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ABSTRACT 

IMPROVING DRIVERS’ BEHAVIOUR WHEN PARTIAL DRIVING AUTOMATION 

FAILS 

SEPTEMBER 2020 

YALDA EBADI 

B.S., ISLAMIC AZAD UNIVERSTY OF TEHRAN 

M.S., UNIVERSITY OF TEHRAN 

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Dr. Shannon C. Roberts 

 

With the advent of automated vehicle systems, the role of drivers has changed to a more 

supervisory role. However, it is known that all vehicles with Level 2 (L2)  systems have a 

very specific operational design domain (ODD) and can only function on limited 

conditions. Hence, it is important for drivers to perceive the situations properly and regain 

the control from the L2 system when needed. As suggested by past research, designing an 

informative interface could help drivers in their new supervision and intervention role 

while driving with L2 vehicles by providing feedback to drivers when hazards or event that 

may cause system failure are detected. On the other hand there are many situations where 

these vehicles cannot detect hazards and provide any feedback prior to the event. In these 

cases, training programs which provide drivers with an experience of these system 

limitations and allow them to practice dealing with such limitations can prove to be 

effective countermeasures.  The objective of the current study is to employ different 

methods (designing HMI and training drivers)  to increase drivers’ situational awareness 

regarding operational design domain (ODD) and improve drivers performance in transfer 

of control situations while driving with level 2 (L2) automation features. This study 

includes two experiments- in first experiment, an informative dashboard interface was 
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designed and tested through three phases (observation, prototyping, testing). Results from 

the testing phase showed that drivers who received the newly designed dashboards took 

back control more effectively and had more situational awareness compared to the control 

group. In the second experiment, a PC-based training program was designed and tested to 

improve drivers takeover response and situational awareness when L2 systems reach their 

ODD limits. Results showed drivers in the PC-based training group took back control more 

effectively when L2 systems reached their ODD limits and had more situational awareness 

compared to the drivers who received user manual or placebo training. 

 

EXECUTIVE SUMMARY 

This research has been conducted through two experimental studies. In the first experiment, 

new Human-Machine Interface (HMI) was designed and tested for dashboard of Level 2 

(L2) vehicles. In second experiment drivers situational awareness and performance will be 

improved further by training. In both experiments we focus on L2 systems (drivers support 

features (DSF)) that have Adaptive Cruise Control (ACC) and Lane Centering Assistant 

System (LCAS). 

The first experiment included three phases. In the first phase an observational study 

was conducted on a driving simulator followed by an interview. In this phase a simple 

dashboard design (Original dashboard design) was presented to the drivers while driving 

in L2 simulated scenarios. The objective of this phase is to determine if drivers over-rely 

on automation in scenarios where transfer-of-control is critical to road user safety and, if 

so, what interface might better support transfer-of-control. Through interviewing we 

identified the interface requirement of drivers based on their responses and utilized this 

knowledge for the second phase.  
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In the second phase , two dashboard interfaces (Basic Dashboard, Advanced 

Dashboard) were then prepared through four design iterations (Prototype, Co-design 

sessions, heuristic evaluation and pilot testing). In third phase, the effect of new dashboard 

designs on participants’ performance and satisfaction was investigated though another 

driving simulation study. Forty two participants were randomly assigned to three group 

based on the dashboard design (Advanced, Basic, Original). They drove through seven 

scenarios which were designed to represent several situations where L2 systems reached 

their operational design domain (ODD) limit and required participants to take back control 

from the system. The results from this phase showed that, displaying information regarding 

road geometry increased the number of successful take back control for participants in 

Advanced Dashboard group compared to Basic and Original Dashboard groups. To further 

investigate take back control action of participants, takeover time to hazard for each group 

was analyzed. The results showed that participants in the Advanced Dashboard group took 

back control sooner (6.4 seconds) than participants in Basic Dashboard (4.1 seconds) and 

Original Dashboard groups (1.5 seconds). Results also indicated that the participants in the 

Advanced Dashboard group were more situationally aware than the participants in the 

Basic Dashboard group and those in the Basic Dashboard group were more situationally 

aware than those in Original Dashboard groups while driving in L2 mode.  

While the result from first experiment showed that drivers situational awareness 

and performance can be improved by providing feedback through an efficient HMI design, 

there are many situations where an L2 system cannot detect hazards on the road and provide 

feedback through an HMI. Moreover, at complex situations which present latent hazards, 

an L2 system cannot predict such situations and it is vital for participants to have prior 
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knowledge about the system capabilities and limitations to take back control and mitigate 

the potential hazards. Plus none of the commercially available L2 vehicles have an HMI 

interface similar to Advanced Dashboard designed in first experiment. This raises the need 

for alternative methods to improve drivers performance and take back control quality in 

current L2 vehicles which can be used by users of these systems. Looking at results from 

third phase of first experiment, it is evident that participants who drove through scenario 

using basic dashboard were less situationally aware and took back control significantly 

later than those that used Advanced Dashboard design. Considering that Basic Dashboard 

design is similar to the dashboard designs found in current L2 models, it might be helpful 

to explore other available options to improve drivers’ performance while using L2 

dashboards. Hence in second experiment of this study, a training program for drivers will 

be designed to improve drivers knowledge of ODD limitation for those situations which 

are not detected by the system and also improve their take back control performance for 

those situations where system can provide them with take back control request (Similar to 

Basic Dashboard Design).  

In second experiment a training program was designed to improve ODD situation 

awareness when a DSF reaches the limits of its ODD and help drivers to take back control 

more efficiently. Similar to past training programs, an active method for error training 

(Ivancic IV & Hesketh, 2000), known as the 3M approach (Fisher et al, 2017; Romoser & 

Fisher, 2009; Zafian et al., 2016) was used. More specifically, drivers were exposed to 

scenarios in which they made mistakes related to safety. Next, they received feedback and 

an explanation of how to mitigate their mistake. Finally, drivers were given an opportunity 

to master the skill. The training was delivered through a PC-based training program.  
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Next, the training program was evaluated to determine if it improves ODD situation 

awareness and take back control quality when a L2 system reaches the limits of its ODD. 

To allow for a controlled environment to evaluate driver behavior, this phase will employ 

the high-fidelity driving simulator housed in the UMass Human Performance Laboratory 

(HPL). The between-subjects independent variable in the experiment is the training 

program (either control (i.e., placebo training), user manual or the PC-based training 

program). The within-subjects independent variable in the experiment was the scenario. 

The post-test drives were used to assess the effectiveness of the training program. Results 

showed that drivers in the PC-based training program took back control more successfully 

and had more situational awareness when compared to the drivers in user manual and 

placebo training groups. 
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CHAPTER 1  

INTRODUCTION 

1.1. Problem Statement 

Driver support features (DSF) have changed the role of the driver from an active operator 

to a passive supervisor (Louw et al, 2017). However these features have a very specific 

operational design domain (ODD) (SAE International, 2018) and only function at limited 

roadway types, within finite geographic areas, within certain speed ranges, and under 

precise environmental conditions (National Highway Traffic Safety Administration, 2018). 

For example, some of these vehicles may have more sensitivity to road design (e.g., may 

not work on sharp curves, merge), may not recognize lane markings in poor visibility 

(Cadillac, 2018; Tesla, 2019). Hence, when the automated system reaches the limit of its 

ODD, drivers may experience unexpected behavior. For example, for one manufacturer, 

Adaptive Cruise Control (ACC) does not detect a vehicle ahead if it is not completely inside 

the driving lane (Cadillac, 2018). Hence, considering all the limitations of DSF, it necessary 

for the driver to perceive the hazardous situation, regain control of the vehicle, and 

maneuver through the hazardous situation (Greenlee et al, 2019).  

Past research has shown that drivers either misperceive or oversimplify partial 

automation features’ capabilities (McDonald et al , 2017) and they only remember the 

limitations if they experience them (Beggiato et al , 2015). At the same time, past research 

has shown that when drivers know what to in unexpected situations, they can respond 

within seconds (Duncan et al, 1991). There are several methods suggested to help drivers 

with their new supervisory role using support features. Designing an effective interface has 

been suggested as one of the method to help drivers with their supervision and intervention 
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role while driving with DSF (Van den Beukel et al, 2016).  However, designing an interface 

cannot address all the issues regarding the drivers lack of knowledge about DSF 

limitations. In complex situations where DSF does not detect or predict hazards, it is vital 

for participants to have prior knowledge about the system capabilities and limitations. As 

such, training programs that provide drivers with an experience of the system limitations 

and allow them to practice dealing with such limitations can prove effective as 

countermeasures to unexpected behavior of the systems due to reaching their ODD 

limitations (Beggiato & Krems, 2013). 

1.2.   Overarching Dissertation Objective 

The objective of this proposed research is to design and test methods to improve drivers’ 

responses when L2 systems reaches its ODD limitations. Within the framework of this 

overarching goal, two research objectives has been developed. 

Objective 1:  

The objective of first experiment is to develop and test an in-vehicle interface for use in 

DSF contexts, with a focus on delivering feedback and alerts when drivers need to make a 

manual transition between L2 (combination of Adaptive Cruise Control and Lane 

Centering System) and manual (L0). The study has been conducted in three experimental 

phases according to the human-centered design process, wherein users and designers are 

jointly responsible for system development (François et al, 2017). The first phase focuses 

on iterative development and in-vehicle interface design through an observational study 

conducted on a driving simulator followed by an interview. Results from the first phase 

were used to conceptualize and design a prototype interface for the second phase. In the 

second phase, another group of participants were provided with prototypes in a co-design 
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session. Results from this experiment were aggregated to prepare a second prototype and 

apply it to the simulator cab’s dashboard. This was followed by a heuristic evaluation, 

carried out by four human factors specialists, to improve the design. Prior to the third phase, 

a pilot session was conducted to finalize the design. In the third phase, 42 participants were 

recruited to test  the effectiveness of the newly designed interface. Each phase and its 

corresponding hypothesis will be explained in the following sections. 

Objective 2 : 

The objective of second experiment is to develop and test a training program for use in 

DSF contexts, with a focus on training drivers to gain experience of the system limitations 

and allow them to practice dealing with such limitations. This training particularly aimed 

to improve drivers situational awareness and take back control quality while using DSF.  

To design the training, a 3M approach (Fisher et al, 2017; Romoser & Fisher, 2009; Zafian 

et al., 2016) was used. In this approach drivers were exposed to scenarios in which they 

would make mistakes related to safety. Next, they received feedback and an explanation of 

how they could mitigate their mistake. Finally, drivers were given an opportunity to master 

the skill. The training was delivered through a PC-based training program. The 

effectiveness of the training was then evaluated using pre/post test driving session on 

simulator.  

1.3.   Dissertation Organization 

This dissertation focuses upon two experimental study. Chapter 2, provides a background 

on previous work that is relevant to the two projects. Chapters 3 and 4 each contain one of 

the two projects. Within each chapter the specific motivation for that project is discussed, 

followed by the methods, results of the study, discussion of significant findings and 
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limitations, and a conclusion. Chapter 5 contains the overall conclusions from this 

dissertation work along with possible areas of future work relating to each project. 
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CHAPTER 2  

BACKGROUND 

In the following chapter, I will first give an introduction about Driver Support Features and 

Automated Driving Features. This will be followed by human factors challenges of using 

Driver Support Features including limited knowledge of drivers, disengagement of Drivers, 

situational awareness and transfer of control. After which a subsection regarding the 

countermeasures for addressing the aforementioned challenges has been included. This 

chapter will be concluded with a summary of all the sections as well as the objective and 

the hypotheses of the study. 

2.1.   Driver Support Features and Automated Driving Features 

Bel Geddes in his 1940 book ‘Magic Motorways’ envisioned developments in the highway 

design and transportation and predicted several revolutionary ideas in the field of 

transportation. One of his ideas was to remove human from the driving process (Gedes, 

2013). This revolution in transportation predicted almost 75 years ago is fast becoming a 

reality with major developments in automated vehicle technology. Perhaps the advent of 

automated vehicles in the 21st century will modernize transportation similar to how 

airplanes and motor cars did in the 20th century.  

Automated vehicles have progressed rapidly in the past decade. Industrial giants 

such as Google, Tesla, General Motors etc. have all heavily invested in both systems in the 

past few years. These systems have the potential to cause a major shift in terms of how 

drivers interact with their vehicles (Milakis et al, 2017). Automated vehicle technology is 

expected to contribute towards improving roadway safety (Anderson et al., 2014). This 

important since it has been reported that when considering the last event in the crash causal 
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chain, drivers were assigned as the critical reason for 94% of the crashes (Singh, 2015). 

Automated vehicles can be programmed to obey traffic rules (such as maintaining speed 

limits), have faster reaction times than human drivers and be informed about upcoming 

roadway conditions (Fagnant & Kockelman, 2014; Flämig, 2015).  

Another advantage of this technology could be reducing the stress of the driver with 

regards to the driving task within the vehicle, by reducing their driving duties within the 

vehicle (Anderson et al., 2014). In addition to this, they are also expected to be 

environmentally friendly by improving fuel efficiency and cutting down greenhouse 

emissions (Guerra, 2016; Howard & Dai, 2014). These benefits will be extended by 

offering older residents, children, and persons with disabilities (especially for those living 

in areas which lack public or alternative means of transport) with a reliable mode of travel 

which the system navigate independently without any human drivers. (Anderson et al., 

2014). In general, automated vehicle technology has a potential to improve productivity 

and society and this is expected to expand as the technology rapidly develops (Coles, 

2016). 

The SAE International introduced six-level classification system for automation in 

2014, ranging from fully manual (Level 0) to fully automated systems (Level 5), where the 

driver needs to perform all driving tasks at Level 0 and at Level 5, the system has full 

vehicle control. Levels 0 through 2 requires the human to monitor the driving environment 

and are typically referred to as Drivers Support Features. Level 1 (driver assistance) and 

level 2 (partial automation) features are capable of performing only part of the dynamic 

driving task (DDT), and thus require a driver to perform the remainder of the DDT, as well 

as to supervise the feature’s performance while engaged. As such, these features, when 
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engaged, support, but do not replace, a driver in performing the DDT. Level 3 through 5 

are referred to as Automated Driving Features (ADF) where the automated driving system 

monitors the driving environment (SAE International, 2018). Table 1 shows the detailed 

definitions for all the levels of driving automation.  

Table 1. Level of Driving Automation, Definitions and Roles of human drivers 

L
ev

el
 

Name Definition 

Longitudinal  

and  

lateral control 

Monitoring 

driving  

environment 

DDT 

fallback 

System 

Operational 

design 

domain 

0 
No 

Automation 

 

The driver performs 

all of the DDT 

 

Driver Driver Driver N/A 

1 
Driver 

assistance 

 

A driver assistance 

system of either 

steering or 

acceleration/decelerat

ion is present 

The diver perform the 

remaining task not 

performed by driving 

automation system.  

 

Driver and 

System 
Driver Driver Limited 

2 

Partial 

Driving 

Automation 

 

One or more driver 

assistance systems of 

both steering and 

acceleration/decelerat

ion are present 

The diver perform the 

remaining task not 

performed by driving 

automation system.  

 

System Driver Driver Limited 

3 

Conditional 

Driving 

Automation 

Automated driving 

system perform all 

the aspects of DDT. 

