
expected the automation to be more capable and were less willing to 
work with the system. One LIP participant said, “I want to see where my 
friends are and chat with them”. Not all wanted experiential features, with 
some saying, “It [the vehicle] should only tell me if I need to take over 
control”. 

The groupings were decided by two qualitative researchers who 
collaboratively reviewed the codes together. Out of the 25 participants, 
15 were categorised as HIP and 10 as LIP. This was despite all partici-
pants being given the same description of the capabilities of Level 2 
partial driving automation. 

Table 5 below indicates how information preferences changed with 
respect to each simulated driving event, depending on whether the 
driver was classified as HIP or LIP. To illustrate the relative group sizes, 
the frequency counts for the relevant codes for each event and partici-
pant group are indicated. 

There was no difference between HIP and LIP drivers for events 1 and 
5 (manual driving). However, for the partially automated driving events 
(2, 3 and 4), HIP drivers wanted the relevant secondary safety infor-
mation in order to support the vehicle; whereas LIP drivers preferred to 
have either tertiary or primary, but not secondary information. For 
example, one HIP driver in the traffic light event said, “I would want to 
know the car has seen the traffic light. Some kind of visual indicator to 
confirm it”. In contrast, a LIP driver was not as concerned, “The car should 
tell me if it’s a critical situation and I need to control it, otherwise no info 
needed”. Across events 2, 3 and 4, codes related to HIP drivers were more 
prevalent than those for LIP drivers. 

An overall summary of the two groups are presented below in 
Table 6. 

4. Discussion 

The discussion follows the structure of the questions asked of par-
ticipants after each driving event, finishing with how driver expecta-
tions affected information preferences. 

4.1. What information would you expect to see? 

4.1.1. Communication of the vehicle’s situational awareness 
All participants were concerned with the need to display information 

about the traffic conditions and the environment ahead. This is consis-
tent with prior studies that found that feedback from the vehicle has 
been shown to help drivers create mental models of what the vehicle is 
doing and predict how it will behave (Endsley, 2016; Kieras and Bovair, 
1984) and has also been found to positively affect driving style and 
behaviour (Gonder et al., 2012; Mullen et al., 2015). Overall, feedback is 
an important aspect in developing trust and acceptance (Oliveira et al., 
2019). 

Throughout the events, participants requested situational awareness 
information during automated driving, but less information presented 
when required to take back control, owing to a concern among partic-
ipants that the information presented should not be distracting, “I want it 
[notifications in the car] to be less distracting”. This was consistent with 
studies that have found in-vehicle tasks to impair driving performance 
with most serious car crashes involving driver inattention (Beanland 
et al., 2013; Horberry et al., 2006). This may explain why participants 
felt that the addition of more information during manual driving could 
be detrimental, but beneficial during automated driving. 

4.1.2. Communication of the state of handover 
Across all driving events, participants requested an automated 

driving indicator in the vehicle in the form of a visual light or icon. They 
wanted to know exactly when the handover will occur and whether the 
driver or vehicle will have to take control, “I need the car to tell me if I’m 
allowed to self drive”. This has also been identified as a key factor in issues 
such as mode confusion (where the driver does not recognise which 
mode the vehicle is currently operating in) (Endsley, 2017; Lee et al., 
2014; Shaikh and Krishnan, 2012). Transparency and clear communi-
cation with the user were highlighted as solutions to this, however, 
Furukawa (2013) found that even with enough information displayed, 
the driver may not be able to process this (Furukawa et al., 2003). 

A specific notification of handover back to manual was requested by 
all participants. There is a question though as to how this should be 
presented to the user. Visual indicators have been shown to be 100% 
detectable by drivers but elicit slower reaction times in comparison to 
multi-modal warnings such as visual tactile (Lylykangas et al., 2016). 
This is important because it has been found that the efficacy of an 
automated vehicle intervention is reduced without a warning, with most 
drivers acting against the automatic intervention that was aiming to 
prevent an accident (Schieben et al., 2014). It is also important to note 
that once automated driving was activated, participants did not want 
any additional information on the communication of handover, aside 
from the aforementioned visual indicator. 

Table 5 
Change in information preferences for High Information Preferences and Low 
Information Preferences drivers.  