Drivers will still need 

to intervene when 

takeover request is 

issued by the system  

System System Driver Limited 
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4 

High 

Driving 

Automation 

Automated driving 

system perform all 

the aspects of DDT. 

even if the driver 

fails to respond 

adequately to 

takeover request by 

the system 

System System system Limited 

5 

Full  

Driving 

Automation 

The system performs 

all of the DDT in all 

conditions 

manageable by a 

human driver 

System System system Unlimited 

 

2.2.   Level 2: Human Factors Concerns 

Both theoretical and empirical literature suggests that the introduction automated vehicle 

features to perform traditional driving tasks handled by a human driver will alter their role, 

thereby introducing several safety-critical human factors issues (Strauch, 2018). These may 

include problems regarding changes in the physical and mental workload (Young & 

Stanton, 2002), deskilling (Stanton & Marsden, 1996; Trösterer et al., 2016), vigilance 

decrement (Greenlee et al, 2018), takeover issues (Li et al, 2019), mode confusion (Endsley 

& Kiris, 1995), and reduced situation awareness (Parasuraman & Riley, 1997b). 

As mentioned, in L2 systems, two of the primary driving functions are performed 

by the system, but the driver holds responsibility for monitoring the driving and should be 

ready to intervene and take back control from the system at all instances during the driving 

task. There are several concerns with drivers operating automated cars, and all are related 

to over-reliance on the automation and a subsequent failure to take over control (Buckley 

et al, 2018; Parasuraman & Riley, 1997). First, and perhaps most important challenge of 

these vehicles is regarding the drivers’ lack of knowledge about the systems. The drivers 
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may get confused about system functions and limitations (Gibson et al., 2016). Second is 

related to driver disengagement from some of the driving tasks which depends of the 

drivers level of trust  on automation (McGuirl & Sarter, 2006). Third, it is challenging for 

drivers to maintain their vigilance as often as when they are driving manually (Merat & 

Lee, 2012) and consequently, their situational awareness may be decreased leading to 

failure to detect uncommon, complex situations that they otherwise would normally detect 

(Jones, 2015). However, activating vehicle automation means that drivers need to be 

responsible for maintaining situational awareness at all times.  

Considering the above challenges, in this research work, we classified the human 

factors concerns regarding L2 systems into four main categories, namely, the lack of 

knowledge regarding the system, driver disengagement, lack of situational awareness, and 

challenges regarding transfer of control while using the system. The following sections will 

discuss these categories in detail. 

2.2.1.   Limited Knowledge of Drivers 

In manual cars with no support features, the drivers learning process was fast since the 

basic controls of the vehicle could be mastered easily with minimal need to understand 

complex mechanism of the vehicles. The arrival of automated features in vehicle raises 

new challenges for drivers to understand these complex systems as well as adapt to the 

rapid developments in the field. With this in mind, knowledge of drivers or rather lack of 

knowledge, about the automation functions of the vehicles becomes a major concern.  

It is suggested that drivers’ understanding of the system features and their ability to 

adapt their behavior and skills to these systems have a direct effect on the actual 

effectiveness of the driver support features (DSF) (Sullivan et al, 2015). Despite this, 
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previous studies showed that drivers had poor awareness regarding the automated systems 

in their vehicles. McDonald et al (2018) in a survey study reported that 20% of all drivers 

did not know if certain functions were available or not in their vehicles (McDonald et al, 

2018).  

The varying nomenclatures of similar automated features by different manufacturer 

may raise additional challenges for drivers to understand or recall the functionalities of 

these features. Funkhouser et al (2017) suggested that assigning similar sounding names to 

features with different functionalities may also create confusion even for those drivers who 

declared that they understood the system well (Funkhouser et al, 2017). 

In L2 vehicles drivers need to be aware of system limitation and intervene when 

needed. One major challenge addressed in literature is that the drivers may get confused 

regarding whether they need to intervene or whether the system has the primary 

responsibility of driving (Gibson et al., 2016). Previous studies showed that drivers usually 

do not have sufficient knowledge of driving supported features. In part, this is because 

drivers frequently do not understand the ODD of L2 features and assume that the 

automation will function in a much broader domain than the one for which it was intended 

(Larsson, 2012a). To better understand this matter, we will need to define Operational 

Design Domain (ODD) and then explain the two important and prominent driving support 

features as well as their ODD limitations. The first feature is regarding longitudinal control 

of the vehicle (Adaptive Cruise Control (ACC)) and second, is regarding lateral control of 

the vehicle (Lane Centering feature). 
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2.2.1.1.   Operational Design Domain 

SAE (2018) defines an Operational Design Domain (ODD) as “operating conditions under 

which a given driving automation system or feature thereof is specifically designed to 

function, including, but not limited to, environmental, geographical, and time-of-day 

restrictions, and/or the requisite presence or absence of certain traffic or roadway 

characteristics”. The ODD of a system is a representation of conditions within which the 

specific driving automation feature operates, and each of these features has exactly one 

ODD (SAE International, 2018).   

According to NHTSA (2017), vehicle manufacturer are encouraged to prepare 

documentation specifying information regarding the ODD for each of the DSF available 

on their vehicles.  The documented ODD should be able to inform the users about specific 

conditions where the feature is intended to function. A typical ODD documentation should 

provide information regarding DSF limitations such as speed range, road types, geographic 

area, environmental conditions and etc. (NHTSA, 2017). 

Koopman & Fratrik (2019) stated that ODD should be characterized by at least one of the 

following factors (Koopman & Fratrik, 2019) :  

1) Operational terrain along with location-dependent parameters (e.g. curvature, road 

friction, banking, etc.)  

2) Environmental and weather conditions (e.g. wind, visibility, icing, lighting, etc.) 

3) Operational infrastructure and availability of navigation aids (e.g. beacons, lane 

markings, traffic lights, signage, etc.) 

4) Rules of engagement and on-road policies (e.g. traffic laws, social norms, 

customary signaling, etc.) 
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5) Considerations for implementation in multiple regions/countries (e.g. side-of-road 

changes, stop sign modifiers, etc.)  

6) Communication modes, bandwidth, latency, stability, availability, reliability, 

including both machine-to-machine communications and human interaction. 

7) Availability of continuous updated data regarding infrastructures or road-way 

conditions (e.g. construction zones, traffic jams, etc.) 

Considering all the above factors, ODD concept in vehicle automation context was 

introduced to define the limitations of automation systems at levels 1, 2, 3 and 4,  while 

Level 5 (full driving automation) has an unlimited ODD (SAE International, 2018).  

Czarnecki (2018) categorized ODD limitation in to three groups - road environment, 

vehicle performance, and vehicle state (Czarnecki, 2018). 

 Limitations regarding road-environment include types of roads (urban, rural, 

freeways), particular roadway structures such as tunnels or roundabouts, and weather and 

visibility conditions. Czarnecki (2018) also stated that the road-environment limitations are 

the most common elements of an ODD. In addition to this, ODD limitations regarding 

vehicle performance and state are also important. Vehicle performance ( behavior) 

limitations may include speed or maneuverability limitations and vehicle state limitations 

may include the constraint such as loading limitations, vehicle modifications, etc.   

In the following section, the ODD limitations for L2 vehicles will be explained by 

providing an insight on the ODD limitations for longitudinal and lateral support features in 

L2 vehicles. 
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2.2.1.2.   Operational Design Domain: Longitudinal Control 

The Operation Design Domain of a driving support feature defines “where (such as the 

type of roads or speed limits) and when (under what conditions, such as day/night, weather 

limits, etc.), the feature has been designed to operate safely” (NHTSA, 2017). Ideally, if 

the system falls outside its defined ODD or dynamically changes to fall outside its ODD, 

the vehicle should transition to conditions that pose minimal safety risks (NHTSA, 2017). 

We will first explore the ODD and ODD limitations for the longitudinal control feature of 

the vehicle. 

Adaptive Cruise Control is one of the most common DSF in modern vehicles, 

which provides assistance towards the vehicle’s longitudinal control, thereby reducing the 

workload of the driver in the vehicle (ISO, 2018). A typical Adaptive Cruise Control allows 

the driver to set a desired speed and safe headway distance from the lead vehicle by using 

buttons on the steering wheel or lever switches in the vehicle. The system maintains the 

vehicle’s speed setting imposed by the driver, in the absence of a lead vehicle. In the case 

where a lead vehicle is present in vehicle’s path, a safe headway distance, either set by 

default or by the driver is applied, in turn adjusting the vehicle’s speed to the lead vehicle’s 

speed (Bianchi et al.  2014). 

The current DSF have several design limitations, such as sensor limitations or 

malfunction or failure in sensor processing which could affect the features’ performance 

(Beggiato & Krems, 2013; Bianchi Piccinini et al, 2014). They also may not be able to deal 

with critical traffic situation on their own, requiring the driver to remain in the active 

driving role, with the features only providing assistance to the driving task (Nilsson, 1996). 

By exploring the vehicle owner’s manuals of different DSF, it is possible to observe the 
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numerous situations where the ACC system reaches its ODD limitations, such as, in 

presence of pedestrians and/or stationary objects, or when the system is not able to detect 

the lead vehicle appropriately at different roadway geometries and conditions. For 

example, the vehicle owner’s manual of Cadillac SuperCruise states “On curves, ACC may 

not detect a vehicle ahead in your lane. You could be startled if the vehicle accelerates up 

to the set speed, especially when following a vehicle exiting or entering exit ramps. You 

could lose control of the vehicle or crash. Do not use ACC while driving on an entrance or 

exit ramp”(Cadillac, 2018). In another example, from the vehicle owner’s manual of Tesla 

Model X states that its adaptive cruise control feature “…cannot detect all objects and may 

not brake/decelerate for stationary vehicles or objects, especially in situations when you 

are driving over 50 mph (80 km/h)” (Tesla, 2019). 

Despite the documented limitations of ACC from various sources, many users of 

the system do not have the accurate or complete knowledge or understanding of the system 

and its limitations. For example, a survey study showed that among the 370 users of the 

ACC system, about 72% of the users did not have sufficient knowledge of ACC 

functionality and limitations (Jenness et al, 2008). In a similar study, 60% of the drivers 

reported to read only the half of the user’s manual while the rest of the drivers did not read 

it at all (Mehlenbacher et al, 2002). In Another study, drivers with no previous experience 

with ACC showed a lack of proper mental model regarding the system and this was worse 

in case of those drivers who did not read the manual (Larsson, 2012). 

2.2.1.3.   Operational Design Domain: Lateral Control 

A Lane Centering Assist System (LCAS) is another DSF available in modern vehicles, 

which controls the lateral positioning of the vehicle by continuously steering the vehicle to 



15 

 

keep it centered within a lane. The combination of an LCAS and an ACC system is 

equivalent to a Level 2 Automated Vehicle (Ismail, 2017). The literary sources on LCAS 

is often conflicting, with some theoretical works suggest that a driver can disengage from 

physically operating the steering wheel, by taking their hands off the steering wheel from 

time to time (Ismail, 2017), while in practice, manufacturer sources such as the owner’s 

manual of the Tesla X suggest that drivers need to keep their hands on the steering wheel 

at all times when using the LCAS feature (Auto Steer) of the vehicle (Tesla, 2019). 

However, there is common ground for all sources about LCAS, which state that the driver 

is required to be mentally present behind the wheel at all times while using these features.  

There are several ODD limitations regarding LCAS, mentioned in owner’s manuals 

of different vehicle models. Some of the common limitations include the inability of the 

LCAS to function properly in poor visibility of the lane markings due to weather conditions 

(heavy rain, snow, fog etc.), or roadway conditions (damage or obstructions caused by mud, 

ice; damaged bumpers). The system could also fail to function appropriately at certain road 

geometries such as narrow or winding roads (Cadillac, 2018; Tesla, 2019). Despite all these 

limitation, unlike ACC there is a significant lack of literature about the drivers’ knowledge 

of lateral control systems.  

Considering above mentioned operational design domain for both lateral and 

longitudinal control systems,  lack of knowledge about these systems’ capabilities and 

limitations may cause drivers’ confusion regarding effectively using and interacting with 

the system. However, lack of knowledge is not the only human factors challenge faced 

while driving L2 vehicles. Drivers may have enough knowledge about L2 systems 

capabilities and limitations but they may still be affected negatively by using the systems 
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due to the disengagement from driving control task (both lateral and longitudinal control). 

In the next section the challenge regarding drivers’ disengagement while driving L2 

vehicles and its consequences will be discussed.  

2.2.2.   Disengagement of Drivers 

2.2.2.1.   What is it? 

Despite the mentioned benefits of automated systems on safety and comfort, research has 

shown that these systems may also negatively affect the drivers’ abilities, behavior, and 

performance (Carsten & Nilsson, 2001; Saffarian, de Winter, & Happee, 2012). For 

instance, different studies have shown that such systems may decrease the driver demands 

and increases the chances of distraction (Reyes & Lee, 2004). This issue is more 

challenging for Level 1 and Level 2 automated systems, where drivers need to continuously 

cooperate with the system, sufficiently supervise the systems functions, and take back 

control when needed (Solis Marco, 2018).  

Drivers support features help drivers maintain their vehicle’s controls 

longitudinally, laterally, or both, allowing them to allot more processing resources to other 

tasks while driving (Blanco et al., 2015). These features alter the role of the driver from an 

active operator to a passive supervisor (Louw et al, 2017). During this transfer of role, 

drivers may experience the ‘out-of-the-loop’ phenomenon where they are not in control 

loop, which in case of L2 systems is the control of steering and speed maintenance of the 

vehicle (Navarro et al, 2016). There are three aspects of the ‘out-of-the-loop’ phenomenon: 

manual, cognitive, and visual. All manual, cognitive and visual aspects of driving are 

important and contributing to safe driving performance while using L2 vehicles. For 

example, keeping hands on the steering wheel at all times gives the drivers the physical 
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control which provides feedback of steering torque and helps correct heading errors (Pick 

& Cole, 2006). Similarly, proper situation awareness and on-road monitoring is vital for 

decision-making and anticipating potential hazards, to effectively respond to critical events 

(Endsley, 2006). 

As a result of driving with automated features engaged, drivers are removed from 

the manual control loop, since they are no longer physically operating the vehicle’s controls 

like the steering wheel, throttle, and brake pedals (Stanton & Young, 1998). Similarly, 

drivers can also be removed partially or completely from the cognitive control loop. In 

these cases, being ‘out-of-the-loop’ can also result in mental underload, due to the reduced 

involvement of the driver in continuous control tasks (M. S. Young & Stanton, 2002), 

thereby leading to decrease in situation awareness, drowsiness, and inattention (Greenlee 

et al, 2018; Hirose et al, 2015). Drivers can also be removed from the control loop by visual 

distractions which impairs their ability to estimate the situation on the road and decide to 

intervene if needed (Zeeb et al, 2016). 

One factor which can play an important role in drivers disengagement (out-of-the-

loop) in automated vehicle is their trust in the automated features of the vehicle.  In the 

following sections we will explore all the aspects related to drivers disengagement while 

driving L2 vehicles- the trust in automation, and different types of driver distraction. 

2.2.2.2.   Trust and over-reliance  

Various definitions of trust have been used in the context of automation. Mayer et al (1995) 

characterized trust as an intention, stating that trust is “…the willingness of a party to be 

vulnerable to the actions of another party based on the expectation that the other will 

perform a particular action important to the trustor, irrespective of the ability to monitor or 
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control that party” (Mayer et al, 1995). In their definition of trust, Lee and See (2004) 

viewed it as an attitude, stating that trust is “…the attitude that an agent will help achieve 

an individual’s goals in a situation characterized by uncertainty and vulnerability” (J. D. 

Lee & See, 2004).  

Understanding or possessing the right knowledge of the automated system has been 

shown to be the strongest factors influencing trust (Balfe et al, 2018). One of the ways to 

present the information to drivers is through an in-vehicle interface which presents 

appropriate amount of information regarding the system’s functions which could increase 

operator’s trust (Hoff & Bashir, 2015), by enabling them to understand or predict the 

system’s actions (Endsley, 2017). An efficient interface with sufficient availability of 

information (Bitan & Meyer, 2007) and accurate and adequate feedback (Muir & Moray, 

1996; Sharples et al., 2007), could lead to the development of trust in a driver.  