Events 1 
Handover 

2 
Traffic 

3 
Junction 

4 
Steady State 

5 
Handover 

HIP 

Primary 
(f ¼ 179) 

Secondary 
(f ¼ 190) 

Secondary 
(f ¼ 196) 

Secondary 
(f ¼ 152) 

Primary 
(f ¼ 146) 

LIP Tertiary/ 
Primary 
(f ¼ 40) 

Tertiary/ 
Primary 
(f ¼ 48) 

Tertiary/ 
Primary 
(f ¼ 46)  

Table 6 
Driver expectations observed in the data.  

High Information Preferences Low Information Preferences  

� Wanted detailed information on the 
vehicle’s situational awareness etc.  

� More accepting of the limitations of L2 
driving automation and wanted to 
work with the system.  

� More concerned with secondary 
information  

� Wanted less information on the status 
of self driving and not concerned with 
assisting the system  

� Wanted the vehicle to offer assistive 
features  

� More concerned with either tertiary or 
primary information  
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4.2. When would the information be presented? 

4.2.1. Information should be presented intelligently, or all of the time 
Participants were split over having information presented all of the 

time (f ¼ 12) “I want the information presented at all times, the situation can 
change and I can decide if I still want to use it.” as opposed to having in-
formation presented intelligently (f ¼ 13) “I want it to be least invasive”. 
Intelligent presentation of information would require a more compre-
hensive understanding of how the driver’s information preferences 
change depending on the context. Overall, once the vehicle was returned 
to manual control, participants (f ¼ 15) asked for comparatively less 
information. This in line with the literature on partially automated ve-
hicles which says that providing more information can help prevent 
driver inattention (de Winter et al., 2014; Helldin et al., 2013). The 
exception was information on the vehicle’s situational awareness, which 
was requested at all times by 13 participants during both automated and 
manual driving. The communication of the state of handover should 
only notify the user in abnormal conditions (i.e. whenever the vehicle is 
unsure of the current driving event). This could be because the aware-
ness of surroundings benefits both the automated driving mode and 
manual driving, hence can be presented at all times. Whereas the 
handover status is exclusive to the automated driving mode, with par-
ticipants opting to have it displayed only when necessary. 

4.3. Where would the information be presented? 

4.3.1. Information should be located in existing interfaces 
Participants responded with an approximately even split across all 

driving events between the centre console (f ¼ 43) “I find it’s [the centre 
console] in my natural eye line,” and a digital dashboard display (f ¼ 42) 
“… because it’s [the dashboard] where everyone looks anyway”. It is likely 
that participants suggested interfaces they were most familiar with. The 
other finding was that participants did not change their preferred in-
formation display location throughout the study, so there was no 
observable effect on the information display location and the driving 
events. Further experimental studies are required to understand where 
best to display information. 

4.4. How would the information be presented? 

4.4.1. Visual indicators with spoken auditory notifications 
Across all events and participants, visual icons were requested in the 

vehicle along with an auditory notification to accompany it. In terms of 
auditory design, all participants (f ¼ 25) preferred a spoken audio 
notification over a generic auditory notification sound, “I just find spoken 
voices are just easier to understand”. Frequently, participants felt that 
spoken notifications are easier to understand in comparison to a generic 
auditory sound. Some participants were often concerned with being 
startled or annoyed by the notification (f ¼ 9), though this may be 
required in a partially automated vehicle in order to demand attention 
and prompt a response from the driver. 

4.5. How would you expect to interact with the information? 

4.5.1. Limited interactions are expected when the vehicle is in automated 
mode 

Some participants (f ¼ 13) expected to have no interaction during 
automated driving, aside from any abnormal conditions, “I don’t expect 
to have to interact with the vehicle during self driving [automated driving]”. 
This correlates with the findings of the other categories, namely with the 
information timing, which found that either information is presented in 
abnormal situations or all the time. Another suggestion (f ¼ 18) was the 
ability to change the driving style or speed, for example, having the 
option to tell the car to speed up to catch a green traffic light. 

This would suggest that drivers would want to engage in secondary 
tasks while the automated driving is active. This supports the idea of a 

more intelligent interface that can provide appropriate information to 
support the driving task, whilst also providing secondary tasks to engage 
the driver. 

4.6. Driver expectations and their effect on information preferences 

One of the key findings from this study is the discovery of two driver 
categories of expectations (HIP and LIP) and its impact on information 
preferences. The frequency counts in Table 5 provided evidence for the 
groupings of participants around their information preferences. To 
illustrate this, participants grouped as HIP produced approximately four 
to five times as many codes for information preferences compared to the 
LIP group for each event. 