In addition to knowledge and understanding two other factors - driver’s experience 

and level of automation could impact driver’s trust on automation systems.  Previous 

studies showed that drivers’ experience could play an important role in the development of 

trust as drivers’ trust in the system evolves with more experience using the system (Cohen 

et al, 1998; Wickens & Hollands, 2000).  This is evident when considering the reliance of 

the drivers with varied experience. Novice drivers (drivers with less expertise) tend to rely 

inappropriately on the systems compared to experienced drivers (Fan et al., 2008; Sanchez 

et al, 2014). Another factor is the level of automation (0-5) which may influence the level 

of drivers’ trust towards automation system (French et al, 2018). Previous studies have 

shown that at higher level of automation drivers trust the system less due to system being 
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more complex for the drivers to understand than at lower levels (Lewis et al, 2018; Merritt 

et al, 2015).  

It is suggested that the efficiency of automated systems often depends on the 

drivers’ level of trust in those systems (Payre et al, 2016) and to maximize the efficiency, 

an appropriate calibration of trust is needed.   An appropriate calibration of trust is said to 

occur when the drivers’ level of trust matches the capabilities of the system. Poor 

calibration could result due to over-trust and distrust. Over-trust occurs when the person’s 

trust in the automated system is too high when compared to the supposed capabilities of 

the system. This in turn causes over-reliance on the system which may result in misuse of 

the system, i.e. driver expects the automation to perform tasks outside its capabilities or 

even when the system is malfunctioning. 

 On the other hand, distrust refers to a person not having sufficient degree of trust  

(J. D. Lee & See, 2004). This may result to under-reliance which may lead to disuse of the 

system, i.e. lack of usage of the system despite its capabilities, resulting in increased 

physical and mental workload for the drivers and inefficient system performance (Lee & 

Moray, 1992). Considering the above, appropriate calibration of trust is vital for safe and 

optimum performance and drivers with an appropriate calibration of trust, can effectively 

complete tasks even with an imperfect automation system. Appropriate calibration of trust 

can result in faster braking responses (Seppelt & Lee, 2007) and also drivers confidence 

while using the system (Dzindolet et al, 2003). Previous study showed that providing 

information regarding system’s capabilities and limitations can help drivers to calibrate 

their trust on automated systems appropriately. (Khastgir et al, 2018)  
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Drivers’ overreliance and misuse of automation has been addressed as an issue in previous 

studies. At unexpected events, drivers who reported higher level of trust in the automation 

system were shown to have slower reaction times while using the system (Payre et al, 

2016). Previously, different studies have also indicated that the inappropriate calibration of 

trust can lead to similar negative effects at different levels of automation (Abe et al, 2002; 

McGuirl & Sarter, 2006; Parasuraman & Riley, 1997). One of the reasons for this could be 

the drivers visual scanning activity, where drivers with high trust in the system tend to 

monitor less (Bagheri & Jamieson, 2004). Results from Korber et al (2018) showed that 

participants with higher level of trust spent less time looking at the road while performing 

a distraction task (Körber et al, 2018). This shows that perhaps those drivers who have 

more trust on automation are more prone to be distracted while driving with these systems. 

In the following section we will discuss more about the effect of automation system on 

drivers’ distraction and inattention.   

2.2.2.3.   Distraction: Types  

One of the attractive aspects of driving support features for consumers is that it 

reduces drivers’ involvement in the control task and enables them to be engaged in non-

driving tasks. In fact, various studies showed that the presence of  support features in 

vehicles can cause changes in drivers’ behavior in many aspects including the increased 

likelihood of drivers engagement in non-driving distractive tasks (Brookhuis, De Waard, 

& Janssen, 2019; O. Carsten, Lai, Barnard, Jamson, & Merat, 2012; Merat, Jamson, Lai, 

& Carsten, 2012a). In other word, support features will increase the likelihood of drivers 

to redirect their attention from the active driving task to passive supervision and 

engagement in non-driving tasks and this trend goes up with increase in the level of 



21 

 

automation. This tendency varies for different type of drivers support features, where 

drivers are more prone to inattentiveness to the driving task when using lateral support 

features compared to longitudinal support (Carsten et al., 2012). 

Corresponding with three types of ‘out of control loop’- visual, cognitive, manual 

which were discussed earlier in section 2.2.2.1, there are three respective types of 

distraction (Visual, Cognitive, Manual) that can accrue while using L2 system which will 

be addressed in the following sections. 

2.2.2.3.1.  Visual distraction 

Visual distraction occurs when the driver neglects or fails to look at the road ahead, and 

instead focuses his/her visual attention on another target for an extended period of time 

(Zeeb et al, 2015). This type of distraction is one of the addressed issues in previous 

literature about level 2 automated vehicles (Carsten et al., 2012).  Carsten et al (2012) 

showed that the prevalence of visual distraction increased when using driving support 

features in L2 systems. This was mainly due to the fact that L2 systems shift most of the 

responsibility of the driving task to the system and the drivers are left relatively uninvolved 

in a passive supervision role, leading to driver disengagement. This may lead to the driver 

shifting their attention away from the operations of the vehicle and onto distracting 

activities, either in-vehicle or in their external environmental (Carsten et al., 2012).  

Visual distraction has also been shown to deteriorate the takeover quality of drivers 

in L2 vehicles. A previous study showed when reading news or watching a video, drivers 

did not maintain the lateral position of the car properly after taking back control from the 

system and they deviated about 8-9 cm from the lane center (Zeeb et al., 2016). Another 

study using standardized visual Surrogate Reference Task to simulate visual distraction, 
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showed that visual distraction task significantly impaired the takeover time and quality of 

driver in highway setting. Results from this study showed that when visually distracted 

drivers had higher collision rates than when they were cognitively distracted, especially 

when traffic density was high (Radlmayr et al, 2014). 

It is important to note that visual inattention and failure to monitor the roadway 

adequately due to usage of L2 systems is not only caused by visual distraction tasks such 

as texting or dialing on the phone, but also can be caused by using L2 systems alone. 

Although some studies showed that the non-distracted drivers responded similarly to 

critical events when driving in both manual and L2 vehicles in contrast to distracted drivers 

who performed worse in L2 mode (Merat et al, 2012b), another study has shown that when 

using automated features without any distraction tasks imposed, drivers were less likely to 

sufficiently monitor the area of roads where the visual information required the take back 

control was present. They suggested that resuming manual control is not only challenging 

in terms of performing the take back control action but also could be difficult due to the 

change of driver’s visual strategies linked to drivers’ disengagement from the steering task 

(Navarro et al., 2016). 

2.2.2.3.2.   Manual distraction 

Manual or physical distracted driving occurs when drivers took one or both hands off the 

steering wheel for a long duration in order to physically manipulate objects (K. Young & 

Regan, 2007). Several studies have examined the effect of manual distraction tasks on 

drivers performance while driving using L1 and L2 systems. Some of these studies 

investigated the prevalence of manual distraction while driving with automation support 

features. Carsten et al (2012) showed that drivers engagement in eating task increased 
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while driving using L1 systems compared to manual driving and increased further while 

using L2 systems. The result from the same study showed that the mentioned effect was 

different for longitudinal and lateral support systems. The drivers who used longitudinal 

support system were less likely to be engaged in eating task compared to those who used 

lateral support systems. The results showed that 91% of the drivers were engaged in eating 

task while using lateral support features and 68% of the drivers were engaged in eating task 

while using longitudinal support (Carsten et al., 2012). In another study, Llaneras et al 

(2013) showed that drivers engagement in texting was 42% more while using L2 systems 

(ACC and Lane keeping system) comparing to L1 system (ACC).  The same study reported 

a similar result for cellphone dialing task (Llaneras et al. 2013).  

2.2.2.3.3.   Cognitive distraction 

There are several definitions for cognitive distraction. Young & Regan (2007) suggested 

that “cognitive distraction includes any thoughts that absorb the driver’s attention to the 

point that they are no longer able to navigate through the road environment safely” 

(KYoung & Regan, 2007). Strayer et al (2011) stated that cognitive distraction occurs when 

drivers allot a part of their attentional resources to non-driving related secondary task 

(Strayer et al, 2011). 

Previous studies showed that cognitive distraction effects drivers performance while 

driving with automated support features. Merat et al (2012) showed that drivers reaction 

toward critical events on road was poorer in automated mode when they were engaged in 

cognitive task compared to those driving manually while engaged in the same task. The 

drivers in automated group could not mitigate the critical hazard situation properly (change 

lane) while they were performing the cognitive task (Merat et al., 2012b). Another study 
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showed that the adverse effect of cognitive distraction task on drivers take over reaction 

while driving L2 vehicles was similar to visually-demanded distraction tasks, despite the 

fact that drivers had their eyes on road all the time (Radlmayr et al., 2014). However the 

result of this study indicated that the drivers who were engaged in visually distraction tasks 

had a higher total number of collisions in the high density traffic situation.  

To sum up, the negative effect of drivers’ disengagement, either caused by drivers’ 

over-reliance on the system or different types of distraction, is one of the challenges faced 

by drivers while using L2 systems and can impact their performance significantly as 

mentioned in the above section. Another human factors challenge of using L2 systems 

addressed in previous studies, is reduced situational awareness of the drivers while driving  

L2 vehicles. This challenge has a strong relation to the two aforementioned challenges and 

will be discussed in the following section.  

2.2.3.   Situational Awareness 

Situational awareness is one of the important mentioned factors while driving with 

automation support features where on one hand drivers role is altered to a more supervisory 

(Merat et al., 2012b) and on the other hand drivers may still need to regain manual control 

from the system when system reaches its ODD limits (Sheridan, 2006). To better 

understand the term situational awareness in driving context, we need to first have a look 

on situational awareness definition in the literature. 

Previous literature has defined situational awareness as “perception of 

environmental elements and events with respect to time or space, the comprehension of 

their meaning, and the projection of their future status” (Endsley, 1995). Situational 

awareness has been considered as one of the critical factors which contributes to the 
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driver’s decision making process for mitigating hazards as well as planning and 

maintaining their safety (Sirkin et al, 2017). Endsley & Garland (2000) stated that 

situational awareness involves perceiving information and cues, fully understanding the 

meaning and nature of the required tasks and projecting this knowledge and recall it in 

future situations (Endsley & Garland, 2000). Hence as Merat & Jameson (2009) 

mentioned , a proper situational awareness is constituted by awareness of the vehicle’s 

position on the roadway in relation to other roadway elements as well as how it can be 

maneuvered to safely navigate the roadway while mitigating the potential hazards that may 

arise (Merat & Jamson, 2009).  

Due to the supervisory role of the driver while using L2 systems,  they are more 

likely to  shift their attention from the driving task to other secondary distraction tasks 

resulting in less situational awareness (Merat et al., 2012b). As mentioned earlier, it is vital 

for the drivers to be situationally aware since they may need to regain manual control from 

the system if the system is unable to mitigate particular situations (Sheridan, 2006). It has 

been recommended that for L2 drivers need to be situationally aware at all times while they 

should be able to become situationally aware and control the vehicle after brief period of 

disengagement.(NHTSA, 2016).   

Despite the importance of drivers being situationally aware in automated vehicles, 

previous studies have shown that drivers’ situational awareness is likely to be reduced 

while driving with automated support features which do not require continuous 

involvement of the driver in driving tasks (Hirose et al, 2015).  While the literature about 

drivers situational awareness is vast, there have been different measurements used to 

quantify the situational awareness of the drivers.  Merat & Jemsaon (2009) computed 
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drivers’ response time to unexpected hazards as a measurement of drivers situational 

awareness and they showed that drivers’ situation awareness was reduced in automated 

driving condition (Hirose et al, 2015; Merat & Jamson, 2009).  Other studies suggested 

using drivers hazards perception (in terms of monitoring and detecting the hazards) as a 

measurement for situational awareness (Horswill & McKenna, 2004). Related to this, 

Green lee et al (2018) showed that drivers hazard detection declined significantly during a 

40-minute automated driving.  By ‘hazards’, we mean those situations that system cannot 

function well in, due to reaching its operational design domain (ODD) limitations. 

Regardless of the different situational awareness measurement, the decrease in 

situational awareness can be problematic, either causing less hazard detection or late 

response to hazards. This issue can be more challenging for those L2 systems which do not 

provide  any warning to the drivers (Stephen Ridella, 2017). These type of L2 systems 

would require the drivers to be situationally aware of their surroundings all the time to 

detect possible takeover situations and finally, take back control when the system has met 

its limitations (Jones, 2015).  Transfer of the control in general is one of the drivers 

challenge while using L2 systems since the system cannot function in all the situations. 

Next section will discuss the challenges regarding transfer of control while using L2 

systems.  

2.2.4.   Transfer of Control 

One particular issue of concern while using L2 is transfer of control between the system 

and the driver. Transition in L2 is defined as the process where the primary control 

mechanism in the human-machine interaction system changes from one state to another 

state (Lu et al, 2016). Transfer of control can either be initiated by the driver or the system. 
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A system initiated transfer of control occurs when a take back control request is issued to 

the driver upon reaching system limitations where driver intervention is required. On the 

other hand a driver can also initiate transfer of control if they anticipate that the system is 

reaching its ODD limitations or to meet their maneuvering or navigation goals (Merat et 

al, 2014). 

Transition is particularly challenging in the case of level 2 automation since the 

system is not able to function during all the situations encountered on the roadway 

(Norman, 1990). As for L2 systems (combination of ACC and lane keeping assistance) 

drivers are expected to be available for control all times and to be ready to maneuver the 

vehicle to safety since the system might not warn the driver beforehand (Singh, 2015). 

Automated systems at L2 are not designed to work as chauffeurs or self-drive the vehicle 

but only to serve as support systems to assist the driver in various vehicle control tasks. In 

lower automation level such as L2 systems drivers are still required to provide input 

frequently even though DSF such as ACC and LCAS take away portions of driving task 

from the driver (Seppelt & Victor, 2016). For instance at curves, drivers may need to 

provide additional steering torque even though LCAS is engaged.  They may also be 

required to take back control from ACC in presence of vulnerable road users such as 

pedestrians, bicyclists (Cadillac, 2018; Tesla, 2019).   

As McDonald et al (2019) stated that a safe take back control depends on two 

important factors, first the takeover time budget and the effectiveness of the action. Further 

it was stated that a crash could be avoided, if drivers anticipated the take back situation, 

decided on an action and executed it properly on time. (McDonald et al., 2019). Past 

research have investigated the effectiveness of  a wide range of takeover time budgets and 
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the most commonly used value for time budget was 7 seconds (Eriksson et al, 2017; Payre 

et al , 2016; Zeeb et al, 2015).  

Despite the impotence of drivers take back control actions, prior research has 

indicated that the response to critical road events by drivers in highly automated cars was 

slower than their response in manual cars (Young & Stanton, 2007). Previous research also 

showed that the interface of Telsa model S itself was inadequate at providing drivers with 

the information they need to understand ahead of time that it will be necessary for them to 

reassume control. A thematic analysis of video data in an on-road study featuring drivers 

in a Level 2 vehicle showed that drivers did not receive appropriate support from the system 

to fulfill their monitoring duties in order to efficiently take back control from the DSF 

(Banks et al, 2018) . There may even be a case where humans and the system 

miscommunicate, resulting in false expectations from both sides. This can either be over-

reliance by the human on the system capabilities or the misconception by the system about 

what the human has or has not noticed. Both cases can have disastrous consequences 

(Carsten & Martens, 2019) 

One of the factors which plays an important role in drivers reaction in transfer of 

control situations is  the density of the traffic . Results obtained from a study conducted by 

Gold et al (2016) showed that the presence of traffic at transfer of control situation was 

detrimental to the drivers takeover time and quality. They showed that at high traffic density 

drivers had longer take over times, had takeover reaction with less time budget, resulting 

in more crashes (Gold et al, 2016).  

As mentioned in this section, there are several challenges in usage of L2 vehicles. 

One of the important issue is the drivers’ lack of sufficient knowledge regarding L2 system 
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capabilities and ODD limitations. False expectations and inappropriate calibration of trust 

can lead  to over-reliance and misuse of the automation system (Parasuraman & Riley, 

1997a). One negative consequence of over-reliance on system can be drivers’ engagement 

in distraction tasks which decreases their situational awareness. As explained before, the 

situational awareness of drivers is less in L2 vehicles compared to manual vehicles. Being 

involved in secondary tasks may further decrease the vigilance of the drivers to the point 

that they cannot detect and mitigate the hazards on the road by taking back control from 

the L2 systems. Considering all the mentioned issues, it is vital to seek for practical 

solutions. In following sections, some of the most important suggested solutions addressed 

in previous literature  will be explained. 

2.3 Level 2: Countermeasures 

Finding solutions to minimize the negative effects while using the positive capacity of these 

systems is an important subject suggested by many researchers in the field (Saffarian et al., 

2012; Seppelt & Victor, 2016). Previous studies investigate different tools and methods to 

overcome the challenges of L2 system. For example, they investigated the effect of user 

owner manuals (Jenness et al., 2008), pre-purchase training (Mullen, 2017), designing an 

appropriate interface (van den Beukel et al, 2016), providing post drive feedback (Körber 

et al. 2018), drivers state monitoring (Gaspar et al, 2018) and ODD training  (Forster et al, 

2019). Based on the focused aspect of these solutions, we classified them into two main 

groups - Improving drivers’ knowledge, improving drivers’ supervision and transfer of 

control. Owners’ manual, pre-purchased training, designing an interface, post drive 

feedback are included as solutions which target the drivers’ knowledge and understanding 

of the system and hence will be included in the drivers knowledge category. Driver’s state 
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monitoring and ODD training both mainly focus on improving drivers supervising the 

road/system and take back control when needed and hence they will be included in drivers 

supervision and transfer of control categories.   

2.3.1   Drivers Knowledge  

Literature regarding countermeasures for drivers lack of knowledge and understanding of 

L2 systems can be classified into four categories: Owners’ manual, pre-purchase training, 

Realtime feedback and post drive feedback. Using comprehensive user manual documents 

is one of the methods to improve drivers knowledge of the system.  as NHTSA (2017) also 

encouraged vehicle manufacturer to prepare documentation specifying information 

regarding the ODD for each of the DSF available on their vehicles (NHTSA, 2017). 

Another method is providing an informative in-vehicle interface which provides real-time 

feedback to the drivers can be another solution. Training drivers prior their usage of the 

system or after they have gained experience by using L2 systems is another suggested 

countermeasure. As we explained earlier, there are various situations where drivers need to 

be informed (HMI interface) or learn from (Training) about ODD limitations of the systems 

in order to decide correctly when to take back control from the system. In the following 

sections we discuss different countermeasure methods to help drivers to gain sufficient 

knowledge and awareness about ODD limitation of L2 vehicles while using them.  

2.3.1.1  Owner’s Manuals 

Nowadays, most of the products include documentation from their manufacturer in form 

of owner’s manual to provide essential information to the users. Basically these manuals 

aim to increase users’ safety by explaining terms of use and providing hazard warnings. In 

case of automobiles, they can be extensive and complex due to the fact that they include 
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all the information regarding getting started guides, troubleshooting guides, tutorials and 

so on (Mehlenbacher et al, 2002).  

Introduction of new generations of vehicles with DSF or ADF has increased the 

complexity and extensiveness of these documents. As mentioned in earlier sections, there 

are many ODD limitations which L2 vehicle users need to be aware of in advance. There 

may be some cases where DSF may not function properly (e.g. snow or mud on the road 

resulting in sensors malfunctioning) and other cases where it will not function at all (e.g. 

L2 systems cannot detect vulnerable road users such as pedestrian, bicyclists) (Cadillac, 

2018; Tesla, 2019). Hence, it is crucial for manufacturer to document and provide all the 

details and information regarding limitations of their L2 vehicles to the users and for the 

users to obtain this information and recall it while using these systems. 

Considering L2 vehicles have been introduced recently to the consumer population 

(NHTSA, 2019), the most reliable and accessible source of information regarding these 

features is the vehicle owner’s manual. A previous survey has reported that almost 70% of 

the respondent mentioned that they learned how to use ACC features using owner’s manual 

(Jenness et al, 2008).  In a more recent study conducted by Abraham et al (2016), 

participants were asked about their preferred method of learning about their vehicle 

technology and 63% of them indicated that they preferred vehicle owner’s manual 

(Abraham et al., 2016).  

The usefulness of owner’s manuals is based on the manufacturers’ assumption that 

all prospective users will read the entire manual and understand its contents specifically 

regarding systems’ limitations. It has been found out that many people do not read the 

manuals completely, in fact Leonard and Kames (2000) reported that only 6.8 percent of 
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221 survey respondents indicated to have read their vehicle owner’s manuals (Leonard & 

Karnes, 2000). Another issue is that although people might have read the entire manual 

they may not completely comprehend it as the survey results from Jenness et al (2008) also 

showed that despite 70% of the ACC users declaring that they read the manuals, only 28% 

were aware of the system functionalities and limitations (Jenness et al., 2008). This raises 

a question if there exists more effective methods to inform and educate the L2 vehicle 

users.   

2.3.1.2  Pre-purchase/Pre-exposure Training 

Owners’ manual or trial and error are the most common learning method regarding safe 

use of automated vehicles (Eichelberger & McCartt, 2016; Jenness et al., 2008). However, 

owner’s manuals have their own challenges as mentioned previously. Trial and error also 

may not be an effective method. Despite some studies showing that experience can help 

drivers become more aware of system limitations and adjust their driving behavior suitably, 

the complexity of the advanced vehicle technologies such as DSF may even render an 

experienced driver to face unexpected conditions while using these systems (Jenness et al., 

2008; Larsson, 2012a). Previous studies also reported serious misconceptions of drivers 

prior to their purchase of automated vehicles resulting in them driving cars with false 

assumption about the functionality of their vehicles (Casner & Hutchins, 2019).  

One solution can be providing drivers with pre-purchase training about automated 

features. A study conducted by State Farm insurance company showed that about 52% of 

the drivers preferred to be instructed about their new vehicle’s functions at the dealership 

(Mullen, 2017). The quality of such pre-purchase training was evaluated for different 

dealership by Abraham et al (2017) and they found that the quality of training was not 
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consistent across all dealerships. The study further reported that many salespeople who 

conducted the pre-purchased training failed to provide customers with adequate 

information about functionalities of automated features in the desired vehicles. Moreover, 

it was also suggested by many of these salespeople that training the drivers in a single 

session would not be effective and a follow-up training may be useful to make sure that 

drivers have gained the long-term knowledge about proper use of technologies in their 

vehicle (Abraham et al, 2017). Considering the above points it may be possible to improve 

the pre-purchase training by extensively training the salespeople, developing easy-to-

understand material regarding automated features for consumers and also providing 

follow-up training opportunities to consumers. 

Another form of user education regarding automated vehicles are interactive 

tutorials. These tutorials are being provided to the drivers in advance of their first 

interaction with an automated vehicle. They provide an opportunity for the drivers to make 

mistakes and learn from their errors. Besides, an interactive tutorial concentrates on 

specific set of tasks that users will face in real word comparing to the summarized 

information provided by owners’ manuals. Another benefit of interactive tutorial relies on 

their capability to simulate a realistic depiction of the vehicle’s HMI (Slater, 2003). Forster 

et al (2019) conducted a study investigating effectiveness of educating users prior to their 

exposure to the HMI of an automated vehicle using both owner’s manual and interactive 

tutorial. Their results showed that interactive tutorial helped drivers to understand lane 

keeping system more accurately comparing the owner’s manual. Similar results were also 

observed for drivers understanding of the ODD limitations where those who received 
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interactive tutorial were more accurate in their description of the ODD of the system 

(Forster et al, 2019).     

2.3.1.3  Real time feedback (HMI design) 

To facilitate safe and smooth collaboration between drivers and driving automation 

systems, designing an effective Human-Machine interface (HMI) is essential, especially 

since no vehicle has reached level 5 automation. It is very likely that drivers of DSF 

equipped vehicles may not be aware that these systems cannot operate in all situations 

where the ODD limitations have been reached. A well-designed HMI will support drivers 

in their monitoring role and aid them in safely retrieving control (Hoc et al, 2009). Using 

sensors to detect the errors of the drivers and providing them with feedback in real-time, 

also has been considered by previous researchers (Panou et al, 2010).    

There has been much focus on designing an effective HMI for L2 vehicles, which 

considers both driving with automation engaged and the transition where drivers take back 

control from the system (Rezvani et al., 2016). Three challenges have been identified in 

previous studies with regards to designing of an interface for L2 vehicles: (1) how to 

present information about  system’s status to avoid mode confusion  (Kyriakidis et al., 

2017); (2) how to deliver take-over requests to drivers (Banks et al, 2018); and (3) how to 

get drivers to place their attention back on-road (Blanco et al., 2015). Providing a feedback 

system may help in resolving these challenges. Visual, auditory, and tactile are three 

feedback types that can be incorporated separately or as combinations (Bengler et al, 2012). 

The most basic visual feedback system in a L2 vehicle would show whether 

automation is engaged or not and it will only require a short glance from a driver to acquire 

such information (O. Carsten & Martens, 2019). A more advanced feedback system for L2 
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vehicles would include transfer-of-control information when vehicles reach their ODD 

limit.  Some DSFs may have more sensitivity to complex road designs, may not recognize 

lane markings in poor visibility, or may be restricted in the amount of force needed to 

initiate an action (e.g., braking or steering). As such, when DSF reaches its ODD 

limitations, drivers may experience unexpected DSF behavior (Seppelt & Victor, 2016). 

To sum up, an efficient design for an automation system is one that predicts its 

limitations and requests drivers to takeover control (O. Carsten & Martens, 2019). Previous 

studies have tested different interface designs to adequately support drivers during 

takeover. Van den Beukel et al. (2016) tested three in-vehicle interface designs that require 

drivers to take back control from the system. They recommended a combination of 

auditory, visual, and tactile feedback  to support the driver while taking back control. 

Although van den Beukel et al. suggested an interface that assisted drivers in knowing 

when to take back control, their design did not provide any information about why drivers 

needed to take back control (van den Beukel et al, 2016). This is similar to real-world cases 

wherein actual DSFs, such as Cadillac Super Cruise, informs drivers to take back control, 

but does not provide any additional reasoning or information prior to the critical situation 

(Cadillac, 2018). This raises a question as to whether incorporating clues or additional 

information about critical situations would improve drivers’ reaction time in takeover 

requests. Additionally, presenting appropriate clues and information prior to takeover 

requests may increase drivers situation awareness. This is important since situational 

awareness is likely reduced since DSF do not require continuous driver involvement 

(Hirose et al, 2015; Merat & Jamson, 2009).  
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Another question surrounds identification of information and cues presented in 

HMI that helps drivers take back control from  L2 systems. Previous literature mentioned 

different situations where drivers need to be aware and take control from L2 systems. For 

example, drivers may need to put in additional steering torque at curves when using lane 

centering systems and need to take back control when lane markings are lost due to 

unexpected roadway conditions such as at merged sections (Seppelt & Victor, 2016). 

Another example is over-reliance on automation and passive road monitoring, which may 

lead to a failure to detect safety-critical zones such as pedestrian crosswalks at intersections 

(Gold et al, 2013). This can be dangerous since drivers might need to take back control due 

to the sudden appearance of pedestrians or a vehicle at intersections. Despite the 

importance of these situations, there is no literature about whether providing additional 

information along with takeover request through a HMI can assist drivers in taking back 

control. 

2.3.1.4  Post drive feedback 

Post-drive feedback is another approach to provide drivers with information and insight 

regarding functions and limitations of L2 systems. Some studies suggested that providing 

post-drive feedback regarding the reasoning of take-back control situations increases 

transparency of the system as well as drivers’ understanding of the system (Körber et al, 

2018). Previous study showed that an unexpected events (such as unexpected take back 

control situations) are stressful for drivers (Maule & Svenson, 2013) and providing an 

explanation after such events can decrease the negative effect, resulting in more feel of 

control (Koo et al., 2015).  
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Korber et al (2018) suggested that there are some challenges with prior and real-time 

feedback that post-drive feedback can address. Depending on the numerous situations 

where systems can reach their ODD limits and may need drivers intervention, it may not 

be possible to sufficiently provide an explanation beforehand. Moreover, providing 

explanation simultaneously with take back control request could possibly overload the 

processing capacity of the driver resulting in failure to take back control on time (Walch et 

al, 2015). Previous studies which compared the acceptance of real-time with post-drive 

feedback regarding drivers’ performance showed that providing drivers with detailed 

information of their performance after driving was more acceptable than real-time feedback 

(Roberts et al, 2012). In context of automated driving, the results from Korber et al (2018) 

showed that proving an explanation for take back control request had no impact on trust 

but increase the drivers knowledge regarding systems’ functions (Körber, Prasch, et al., 

2018).  

2.3.2  Drivers supervision and transfer of control  

As Brookhuis et al (2008) stated, “Human beings notoriously get bad marks in (low 

frequency) vigilance tasks, that is, detecting occasional mishaps” (Kyriakidis et al., 2019). 

Introducing L2 vehicles changed the role of drivers to monitoring and supervising role. L2 

vehicles enables the drivers to take their feet off the pedals and under specific conditions, 

even hands off the steering wheel for short periods. However, the drivers still need to be 

ready to take back control when needed. This presents a critical challenge for the drivers 

since using L2 systems can reduce drivers’ subjective mental workload (Winter et al, 2014) 

and in extreme cases can cause cognitive underload which subsequently decreases drivers’ 

situational awareness and vigilance (Young & Stanton, 2002) and slower their reaction 
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when they need to take back control (Young & Stanton, 2007).  A recent study by Marcos 

(2018) showed that cognitive underload effect can even occur after short period of time 

using L2 systems in the vehicles.  

Considering the importance of maintaining constant attention and taking back 

control when needed, applying appropriate countermeasures may help drivers in their 

supervisory role and bypass the aforementioned cognitive underload negative effect. 

Drivers’ state monitoring or training programs, are two suggested countermeasure methods 

to assist drivers in their supervisory role and also help them to take back control when 

needed (Marcos, 2018).   

2.3.2.1 Drivers State monitoring  

Drivers state monitoring (DSM) are systems that gather useful information about the 

drivers to evaluate their performance of driving task in context of safe driving practices 

(Waard et al, 1994) Modern technologies have given rise to new approaches to reduce 

drivers distraction and enhance drivers’ safety. Camera-based systems have been used to 

track drivers head and eye movements towards the surroundings in order to detect 

inattention while driving. The information provided by such systems can be integrated in 

to HMIs to provide useful information and alerts to the drivers.  