Reviewing how information preferences changed depending on the 
driving events, there was no difference between the two groups of driver 
expectations when the vehicle was in manual control; the differences 
were only apparent once the partially automated vehicle was in control. 
Given that there was no difference between participants during manual 
driving, this indicates that current interface design practices for manual 
driving are inapplicable to interfaces that can support partially auto-
mated driving. Yet many of the interfaces in partially automated vehi-
cles today are designed using manual driving interface practices to 
support partially automated driving (Olsen, 2018), which this study has 
shown to be problematic. 

Overall, these results suggest that while LIP drivers are willing to 
work with the system to take back control if required, they were not 
happy to monitor safety information to ensure it was able to operate 
correctly-as is required with Level 2 driving automation. The issue is 
that regardless of these two driver categorisations and information 
preferences, by definition, Level 2 partial automation requires the driver 
to pay attention at all times during automated driving. However, as 
previously discussed, it is well understood that humans are ineffective at 
monitoring automated processes (Dzindolet et al., 2003; Kaber and 
Endsley, 2004; Sheridan, 1995) and this has been shown to cause riskier 
driver behaviour (Banks et al., 2018). When considering interfaces in 
partially automated vehicles today, for example, the aforementioned 
Tesla Autopilot system, the interfaces in those vehicles do not show 
recognition for the differing expectations of drivers and hence their 
changing information preferences. This paper has shown how partially 
automated driving expectations can vary significantly between users 
and this can affect the information and capabilities they expect in the 
vehicle. 

The results suggest that LIP drivers will need careful consideration 
about how the information is presented to them in order for them to 
safely using partial driving automation. HIP drivers are arguably the 
most appropriate user of partial automation, with their acceptance of 
technological limitations and willingness to work with the secondary 
information provided by the system. By understanding that these 
differing preferences exist, HMI designers can be better equipped to 
ensure that information can be communicated effectively, regardless of 
the driver’s predisposition. For example, adaptive interfaces, those that 
can adjust interface elements depending on the driving event, may be 
the solution to catering to differing driver preferences and expectations 
(Alhazmi et al., 2015; Birrell et al., 2016; Tchankue et al., 2011). 

4.7. Limitations 

As a result of simulator availability, the participants sampled were 
limited in their representation of society and were all related to the 
University environment. However, the study provides a basis for future 
work to collect more representative results. 

4.8. Methodological recommendations 

When reflecting on the participant responses, many of the ideas 
expressed were typically based around existing interfaces they were 
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familiar with. This may be because the BUC participants were sat in was 
too high in fidelity and hence was more difficult for them to suggest 
changes. This phenomenon had been previously observed in prototype 
testing, high fidelity products appear too ‘complete’ and hence users 
may struggle to suggest ways to improve upon it (Hall, 2001; Rudd et al., 
1996). Deploying a lower fidelity vehicle interface may enable partici-
pants the ‘freedom’ to suggest more changes and ideas. 

5. Conclusion 

This study has demonstrated how a driver’s expectations of partially 
automated vehicle capability can have a large effect on their informa-
tional preferences in the vehicle. Primarily, the study contributed to the 
preliminary identification of two driver groups: High Information 
Preferences (HIP) and Low Information Preferences (LIP) drivers; and a 
recognition that different driver types affect information preferences 
during different driving events. For example, LIP drivers preferred either 
tertiary or primary information during automated driving and were not 
willing to work with the system’s secondary information. Conversely, 
HIP drivers preferred more secondary information to work with the 
system and ensure its correct use. 

Communication of the vehicle’s situational awareness and the state 
of handover were the most salient pieces of information for the group 
sampled. Intelligent presentation of information was recommended, and 
participants preferred the information in locations they were familiar 
with in vehicles today. 

If future HMIs in vehicles fail to recognise that expectations in 
automation capability vary between drivers and that this consequently 
effects their information preferences, then interfaces may not provide 
the appropriate support. This has been found to be evident in Level 2 
automated driving available today. Driver groupings and their resultant 
effect on the information that should be displayed is a result that war-
rants further investigation with a broader sample group in order to offer 
more generalisable results. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.apergo.2019.102969. 
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