For instance, Fletcher et al (2007) came up with a new vision systems which 

monitored the drivers gaze as well as road way elements, capable of detecting lanes, 

pedestrians, signs and obstacles. It was suggested that when relevant information was 

missed by drivers, appropriate alerts could divert drivers attention towards the particular 

event on the road (Fletcher & Zelinsky, 2007).  
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The recent development of automated vehicles has changed the drivers’ role 

(supervision) and making them more prone to distraction. The usage of DSM in this context 

could be helpful to understanding and adjusting according to drivers behavioral conditions 

(distraction, fatigue, drowsiness, etc.) while  driving automated vehicles (Gonçalves & 

Bengler, 2015). Gaspar et al (2018) suggested that capabilities of DSMs could be used to 

provide alerts and keep the drivers within the control loop while driving automated 

vehicles. They showed that by providing alert reverting drivers attention back to the control 

loop, their situational awareness and take back control reaction was improved during 

unexpected automation failures. Their results indicated that not only DSM helped driver to 

be more situationally aware but also their take back control actions were improved using 

the system (Gaspar et al, 2018). An example of DSM can be seen in real word in Cadillac 

Super Cruise, where the drivers are monitored in real time using a camera-based system to 

provide alerts when they have been glancing off road for several seconds (Cadillac, 2018). 

2.3.2.2  ODD Training 

Improving drivers’ knowledge and skills through training programs have been targeted in 

many different aspects. Previous works showed that  skills related to visual search 

(Vlakveld, 2011), situation awareness (Walker et al, 2009), hazard anticipation (Pradhan, 

Fisher, & Pollatsek, 2005), hazard mitigation (Muttart et al, 2017) and attention 

maintenance (Pradhan et al., 2011) can be trained through specific training programs. 

Yamani et al (2016) showed that it is also possible to provide a shorter training integrating 

all three skills of anticipation, mitigation and attention maintenance (Yamani et al, 2016). 

Considering new generations of vehicles equipped with driver assistance features, new 

designed training programs are need to help drivers to improve their performance while 
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interacting with such complex systems and this has been suggested as a possible solution 

by many researchers (Beggiato & Krems, 2013; Bianchi et al., 2014; Koustanaï et al, 2012; 

Larsson, 2012; Marcos, 2018). The issue of driving skill degradation while using 

automated vehicles was addressed in previous research and it was recommended to design 

and modify training programs to teach drivers about these systems capabilities and their 

responsibilities while interacting with such systems actions (Kyriakidis et al., 2019). 

However only few studies have been conducted regarding the effectiveness of training in 

this context.  

Koustani et al (2012) showed that familiarization using simulator improved drivers 

performance while using forward collision warning (FCW) system. Their result showed 

that, driver performance measures such as time ahead, maximum deceleration, and 

response time, were improved significantly by simulator training compared to those drivers 

who received only users’ manual as familiarization tool (Koustanaï et al., 2012).  

Payre et al (2016) also conducted a study to investigate the effect of elaborated 

training on drivers performance while driving automated vehicles. In this study, they 

simulated a fully automated vehicle capable of handling all the overtaking, accelerating, 

braking and interacting with other vehicles . Two group of participants were assigned to 

simple and elaborated training groups where simple group had only a short familiarization 

and practice period on the simulator while the elaborated group were asked to read a text 

based information regarding the system functions and to answer questions. Results showed 

that the response time to emergency take back control situation was less for elaborated 

group compared to simple group. The elaborated group also showed more trust towards the 

system after interacting with the automated system on the simulator (Payre et al., 2016). 
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Forster et al (2019) conducted a study investigating effectiveness of educating 

automated vehicle drivers using interactive tutorial. Their results showed that interactive 

tutorial helped drivers to understand lane keeping system more accurately comparing the 

owner’s manual. Similar results were also observed for drivers understanding of the ODD 

limitations where those who received interactive tutorial were more accurate in their 

description of the ODD of the system (Forster et al, 2019). 

In another recent study, Noble et al (2019) showed that using an interactive training 

could help drivers to gain some knowledge regarding L2 systems. However their results 

showed that the training was not effective to improve drivers knowledge regarding the 

limitation of L2 systems. To investigate drivers knowledge regarding, they provided 

questionnaire to participants prior to the training, immediately after the training and after 

the driving with the vehicle. Their results showed that among 40 participants, only four 

after the training and two after the drives were able to identify all situations where ACC 

may not work as expected. For lane keeping, only one driver after the training and one after 

the drive responded to the questionnaires correctly. (Noble et al, 2019) 

While all mentioned studies showed the effectiveness of training programs, there 

are few studies which showed that their training programs were not effective as they 

expected. Mueller et al (2019) showed that although training improves detection of Level 

2 notifications for lane centering but this effect was not observed for adaptive cruise control 

(Mueller et al, 2019). Their results showed that their designed training program slightly 

improved drivers understanding of L2 system limitations.  
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2.4  Summarized Background  

There has been rapid progress in the development of drivers support features in the past 

decade. The main goal of these vehicle systems is to assist drivers and improve roadway 

safety (Anderson et al., 2014). There are six levels of automation systems ranging from 

fully manual (Level 0) to fully automated systems (Level 5). In this classification, level 2 

systems are those that are capable of performing some of the driving task and require a 

driver to perform the remainder of the tasks as well as to supervise the system. These 

systems have altered the role of the drivers, thereby introducing several safety-critical 

human factors issues (Strauch, 2018). The main issue of L2 vehicles have been associated 

with the need for drivers to be aware of system limitations and intervene when needed 

(Gibson et al., 2016). The human factors challenges regarding L2 systems can be classified 

into four main categories: the lack of knowledge regarding the system,  driver 

disengagement while using the system, reduced situational awareness and challenging 

transfer of control. Drivers’ understanding of the system features have a direct effect on the 

effectiveness of DSF (Sullivan et al, 2015). Previous studies have shown that drivers had 

poor knowledge regarding the vehicle automated systems (McDonald et al, 2018). Another 

challenge is regarding disengagement of the drivers. By controlling steering and speed 

maintenance of the vehicle, these systems also alter the role of the driver from an active 

operator to a passive supervisor (Louw et al, 2017) and thereby disengage the driver from 

the active control loop (Navarro et al, 2016). Trust on automation systems plays an 

important role on drivers disengagement. Appropriate calibration of trust is vital for safe 

performance and  decrease the negative effect of driver disengagement phenomenon in 

automated vehicles (Seppelt & Lee, 2007).   
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Disengagement of drivers from the active control loop can effect drivers in different 

aspects. It increases the likelihood of driver distraction (Reyes & Lee, 2004) and reduces 

drivers situational awareness (Merat & Jamson, 2009). These systems enable drivers to be 

engaged in non-driving tasks resulting in distraction (Reyes & Lee, 2004) and this is more 

challenging for Level 2 automated systems, where drivers need to continuously cooperate 

with the system, sufficiently supervise the systems functions, and take back control when 

needed (Solis Marco, 2018). These systems also have shown to reduce drivers’ situational 

awareness (Merat & Jamson, 2009) which is vital to perceive the  oncoming situations and 

regain manual control from the system if needed (Sheridan, 2006).  

The above-mentioned human factors concerns raises a need for practical solutions. 

It is crucial to provide drivers with comprehensive information about systems status, 

capabilities, limitations and to help them understand and predict the proper action (Körber 

et al., 2018). Owners’ manual, pre-purchase training,  real-time feedback through a proper 

HMI design , post drive feedback are different countermeasures to improve drivers 

knowledge regarding L2 systems as suggested in literature. Additionally there are 

countermeasures to help drivers in their supervision role as well as effective transfer of 

control: Drivers State monitoring and ODD Training.  

Despite the important role of countermeasures such as real-time feedback through 

in-vehicle interfaces and drivers’ training, there are only a few studies that have been done 

regarding these subjects in the context of L2 vehicles. As mentioned earlier in this chapter, 

designing an efficient interface which provides information about L2 systems limitations, 

can help drivers to better understand the system and perform safer while facing those 

situations where L2 systems reach their limits.  Note that there are many situations where 
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L2 systems cannot provide feedback to the drivers, therefore for such situations we need 

to find another solution to help drivers to understand the systems’ limitations in advance. 

Training is one suggested solution, hence, this dissertation specifically focuses on 

designing and testing effective methods (HMI design and training of the drivers) to 

improve drivers’ performance while using L2 systems. In the last section of this chapter, 

the objective and research questions of this dissertation will be explained. 

2.5. Objective and Research Questions  

The objective of this proposed research is to design and test methods to improve drivers’ 

behavior when L2 systems reaches its ODD limitations. Within the framework of this 

overarching goal, two research objectives has been developed and two separate experiment 

have been conducted. In this section, each research objective, questions and corresponded 

hypothesis will be discussed. 

1) First experiment (objective, research questions ): The objective of the first experiment 

is to design and test in-vehicle interfaces to improve drivers performance in transfer of 

control situations while driving with L2 systems. First experiment focused on designing 

in-vehicle interfaces which provide additional feedbacks when drivers need to take 

back control from L2 system.  This experiment aimed to answer following research 

questions: 

• Can designing a new interface improve drivers’ performance in transfer of 

control situations in L2 vehicles?  

• Can designing a new interface improve drivers’ situational awareness in transfer 

of control situations in L2 vehicles? 
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• Can designing a new interface improve drivers’ satisfaction while interacting 

with L2 systems?  

2) Second experiment (objective and research questions): The objective of the second 

experiment is to develop and test a training program for use in DSF contexts, with a 

focus on training drivers to gain experience of the system limitations and allow them 

to practice dealing with such limitations. This experiment aimed to design a PC-based 

training program based on 3M approach (Mistake, Mentoring, Mastery) and test the 

effectiveness of the training program using post-test driving session on the simulator. 

The research questions of this experiment are as follows: 

• Can training result in more successful take back control attempts for those 

situations where L2 systems reach their ODD limitations? 

• Can training improve drivers’ situational awareness regarding ODD limitations 

of L2 vehicles? 

• How will trust in automation change after receiving the training? 

The following chapters will discuss each of the mentioned experiment in details with 

results and conclusion.  
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CHAPTER 3 

EXPERIMENT 1 

3.1.   Phase I 

The objective of this phase is to determine if drivers over-rely on automation in scenarios 

where transfer-of-control is critical to road user safety and, if so, what interface might better 

support transfer-of-control. Previous research has identified general effects of over-reliance 

(e.g., longer response times), but not specific details of those scenarios in which these 

effects are most problematic. As such, we chose three different roadway geometries where 

drivers need to resume control. We asked whether and how drivers transferred control when 

it was critical. We focused on naïve drivers (drivers who were not told about the ODD) 

because of numerous studies which indicate that drivers understand little about these 

systems (McDonald et al, 2017) 

3.1.1.   Method 

Participants drove twice through a virtual world containing four scenarios. In one drive, 

participants engaged L2 system, while in the other, they drove the car manually. Thus, all 

participants drove both L2 and manual drives. To observe drivers’ transfer-of-control 

behavior, drivers’ foot movements were recorded. To gain insight about drivers’ experience 

with L2 features, a set of interview questions focused on transfer-of-control, road design, 

and interface were designed based on twelve principles of transparency (Debernard et al, 

2016). For instance, participants were asked questions such as, “Did you get surprised by 

the movement of your own vehicle near the curve?” , “What would you do differently if 

faced with this scenario in future?” and  “What information do you think would be useful 
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to present to the driver in that situation?”. The interview took place right after each 

scenario . After conclusion of all drives, a final set of interview questions focused on need 

for feedback. Also, to assess drivers’ situational awareness, they completed the Situation 

Awareness Rating Technique (SART) questionnaire (Selcon & Taylor, 1990) after each L2 

drive. SART measures how aware participants perceived themselves to be during their 

driving performance based on ratings of understanding, supply, and demand.  

3.1.1.1.   Participants 

Ten participants aged 20 – 54 years old (5 females and 5 males) were recruited from the 

University of Massachusetts Amherst campus and Amherst town using flyers and email 

advertisements. Average age of the participants was 27.4 years (SD = 3.07). Only 

individuals with a valid United States driving license who did not wear eyeglasses were 

included in the study.  

3.1.1.2.   Equipment 

• Driving Simulator :  A fixed-based RTI (Realtime Technologies Inc.) driving simulator 

consisting of a fully equipped 2013 Ford Fusion surrounded by six screens with a 330-

degree field of view was used for the current study (Figure 1). The cab features two 

dynamic side-mirrors which provide realistic side and rear views for participants. The 

car’s interior has a fully customizable virtual dashboard and center stack. The simulator 

is capable of simulating L2 drives by integrating lane centering control system and 

adaptive cruise control. 

• Eye tracker & Video Camera : An ASL (Applied Science Lab) Mobile-Eye XG head-

mounted eye tracker consisting of a scene camera, eye camera, and a small reflective 
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non-obtrusive monocle was utilized to monitor and record eye movements (Figure 2). 

Foot movement were recorded using a JVC HM40 video camera.  

 

 

Figure 1. RTI Fixed-Based Driving Simulator 

 

Figure 2. ASL MobileEye 
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3.1.1.3.   Scenarios 

Four scenarios were used to collect information regarding drivers’ behavior and reactions 

to confusing transfer-of-control situations. Table 2 describes scenarios where three road 

geometries (Curve, Merge, Intersection) were considered based on previous literature 

(Gold et al., 2013; Seppelt & Victor, 2016). All scenarios represent situations where L2 

disengaged because it reached its ODD limit and a crash could occur. 

Table 2. Scenario Descriptions for Phase I 

Scenario Description Top Down View 

Merge- The driver reaches the end of a four-lane road (two travel lanes 

in either direction). A car is also going straight in the left lane at a 

constant speed. 

 

Curve- The driver is traveling along a curved road section (one travel 

lane in either direction), where a truck is parked on the right side of the 

curved road. A car is approaching in the opposite lane. 

 

Intersection- The driver is approaching towards traffic signal-

controlled intersection and the driver has a green light in his travel lane. 

A block of buildings obscures a pedestrian who is running to cross the 

street at the crosswalk. 
 

Baseline- This is a scenario in a suburban setting with no hazards. 
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3.1.1.4.   Experimental Design and Dependent variable 

Participants drove through four scenarios (Table 2) two times: Once while engaging L2 

system and once without L2 system. Ordering of the drives was counterbalanced across 

participants: half of the participants drove automated drives first, while the other half drove 

manual drives first. Each participant experienced a different order of drives in the set with 

automation and in the set without automation. 

One dependent variable was takeover reaction of drivers, which was binary coded 

(Successful takeover was ‘1’ and unsuccessful takeover was ‘0’). Another dependent 

variable was the overall SART score, which was derived using the following formula: SA 

= U - (D - S), where U refers to summed understanding, D refers to summed demand and 

S refers to summed supply (Selcon & Taylor, 1990).  

3.1.1.5.   Procedure 

After participants gave consent, they were given basic instructions and were seated in the 

simulator. The eye-tracker was mounted on participants’ head and their pupil position was 

calibrated. Next, participants were introduced to the L2 system and were shown how to 

engage and disengage the system. Participants then drove a practice drive and were 

permitted to continue when confident. Drivers were not instructed on how to behave when 

L2 was engaged. Participants then navigated twice through all scenarios, once with DSF 

engaged and once without DSF engaged. In L2 scenarios, participants drove the vehicle in 

manual mode for approximately one minute, prior to being alerted to engage L2 system by 

pressing a button on the steering wheel. A small blue LED icon on dashboard would light 

up each time system was engaged (Figure 3). The participants could regain manual control 

by applying brake or pressing the button on steering wheel. After each L2 drive, 
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participants completed the SART (Selcon & Taylor, 1990) and were briefly interviewed. In 

this interview, we asked participants questions such as: “What information do you think 

would be useful to know about the situation on the road?”. At the end,  they were 

interviewed again, completed a questionnaire regarding demographics and driving history, 

and were compensated.  

One of the objectives of the study was to observe participants takeover reaction in 

critical situations. Therefore, there was no visual or audio feedback provided to participants 

regarding takeover control situations. Also, in order to observe whether participants were 

aware of the importance of knowing system’s status, we used a simple blue LED icon on 

dashboard interface, which turned on to signify that automation was engaged. In this way, 

we prevented bias in participants’ interview responses by not providing a preconceived 

design. 

 

Figure 3. Original Dashboard Interface 

3.1.2.   Results 

3.1.2.1.   Over-reliance 

A three-second window before the hazard was used to observe participants’ takeover 

reaction, similar to previous research in hazard mitigation training (Muttart, 2013). Within 
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this window, drivers’ takeover reaction was characterized by foot movement towards brake 

pedal or by pressing automation button. Results show that seven drivers took back control 

for merge and intersection scenarios and only four drivers took back control in curve 

scenario. 

Results from SART showed that drivers’ overall SART scores for curve, merge, 

intersection and baseline scenarios were 14.7, 19.4, 19.3 and 20.8, respectively. SART 

results also showed that overall score at curves was less than other scenarios, while merge 

and intersection scores were similar. These results further support the participants’ takeover 

reaction results which show that they over-rely on automation (did not take back control) 

at curve compared to merge and intersection scenarios.  

Additionally, participants’ interview responses after each automated drives were 

gathered and categorized. Seven participants responded ‘Yes’ as to whether they were 

surprised by the car movement in curve scenario. In their responses, they expressed their 

expectation for the car to slow down when approaching the curve. Regarding the question 

on what they think would be useful information to present to drivers, three types of 

responses were extracted from their statements: (1) need to take back control, (2) need for 

feedback about L2 functions, and (3) need for feedback about road geometry. Table 3 shows 

difference between three scenarios in terms of participants’ interview responses.  
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Table 3. Responses from each scenario’s interview 

                   Number of participants (out of ten) who declared the following statements during the interview 

 

Surprised 

by the car  

Would take 

control sooner on 

a second chance 

Need feedback  

about taking back 

control  

Need feedback 

about the L2 

functionality 

Need 

information 

about road  

Curve 7 5 4 0 5 

Merge 6 6 4 6 9 

Intersection 6 6 9 2 9 

 

3.1.2.2.   System Feedback 

In the final interview, drivers were asked several questions about what information they 

needed regarding the road and automation system. For example, they were asked: “What 

information do you think would be useful to know about the on-road situation?”. In 

response to this question, a participant replied: “ It would be helpful to see the road’s layout 

such as intersection, merge, etc. in advance”. Another participant said “feedback about 

when it is not safe to use automation would be nice”. In total, seven participants were 

interested in receiving feedback about presence of pedestrians and objects on the road and 

nine participants preferred feedback about road structure in advance. 

In response to the question “How should information be presented 

(auditory/visual/tactile)?”, they replied,“ Auditory feedback would be very helpful in a 

dangerous situation and visual feedback can help in minor situations”. Another participant 

mentioned, “I would like a combination of visual and auditory, but I think Tactile feedback 

would make me more nervous and distracted”. Regarding type of feedback, nine 

participants preferred to receive visual feedback, while eight preferred auditory and only 

two preferred tactile. 
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Participants were asked if they knew about the vehicle mode at all times during 

their drives and if yes, how they recognize the correct mode. An example response was 

“Yes, I knew that car was on automation mode by the vehicle’s steady movement”. Another 

person responded by saying “I know that automation was engaged since the car’s speed 

was constant ”.  However, they also mentioned that they did not notice the blue LED light 

on dashboard. Eye tracker data showed that seven participants fixated their glance on the 

dashboard right after the “engage automation feature” pop-up image appeared on-screen at 

least once during their driving session. However, only four participants declared that they 

saw the blue LED light during their final interview. 

To understand participants' knowledge regarding L2 vehicles, they were asked if 

they know how these vehicles monitor the road and why this information was necessary. 

Only half of the participants indicated familiarity with how automation system monitors 

the road and among them, only two participants mentioned weather condition impairing 

automation system functions. None of the participants mentioned system limitations 

regarding road design or when lane marking is not available (e.g. at merge sections). In 

total, eight participants declared that they needed information about automation system’s 

capability. For example, one participant said, “It would be great if I could get such 

information so that I could analyze oncoming situations and make a better decision 

regarding automation disengagement”.  

3.1.3.   Discussion  

The results from first phase indicated that participants over-relied on automation for curve 

scenario. This might be due to drivers’ failure to understand DSF functionalities at curves. 

Note that none of the drivers believed that they needed to know more about DSF 
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functionalities at curves (Table 2). In general, their SART responses indicate that drivers 

were less situation aware at curves compared to other scenarios. Recall that in this scenario, 

there was a truck parked on the right and a car approaching in the opposing lane required 

drivers to thread their car between the car on the left and truck on the right. All drivers in 

manual condition slowed as they approached the truck. But DSF does not slow the driver 

at the curve as drivers approach the truck.  

As mentioned before, participant interview responses right after each drive showed 

that more than half of them were surprised by car’s movement and they expected differently 

from the system. They also declared that they would take control sooner on a second 

chance. This shows the mode confusion experienced by most of the participants, especially 

in curve scenario where only four drivers took back control. On the other hand, in final 

interview, seven participants declared that they need feedback about presence of 

pedestrians and objects on the road and nine participants were interested to receive 

feedback about road structure ahead of time. Based on all responses, we can conclude that 

it might be helpful to alert drivers regarding take back control situations.  

This can be achieved in two steps: First, drivers need to be alerted that a transfer-

of-control is required. This can be done by giving feedback to drivers to take back control 

in the form of visual, auditory, and/or tactile feedback. Second, drivers need to understand 

why they need to take control to become fully situation aware. This understanding could 

be provided by a diagram depicting alerts about change in road geometry and objects 

detected on the road.  

Results also show that only four participants noticed the blue LED light on the 

dashboard (which indicated automation status), despite having glanced at the dashboard. It 
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has been recommended that automation systems up to Level 4 should inform drivers about 

the system’s status and limitations (Kyriakidis et al, 2017). This information can be 

provided by designing a more attention-grabbing display based on drivers’ mental model. 

To sum up, designing an appropriate interface that provides crucial information 

regarding safe transfer-of-control could be helpful to support drivers in their supervision 

and intervention role in DSF (Van den Beukel et al., 2016). This raises an argument to 

redesign the feedback for automation system status and also provide appropriate feedback 

regarding taking back control when system has reached its ODD limitations. These 

concerns will be considered during our prototyping and re-designing in Phase II.  

3.2.   Phase II 

The objective of this phase of study is designing a new interface for L2 system based on 

phase I results.  Interview responses from phase I indicated that we need to design a proper 

feedback system for takeover control situations along with all related information such as 

road geometry and also re-design feedback for automation system status. To achieve this, 

four design iterations have been conducted and will be explained in following sections.   

3.2.1.   First Design Iteration 

An initial prototype was made using the dashboard interface from phase I, as seen in Figure 

3. Participants responses from Phase I were extracted and aggregated to create new 

elements that could be featured on the initial prototype of the dashboard interface. In this 

process, two factors were considered: design of current vehicles, and visibility and color 

of display icons. The first element added was an icon depicting the automation system 

status. In order to design a proper LED icon similar to the design found in commercial 
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vehicles (Cadillac, 2018; Tesla, 2019) , an illustration of a car between two lanes was hand-

drawn (Figure 4).  When switched on, this would give drivers a basic indication that 

automation system has been engaged and it will keep the car between the two lanes. The 

second element added was ‘take over control’ icon. An LED shaped like a steering wheel 

would develop a mental model in the driver to be concerned with the control mode of the 

vehicle (Figure 4). These two designs were chosen based on the design of current HMIs in 

commercially available vehicles such as Cadillac CT6 (Cadillac, 2018) and Tesla X (Tesla, 

2019). The third element added was roadway geometry icon(s). Curved sections were 

considered due to two reasons: first due to the importance of curves as mentioned in 

previous studies (Seppelt & Victor, 2016) and second due to the observed over-reliance of 

participants at curve scenario in phase one. Merge and intersection were also considered 

based on participants’ responses in phase 1 where all but one participant stated their need 

for feedback regarding these sections of the roadway. Three different roadway geometry 

icons for curve, intersection, and merge were considered based on their respective road 

signage (Figure 4. First Design Iteration). The fourth element added was an empty box to 

be filled with a proper text alert. For all the new elements, visibility, placement, and color 

of icons would be decided in the next design iteration. 
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Figure 4. First Design Iteration 

3.2.2.   Second Design Iteration  

In this iteration, the design of the prototype dashboard interface was modified based on the 

results of individual co-design sessions with 10 participants.  

3.2.2.1.   Participants 

Ten participants (aged 20 – 54)  were recruited from the same area as Phase I. The average 

age of participants was 27.4 years. Only individuals with a valid United States driving 

license were included in these sessions. 

3.2.2.2.   Equipment 

A JVC HM40 video camera was used to record the discussion with participants as well as 

their prototyping suggestions such as placement or redesign of icons. The camera was 

positioned in a bird's eye view to capture the prototype in full view. 
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3.2.2.3.   Procedure  

All participants completed a 45-minute individual session. In these sessions, after 

participants gave their consent, they were then interviewed with series of questions 

targeting takeover request, automation system status, road geometries, and objects detected 

on the road. For example, for takeover request, they were asked the following two 

questions: “Do you need informative visual feedback on dashboard to take over control 

from the system?” and “Do you need labeling in addition to visual feedback?” 

Following their responses, they were then presented with a cut out of the steering 

wheel icon and asked the following question: “If this object’s shape lights up, what would 

that indicate in your opinion?”.  The purpose of the icon was then explained, and the next 

question was asked: “What color do you prefer for this item? ”. They were then asked to 

relocate the item to their most convenient choice of place on dashboard and also asked for 

suggestion to design better feedback for a takeover request for which they were given the 

opportunity to hand-draw their suggestions or alternative ideas.     

A similar procedure was followed for ‘automation system status’, ‘road geometries’ 

and ‘objects detected on the road’. Figure 5-6 shows an example of a participant’s’ final 

design sheet indicating their preference for location and design.  
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Figure 5. An example of a participant’s final design sheet 

 

Figure 6. Another example of a participant’s final design sheet 

3.2.2.4.   Results 

Participants responses during co-design sessions and interview were aggregated. 

Participant responses to questions regarding automation system status show that all 

participants were in agreement about their need to know about vehicle’s status. They all 
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understood the purpose of the display icon correctly (automation engaged when LED icon 

lights up and automation disengaged when icon is not lit). Also, they were all in agreement 

that “car between two lanes” icon is suitable to understand lane centering system. Seven 

out of ten participants indicated that there was no need for icon labeling. 

In response to the question “Do you need informative visual feedback on dashboard 

to take over control from the system?”, one participant replied, “Yes, I would very much 

prefer audio feedback, but combining it with visual feedback may be most helpful if I’m 

listening to music”.  In total, based on their responses, eight participants indicated that they 

needed visual feedback. Five participants indicated that they required a combination of 

auditory feedback and visual feedback.  As a follow-up question, they were asked if they 

preferred labeling for takeover control icon on dashboard. In response, half of the 

participants said that they preferred the icon with a text label. When asked for redesign 

suggestions, several participants mentioned that the steering wheel icon alone did not 

signify taking back control action. There was a common redesign suggestion by half of the 

participants to redesign the icon by adding hands hovering over steering wheel.  

For questions about road geometry, participants responses showed that all 

understood the purpose of display icon correctly. Most participants declared that “when 

LED icon lights up, the displayed road geometry is coming up ahead”. When they were 

asked about their preference for feedback type, nine participants indicated that they 

preferred visual feedback for information regarding roadway geometry. When asked “Do 

you need a label for any roadway icons?”, seven of the participants indicated that there was 

no need to label the icon, saying that icons were informative on their own. For example, 

one participant replied saying “I think the icon is easy to understand and adding a label 
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would make my dashboard crowded”. As a common suggestion, half of the participants 

preferred that the three roadway geometry icons appear in the same location on the 

dashboard (above ‘automation system status’ icon) when prompted. Two participants 

pointed out that they preferred the merge icon to be more consistent with its road sign i.e., 

one-sided merge.   

Finally, for questions regarding ‘object detected on the road’, responses showed 

that nine participants needed visual feedback while only two preferred auditory feedback 

as well. This was followed by asking participants to suggest icon shapes, to which four 

participants drew a traffic cone-shaped icon to depict ‘object detected’. Other participants 

also drew similar stationary objects such as a large rock or a cube. When asked if they need 

icon labeling, one participant mentioned, “Yes, I think having a label saves me time to 

recall the icon's meaning”. In total, eight participants preferred the text label ‘object 

detected’. One participant suggested to have two types of icon for object on the road, one 

dynamic icon and one static icon, saying “I prefer if the icon can also show me if the object 

detected is stationary or moving, so it would make sense to have two types of the icon, one 

dynamic and the other static”. 

The first iteration design was updated based on results from all co-design sessions. 

Figure 7 shows the design after second iteration.  
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Figure 7. Second Design Iteration 

3.2.3.   Third Design Iteration 

In this iteration, the designed prototype from second iteration was applied to dashboard of 

the simulator cab (Figure 7, 8a, 8b). This was followed by a heuristic evaluation by four 

human factors specialists. The analyses were performed in isolation to suppress bias across 

users as well as to increase the number of independent heuristic violations discovered as 

suggested by previous studies (Nielsen, 1993). The heuristic evaluation was conducted for 

three dashboard interface designs:  

1) Original Dashboard: Dashboard interface used in Phase 1 (Figure 3) 

2)  Basic Dashboard: Simpler version of new dashboard design from second iteration, 

excluding road geometry and object detected icons (Figure 7) 

3) Advanced Dashboard: Dashboard design from second iteration (Figure 8a, 8b) 
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The difference between basic and advanced dashboard is that basic dashboard only 

provides basic feedback such as take back control request and system status, similar to 

HMI design of commercially available vehicles such as Cadillac Super Cruise (Cadillac, 

2018). Advanced dashboard provides additional feedback along with the ones featured on 

Basic dashboard, where information regarding take back control situations will be 

presented prior to take back control requests. We decided to present these two interfaces 

separately to investigate the issues concerning the Basic dashboard (available in 

commercial vehicles) as well as Advanced dashboard (conceptualized and designed in this 

study). 

3.2.3.1.   Participants 

Four human factors specialists (two female and two male) were selected. One was an 

assistant professor (9 years of experience in Human Factors) and other three were doctoral 

students (3 years of experience in Human Factors). All were from the Mechanical and 

Industrial Engineering Department at University of Massachusetts Amherst.  

3.2.3.2.   Procedure 

At the beginning of heuristic evaluation, four participants were introduced to usability 

heuristics as introduced in Nielsen (1993). Presenting pictures from all dashboard design 

interfaces (Figure 3,8,9,10), the purpose of three dashboard interface designs were 

explained to them. They were asked to individually provide a list of issues for each 

dashboard interface design in isolation. Their individual responses for each interface were 

collected, duplicate issues were removed, and a final master list of issues was created for 

each dashboard interface. Each participant then received a copy of the master list and asked 

to allocate a severity rating to each issue.  
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Figure 8. Basic Dashboard (Second iteration) 

 

Figure 9. Advanced Dashboard for object detected on the road (Second iteration) 

 

Figure 10. Advanced Dashboard for road geometry (Second iteration) 
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3.2.3.3.   Results 

The average severity rating was calculated for each issue based on all participants response. 

Table 4-6 shows the most severe issues for each of the dashboard interface designs. 

Table 4. The heuristics, violations, and severity ratings for Original Dashboard  

 

 

 

 

Heuristics Issues 

Average 

severity rating 

Visibility of the system 

The interface does not provide enough information about 

the automation features (lane keeping system, cruise 

control,..) 

4.25 

Match between System 

and Real world 

The blue light is a very ambiguous way to show the 

automation status (on/off). It might be hard for the drivers 

to connect a simple LED light to the automation system. 

4.5 

Recognition and Recall 

There is no information to help the drivers recall to take 

control from the car (as specified in the owner’s manual) 

4.5 

Error Prevention 

There are no error messages (to help the drivers recognize 

or prevent the errors) 

4.25 
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Table 5. The heuristics, violations, and severity ratings for Basic Dashboard  

 

 

 

 

 

 

 

 

Heuristic Issues 

Average  

severity rating 

Visibility of the system 

The interface does not provide any reasoning or 

information about why the drivers need to take control of 

the car 

4.25 

Match between System 

and Real world 

The important ‘take control’ message is not placed in the 

center of the display (where the most important 

information is), but rather appears at the bottom of the 

display 

4 

Recognition and Recall 

The dashboard in itself may not be sufficient to engage the 

driver and may require audio cues for the take back control 

feedback. 

4.5 
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Table 6. The heuristics, violations, and severity ratings for Advanced Dashboard 

 

Result from heuristic evaluation for Original Dashboard shows that blue LED light does 

not have proper visibility and it does not provide effective feedback about system features. 

The issue regarding the blue LED light has been resolved in the simple and complex 

dashboard design in previous design iterations.  

For Basic Dashboard, the first issue was related to the system visibility with regards 

to the reasoning behind the take back control request. This issue has been addressed in 

Complex Dashboard for four different types of situations, three regarding road geometry 

and one regarding object detected on the road. The second issue for Basic Dashboard was 

related to placement of the take back control feedback. This issue was addressed in the 

final design iteration, by placing take back control feedback in the center of the dashboard. 

The third issue of Basic Dashboard was regarding the recognition of the feedback system. 

It was suggested to provide audio beeps with addition to the visual feedback for the take 

Heuristic Issues 

Average severity 

rating 

Match between System 

and Real world 

The important ‘take control’ message is not placed in the 

center of the display (where the most important 

information is), but rather appears at the bottom of the 

display 

4 

Recognition and Recall 

The dashboard in itself may not be sufficient to engage 

the driver and may require audio cues for the take back 

control feedback. 

4.5 
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back control feedback. The second and third issues were similar for the Advanced 

Dashboard as well. Both of these issues were addressed in the final design iteration. 

The original dashboard was not modified in order to be used as a baseline for testing 

the Basic and Advanced dashboard in the third phase of the study.  

3.2.4.   Fourth Design Iteration 

In this iteration, five human factors specialists drove through the same scenarios, following 

same procedure as in Phase 1, but this time with both basic and advanced dashboard 

interfaces. Their final feedback regarding the interface design was collected and roadway 

geometry elements were modified to increase their visibility on the dashboard. One 

specialist also pointed out that automation status icon (blue car between two lines) was 

only half visible, obscured by the steering wheel. Hence, the placement of icons was also 

modified to accommodate anthropometric factors. Moreover, another specialist suggested 

adding an additional beep to all of the object detected and road geometry related to visual 

feedback.  Their argument was that an auditory beep would serve as redundancy for drivers 

to get information provided on dashboard. The beep for take back control feedback was 

replaced to an audio message with a female voice. This was done to distinguish both types 

of audio feedback and emphasize importance of take back control feedback. The final Basic 

Dashboard design is shown in figure 11. The advanced dashboard interface design is shown 

in figure 12-15.  
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Figure 11. Basic Dashboard (Fourth iteration) 

 

Figure 12. Advanced dashboard showing the object detected icon (Fourth iteration) 

 

Figure 13. Advanced Dashboard showing a curve ahead (Fourth iteration) 
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Figure 14. Advanced Dashboard showing an intersection ahead (Fourth iteration) 

 

Figure 15. Advanced Dashboard a merge ahead (Fourth iteration) 

3.3.   Phase III: Testing Designed Interfaces 

The objective of this phase was to test the interfaces for designed in Phase II. To achieve 

this, seven scenarios were designed, and three participant groups drove through all 

scenarios. One group was exposed to the Original Dashboard, a second group to the Basic 

Dashboard and a third group to the Advanced Dashboard. All participants drove six 

scenarios in L2 mode and one scenario in L0. 
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3.3.1.   Method 

3.3.1.1.   Participants 

A total of 42 participants (aged 20 – 54) were recruited from the same area as previous 

phases. The average age of participants was 25.73 years (SD = 4.37). The sample size 

included 30 males and 12 females.  Only individuals with a valid United States driving 

license who did not wear eyeglasses were included. 

3.3.1.2.   Equipment 

The equipment used in this phase was similar to that from phase I.   

3.3.1.3.   Scenarios 

Seven scenarios were designed to investigate drivers’ behavior and take back control 

reactions in three groups (Original Dashboard, Basic Dashboard, and Advanced 

Dashboard). Table 7 describes scenarios which were designed based on common human-

automated vehicle conflict situations reported in literature (Seppelt & Victor, 2016).  
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Table 7. Scenario Descriptions for Phase III 

No. Scenario Description Image 

1 

The driver reaches the end of a four-lane road (two 

travel lanes in either direction) which merges onto a 

two-lane road (one travel lane in either direction). 

There is a car following behind the driver into the 

merge.  

2 

The driver is traveling along a curved road section 

(one travel lane in either direction), where a truck is 

parked on right side of the curved road section before 

a crosswalk. The truck is partly jutting onto the road 

obscuring a pedestrian.  

3 

The driver is approaching towards traffic signal-

controlled intersection (two travel lanes in either 

direction) with a green light in the travel lane. A block 

of buildings obscures a pedestrian who is running to 

cross the street at the crosswalk.  

4 

The driver is approaching towards a traffic signal-

controlled intersection (one travel lane in either 

direction) with a green light in the travel lane. There 

are no vehicles or pedestrians in the vicinity. 
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3.3.1.4.   Experimental Design and Hypothesis 

In this study, a between design experiment was used and participants were randomly 

assigned to one of three groups - Original Dashboard, Basic Dashboard, or Advanced 

Dashboard. They were asked to drive through seven scenarios shown in Table 6. They 

drove through scenarios 1 - 6 while engaging the L2 system and drove scenario 7 in L0 

mode. The ordering of drives was counterbalanced across participants in each group using 

the Balanced Latin Square method (Williams, 1949).  

5 

The driver is approaching a stop sign controlled 

intersection (one travel lane in either direction) while 

following a car. The following car abruptly stops at 

the stop sign and proceeds to turn right. 

 

6 

This is a scenario within a suburban setting with no 

hazards. 

 

7 

The driver is approaching towards a traffic signal-

controlled intersection (one travel lane in either 

direction) with a green light in the travel lane. A car in 

the opposite lane across the intersection briefly 

signals left before abruptly taking a left turn, driving 

across the driver’s path. 
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First, we hypothesize that when compared to the Original Dashboard, the Basic and 

Advanced Dashboard will help participants effectively take back control from the L2 

system when needed. Also, user satisfaction will be higher for the Basic Dashboard 

compared to Original Dashboard and similarly, user satisfaction for Advanced Dashboard 

will be higher compared to Basic Dashboard. Second, we hypothesize that presenting 

roadway information regarding take back control (in Advanced Dashboard) reduces 

reaction time compared to Basic Dashboard, which only presents take back control 

requests. The first and second hypothesis were examined for scenario1 - 4 shown in table 

6. Third, we hypothesize that while drivers’ situational awareness is higher during the 

manual drive compared to automated drives (Featuring Original Dashboard), there will be 

smaller difference between situational awareness of drivers in manual and automated 

drives (Featuring Basic and Advanced Dashboard). The third hypothesis was examined for 

scenario 5 and 7 shown in table 6.  

Note that participants in the Advanced dashboard group received feedback 

regarding the road geometry and objects on the road prior to receiving takeback control 

requests. Take back control feedbacks were presented 5 seconds before hazards for both 

the Advanced and Basic dashboard groups (Scenario 1,2,3,5). Feedback regarding road 

geometry (scenario 1,2,3,4) and object detected (scenario 5) were presented 8 seconds 

before the hazards for the Advanced dashboard group.  

3.3.1.5.   Procedure 

After participants gave their consent, they were randomly assigned to either the Original, 

Basic or Advanced Dashboard groups. The same procedure as phase I was employed to run 

participants. All participants drove through seven scenarios. Participants were asked to 
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drive scenario 1-6 (see Table 6) while engaging L2 system, and scenario 7 manually. For 

the Original Dashboard group, a small blue LED icon on the dashboard would light up each 

time the L2 system was engaged (Figure 3). For Basic and Advanced Dashboard groups, 

an LED icon of a car between two lanes would light up each time the system was engaged 

(Figure 9-10d). In order to compare situational awareness of drivers in manual and 

automation mode, participants were asked to complete the SART questionnaire, once after 

scenario 5 and once after scenario 7. At the end, to evaluate participants’ satisfaction of 

each dashboard design, the QUIS questionnaire was used (Chin, Diehl, & Norman, 1988).  

3.3.1.6.   Dependent and Independent Variables  

One dependent variable similar to phase I, was drivers’ takeover reaction, which 

was binary coded (Successful transfer of control as scored ‘1’ and unsuccessful transfer of 

control was scored ‘0’). The second dependent variable was takeover time to hazard i.e., 

the time interval at which drivers take back control up until the critical event. Takeover 

time to hazard was used in previous study as drivers hazard avoidance measurement in 

transfer of control situation while driving automated vehicles (Van den Beukel et al., 2016). 

The first and second dependent variables were examined for scenario 1-3. The third 

dependent variable was overall SART score, which was calculated similar to Phase I. Other 

dependent variables considered in this study were attributes related to QUIS questionnaire 

- overall reaction rating, Capability rating, Screen rating, Terminology and Usability rating 

of the dashboard interface. The independent variables were dashboard design (Advanced, 

Basic, Original) and scenario (Table 6). 
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3.3.2.   Results 

3.3.2.1.   Take Back Control Events 

For descriptive purposes, the percentage of participants who took back control in each 

dashboard group was calculated for scenarios 1-4 and is shown in Figure 16. In all 

scenarios, the percentage of successful take back control was highest in the Advanced 

dashboard group compared to the Basic and Original Dashboard groups. In total, the 

percentage of participants who successfully took back control on time for scenarios 1-4 

were higher for Advanced Dashboard group (81.25%) when compared to Basic Dashboard 

group (62.5%) and Original Dashboard group (18.75%). Participants in the Basic 

Dashboard group took back control 23.07% less than Advanced Dashboard group, and 70% 

more than participants in Original Dashboard group.  

 Note that unlike scenarios 1-3, for scenario 4, no hazard materialized. Hence, 

participants in Basic dashboard group did not receive any “take back control” message 

through the dashboard and participants in the Advanced dashboard group were only 

presented with road geometry on the dashboard. Therefore, as presented in Figure 16, while 

35.72% of Advanced dashboard group participants took back control from the car in 

scenario 4, no participants from the Basic and Original dashboard groups took back control 

in scenario 4. 
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Figure 16. The percentage of participants who successfully took back control for each 

group 

To determine whether the effect of dashboard was significant for scenarios 1-3, a logistic 

regression model within GEE framework was used. Here, dashboard (Advanced, Basic, 

Original) was included as treatment, and scenarios were included as repeated measures. 

Data analysis showed a significant main effect of treatment (Wald Chi-Square = 45.055, p-

value < 0.001).  

To investigate take back control action of participants for scenarios 1-3, the time 

which elapsed between when drivers took back control and when the critical event was 

reached takeover time to hazard was calculated for each group (Advanced, Basic and 

Original dashboard group). Figure 17 shows the average time calculated for each group 

scenarios 1, 2, and 3. A 3 (dashboard) × 3  (scenario) factorial  ANOVA was performed. 

The result showed that there was a significant main effect of dashboard (F(2, 117) = 
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125.895, p-value < 0.001). To investigate which of the dashboard were significantly 

different from each other, a Bonferroni post hoc analysis was performed, and results 

showed that there was a significant difference between all combinations of dashboard 

(Advanced vs Basic, Advanced vs Original, and Basic vs Original). 

 

 Figure 17. Average Takeover Time to Hazard for each dashboard design  

3.3.2.2.   Situational Awareness   

The mean overall SART scores for scenarios 5 and 7 for each dashboard group were 

calculated. The results showed that the average overall SART score was highest in the 

Advanced Dashboard group (Mean = 23. 07, SD = 0.14) compared to the Basic (Mean = 

20.82, SD = 1.25) and Original Dashboard (Mean = 17.61, SD = 4.25) groups. Figure 18 

shows the mean overall SART scores for each scenario in each dashboard group. Note that 

on an average the participants’ overall SART score was higher for the manual drive in 
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scenario 7 (Mean = 22.38, SD = 0.59) compared to the L2 drive in scenario 5 (Mean = 

18.62, SD = 3.96). However, due to the difference between scenario 5 and 7, i.e., having a 

car stop in front of the driver (scenario 5) versus having a car from the opposing lane turn 

in front of the driver (scenario 7), one cannot be sure whether the difference between the 

SART scores at the two scenarios was observed due to the usage of L2 systems in scenario 

5 or the difference of the hazardous situation in the two scenarios.  

Considering the difference between the two scenarios, to determine any significant 

difference between mean overall SART scores in each dashboard groups, a one-way 

ANOVA analysis was conducted twice (separately for each scenario): once for the L2 drive 

(scenario 5) and once for the manual drive (scenario 7). Results show that there was no 

significant difference between dashboards for the manual drive in scenario 7 (F (2, 39) = 

0.166, p-value > 0.05). However, there was a significant difference between dashboard 

group for the L2 drive in scenario 5 (F (2, 39) = 6.433, p-value < 0.05). To investigate 

which of the dashboards were significantly different from each other for the L2 drive 

(scenario 5), a Bonferroni post hoc analysis was performed. The results showed that mean 

overall SART score for the Advanced Dashboard group was significantly higher than that 
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of the Original Dashboard group (p-value < 0.01). However, there was no significant 

difference between Advanced and Basic Dashboard groups.  

 

Figure 18. Average overall SART scores for each dashboard design  

3.3.2.3.   User Interface Satisfaction  

The average rating of participants in each dashboard group for each of the five QUIS 

attributes (Capability, Screen, Terminology, Usability, and Overall) are presented in Figure 

19. As Figure 19 shows, the values were always highest for Advanced Dashboard group, 

followed by Basic Dashboard group and then Original Dashboard group. On average, 

participants’ rating for the five QUIS attributes was highest in the Advanced Dashboard 

group (Mean = 7.066, SD = 0.428) compared to the Basic (Mean = 6.220, SD = 0.385) and 

Original Dashboard (Mean = 4.304 SD = 0.738) groups.   

To investigate the effect of different dashboard designs on five different QUIS 

attributes, a MANOVA analysis was conducted. The results from the MANOVA showed 
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that there was a significant effect of dashboard in all five QUIS factors: Screen: F(2, 39) = 

10.81,  p-value < 0.001; Terminology: F(2, 39) = 7.98,  p-value < 0.001; Capability: F 

(2,39) = 9.26, p-value < 0.001;  Usability: F(2, 39) = 14.26,  p-value < 0.001 and Overall 

Reaction of participants: F(2, 39) = 15.33, p-value < 0.001. 

 

Figure 19. The average QUIS score for each dashboard design  

3.4.   Conclusion 

This study aimed to design and test a new driver-centered HMI interface which will support 

drivers in their understanding of L2 vehicle status and aid them in safely retrieving control 

when needed as suggested by Hoc et al (2009). To achieve this, three phases were carried 

where the first phase tested the drivers performance in L2 vehicles while driving in 

different scenarios using the Original Dashboard. In the second phase, the original 

dashboard interface was modified through four design iterations, resulting in Basic and 

Advanced Dashboards. The third phase of the study tested these in-vehicle interfaces 

(Basic Dashboard and Advanced Dashboard) in comparison to the Original Dashboard. 
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Results from Phase I showed that participants over-relied on L2 system particularly 

at curve scenario. This  issue has been pointed out in previous studies (Parasuraman & 

Riley, 1997b) particularly in context of automated vehicles (Boelhouwer et al, 2019). As 

potential solutions, it has been suggested that utilizing approprate visual and auditory 

feedback systems can help drivers to recognize failures of automated systems (Bainbridge, 

1983) and calibrate their trust based on system capibilities (Helldin, 2013) and take back 

control when required (Lau et al, 2018; Van den Beukel et al., 2016). The interview 

responses of the participants in phase I of the current study indicated that they were aware 

of the need for a better feedback system which would provide more information regarding 

system status and on-road situations. They particularly requested audio and visual feedback 

regarding road geometry and status of the system. 

In the second phase, an initial dashboard prototype was provided based on 

participants’ responses in Phase I. Next, individual co-design sessions were conducted with 

participants to assess their understanding of the suggested designs and gain their 

suggestions regarding shape, size, and placement of dashboard elements. They were also 

given a chance to add any other objects and feedback on the dashboard regarding the L2 

system. The design was then improved through a heuristic evaluation and pilot testing. 

Three dashboard interfaces (Original Dashboard, Basic Dashboard, Advanced Dashboard) 

were then prepared to be tested in the final phase. It should be noted that in the new 

dashboard designs, both participants needs mentioned in phase I and II, and also three 

challenges of interface design for L2 vehicles mentioned in previous studies have been 

addressed. First challenge was mode confusion (Kyriakidis et al., 2017) which addressed 

by providing an informative presentation of system status through an LED icon (car 



84 

 

between lanes). Second challenge was take-back control request delivery (Banks et al, 

2018) which was addressed by redundant audio and visual feedback to ensure optimal take-

back control actions when needed (Basic and Advanced Dashboard). Third challenge was 

to revert driver attention back towards hazardous areas (Blanco et al., 2015). This was 

achieved by providing participants with road geometry and object detected feedback 

(combination of LED icons and beep) which helped the drivers to be alert and revert their 

attention towards the hazards ahead. 

In third phase, the effect of new dashboard designs on participants’ performance 

and satisfaction was investigated. These results shows that, despite the significant positive 

effect of Basic Dashboard, Advanced Dashboard was more effective in terms of helping 

drivers take back control in a timely manner. Note that in scenario 4 where there was no 

take back control message, none of the participants in the Basic and Original dashboard 

groups took back control, and only 36% of  participants in the Advanced Dashboard group 

managed to take back control. This shows that while showing information regarding road 

geometry increased the number of successful take back control for participants in 

Advanced Dashboard group compared to Basic and Original Dashboard groups, 58.3% of 

participants in Advanced Dashboard group still did not take back control while approaching 

the intersection. Considering the dynamic nature of intersections and L2 systems’ 

limitations, failing to take back control (e.g., continuing with the same speed while 

maintaining same lateral position ) at intersections could result in drivers compromising 

their safety. For example, many ACC systems may not detect the sudden appearance of 

pedestrians or vehicles on the roadway (Tesla, 2019) and in many others, system may not 

brake for a vehicle it has never detected as moving (Cadillac, 2018). This issue was not 
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observed in scenario 3 where participants received take back control feedback prior to 

intersection in both Basic and Advanced dashboard groups. The results showed that 

participants took back control most of the times when they were presented with take back 

control feedback prior to the intersection in scenario 3. The performance was slightly better 

for Advanced Dashboard group where they received road geometry feedback in addition 

to take back control feedback, when compared to those in the Basic Dashboard group who 

only received a take back control feedback.     

To further investigate take back control action of participants, for scenarios 1-3, 

takeover time to hazard for each group was analyzed. The results from current study 

showed that participants in the Advanced Dashboard group took back control sooner (6.4 

seconds) than participants in Basic Dashboard (4.1 seconds) and Original Dashboard 

groups (1.5 seconds). As mentioned earlier, many participants in the Original Dashboard 

group did not take back control in the mentioned scenarios, and those who did were late 

compared to participants of other dashboard groups. This may raise safety concerns for 

Original Dashboard group which presented no take back control feedback or any additional 

information about on-road hazard situations. A previous study by Mok et al (2015) showed 

that most of the participants who took back control from automation two seconds or earlier 

leading to the hazards could not negotiate on-road hazard situations safely. However, those 

who took back control five and eight seconds leading to the hazards were able to safely 

negotiate on-road hazard situations (Mok et al., 2015). 

Late transfer-of-control by participants may be of particular importance when 

considering those scenarios involving pedestrian hazards (Scenario 2 and scenario 3). In 

these scenarios, drivers need to anticipate pedestrians as well as take back control from the 
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car. Results from Samuel et. al (2016) showed that transfer-of-control timing is important 

for drivers of L2 systems in pedestrian involved hazard situations. Results from their study 

showed that distracted drivers who took back control four seconds leading to the 

pedestrian-involved hazards only anticipated 33% of hazards, while this rate was almost 

twice (60%) when they took back control six seconds before the pedestrian hazard (Samuel 

et al, 2016). In the current study, while participants in Original Dashboard group did not 

take back control in many instances and participants in Basic Dashboard group took back 

control approximately 4 seconds leading to the pedestrian hazard (scenario 2 and 3) , 

participants in Advanced Dashboard group took back control sooner than six seconds 

leading to the pedestrian hazards for scenario 2 and 3.  

Another aspect investigated in this study was the situational awareness of the 

drivers. Previous studies showed that interface design for automated car can significantly 

effect the drivers situational awareness in transfer of control situations (Van den Beukel et 

al., 2016). Results from the current study showed that the participants in the Advanced 

Dashboard group were more situationally aware than the participants in the Basic and 

Original Dashboard groups on an average while in driving in L2 mode. These results are 

aligned with van den Beukel et al (2016) study which showed that using combination of 

visual and auditory feedback increases situational awareness while driving in automated 

vehicles (Van den Beukel et al., 2016). Participants in Original Dashboard group had the 

lowest situational awareness among three groups while driving in L2 mode. This shows 

that driving in L2 mode without an appropriate HMI can decrease situational awareness of 

the drivers as previous studies also indicated (Endsley, 1999; Merat & Jamson, 2009b). 

There was no difference in drivers situational awareness while driving in manual mode for 
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all three groups. This shows that participants in three group had similar situational 

awareness while driving in manual mode thereby ruling out a potential confound where the 

situational awareness of the drivers would be different due to induvial differences of 

participants in each group. 

To investigate user satisfaction, the QUIS was used. This questionnaire was used 

previously for similar studies to quantify participants acceptance and satisfaction regarding 

partially automated vehicle (Hjälmdahl et al, 2017).  The results from the QUIS for the 

current study showed that participants in the Advanced Dashboard group had the highest 

satisfaction scores for all five factors of the QUIS questionnaire.  Among all factors, 

Usability had the highest improvement from Original Dashboard to Advanced Dashboard 

with 3.55 improvement in average score of participants.  

It could be noted that unlike Advanced Dashboard design, variants of the Basic 

Dashboard design are available in commercial L2 vehicles. The results from this 

experiment showed that the drivers’ performance could be improved by providing 

additional information (e.g., roadway information). Hence it might be useful to explore 

methods to improve drivers’ performance in current L2 vehicles. Training the drivers 

to understand the ODD limitations of L2 vehicles particularly regarding road geometry 

and objects on-road can be helpful to prepare drivers for oncoming take back control 

situations.           
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CHAPTER 4 

EXPERIMENT 2 

Result from experiment 1 showed that drivers takeover performance was improved by 

providing information regarding road geometry in advance to takeback control request. 

However, as mentioned earlier there are no dashboards similar to advanced dashboard 

available in current L2 vehicles.  Moreover, there are more scenarios where L2 systems are 

not capable of detecting hazard (e.g. bicyclist, pedestrian, etc.) and hence there is no way 

that L2 systems can provide feedback to drivers regarding those situations.  As results from 

experiment 1 showed, when there was no take back control feedback prior to an 

intersection, none of the participants took back control from the car. Considering the ODD 

limitations of L2 vehicle (e.g. cannot detect pedestrian, bicyclist, crossing traffic) and 

dynamic environment of intersections, this might cause crucial safety issues.  This example 

from experiment 1 shows that at more complex situations where the L2 vehicle do not 

detect or predict hazards, it is up to drivers to perceive the situation properly and take back 

control from the automation system.  

As a solution to this issue, training has been suggested by many studies to help 

drivers to gain knowledge about limitations and capabilities of automated vehicles 

(Beggiato et al., 2015; Forster et al., 2019; Koustanaï et al., 2012; Payre et al., 2016). Past 

studies showed that training was helpful to improve drivers performance and knowledge 

about the automation. For example Koustanai et al (2012) showed that training improved 

drivers performance while using forward collision warning (FCW) system (Koustanaï et 

al., 2012). Payre et al (2016) showed that training drivers for using highly automated 

vehicles (capable of overtaking, accelerating, braking and interacting with other vehicles) 
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improved their response time to emergency take back control situation (Payre et al., 2016). 

Forster et al (2019) showed that interactive tutorial helped drivers to understand lane 

keeping system more accurately comparing the owner’s manual (Forster et al, 2019).  

Despite the important role of training mentioned in previous literature, only a few 

training programs for L2 vehicles have been designed and tested. Most of the studies 

depended on self-reported questionnaire to test the effectiveness of their designed training 

while there was no objective analysis of drivers’ performance. There was no study which 

comprehensively tested different aspects such as trust, situational awareness, and drivers’ 

performance for a designed training program. Some of them were successful to train drivers 

regarding one support feature but could not improve their knowledge regarding another 

feature.      

The objective of the current experiment is designing and testing a training program 

to improve drivers’ situation awareness when a DSF reaches the limits of its ODD, which 

eventually help drivers to take back control more sooner and efficiently when it required. 

To achieve this, a PC-based training program has been designed (Design of the training 

will be discussed in section 4.1 of the current chapter). Participants were recruited and 

assigned to three training condition groups (PC-based Training , user manual training  and 

placebo Training). Participants in all groups were presented with a brief explanation of the 

L2 vehicles. Participants in user manual group further received a document indicating user 

manual information. Participants in PC-based training went through the PC-based training 

session. Participants in placebo training group received a training regarding other 

automated features apart from ACC and Lane Centering System which were the focus of 
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PC-based training. All participants then drove through post-test scenarios on the driving 

simulator.  

4.1.   Training program development 

Previous studies showed that as training methods become more interactive, the trainee 

gains more knowledge about the specific subject (Burke et al., 2006). In fact, interactive 

training methods were observed to be much more effective in enhancing the trainee’s 

knowledge and skills when compared to  non-interactive video-based training (Burke et 

al., 2006). Studies such as Romoser  and Fisher (2009) have found that an interactive 

training method such as 3M method (3M - mistakes, mentoring, mastery) was more 

effective that passive methods (Romoser & Fisher, 2009).  This training method often 

referred to as error training (Ivancic IV & Hesketh, 2000). Ivancic and Hesketh (2000) 

showed that error training resulted in significantly better analogical transfer of knowledge 

to driving tests that corresponded to the situations encountered in the training. Analogical 

transfer refers to the ability to use familiar problems to solve other similar problems 

(Reeves & Weisberg, 1994).   

The 3M method has been used in several studies (Fisher et al, 2017; Romoser & 

Fisher, 2009; Zafian et al., 2016) where drivers were successfully trained for complex 

driving skills such as hazard anticipation, hazard mitigation and attention maintenance in 

manual (non-automated) driving context (Muttart, 2013; Pradhan et al, 2005). This training 

method consists of three modules. First module is ‘mistake’ where the trainee is put into 

an unfamiliar setting and is allowed to make errors. Second module is ‘mentoring’ where 

the trainee is provided with real-time feedback and also guided to avoid such errors in 
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future instances. Third module is mastery where the trainee is the given the opportunity to 

correct their mistakes.  

The current experiment aimed to use 3M approach to improve drivers performance 

in complex transfer of control situations in L2 vehicle which require the drivers to recall 

L2 system limitations, to predict the hazards and to mitigate the hazards (by taking back 

control as a step of mitigation). The 3M method has been used due to the proven 

effectiveness of this approach to train drivers for learning and transferring of knowledge to 

action regarding complex skills and scenarios. To better explain the application of 3M 

approach in context of training driving for L2 systems, we will explain each of the modules 

in the context of a take back control scenario.   

1) Mistake: In the first attempt, the participant were instructed to click on the 

automation on/off button when they feel the need to take back control from the L2 

system at a particular scenario.  

2) Mentoring: If participants did not respond correctly, they would receive real-time 

feedback regarding their mistake and informed about the solution. They were then 

asked to try the same scenario again. If they got the answer correct on the first or 

second tries, they were told that they did a great job and moved directly to the 

mastery stage.  

3) Mastery. Participants were asked once again to show that they have mastered the 

skill. Thus, they were asked to practice once again in a more complex situation.  

The training was delivered through a PC-based training program. PC-based training 

programs are realistic and economical approaches and they can easily be distributed on 

electronic media or can be made available on the Internet (Fisher et al., 2002; Pradhan et 
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al., 2005). Hence, it would be an appropriate media for delivering the training. To design 

the PC-based training program, we used Microsoft PowerPoint which is easily accessible 

and editable for future use. More details about training program will be discussed in the 

section 4.2.4.  

Eight types of scenarios were considered in the training program. Among those, 

seven types were based on those situations where DSF reaches its ODD limit as mentioned 

in the user manuals of different L2 vehicle models (Cadillac, 2018; Tesla, 2019). Another 

type of scenarios considered was based on those situations where drivers do not need to 

take back control from the system. This type was included to the training to make sure that 

participants will be presented with different type of scenarios featuring both takeover and 

non-takeover situations. This will prevent them from sensing a particular pattern and thus 

rule out the bias. The eight types of scenarios are as follows:  

1) Curve:  The L2 system may not manage to keep itself in the lane in sharp curves 

2) Intersection: L2 system cannot predict potential hazards at the intersections and 

also may not detect cross-traffic  

3) Invisible lane: L2 system may not keep the car in lane when it reaches areas where 

lane marking disappear (merges) or not visible (roadway conditions)  

4) Vulnerable road users (pedestrian, bikes): L2 system may not detect any object on 

the road except a moving car in front of the vehicle 

5) Stationary objects on the road (stop car, fallen trees, construction zone): L2 system 

may not detect stationary non-vehicle objects and also may not detect stationary 

lead vehicle if it was not detected as moving.  
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6) Non-standard shaped vehicles (Oversized truck, tractors, etc) : L2 system may not 

detect vehicles with Non-standard shape 

7) Unpredictable drivers (Distracted drivers, hidden drivers, etc) : L2 system may not 

work in the event of erratic behavior of another driver 

8) No take-over (Control scenarios with no need to take back control from L2 system) 

Considering the 8 type of scenarios above, 14 scenarios were used in our training. Seven 

of them were scenarios where participants needed to take back control and seven of them 

were scenarios where participants did need to take back control from the system (Table 8). 

Table 8. Description of the scenarios for using in PC-based Training Program 

No Scenario  type Description Image 

1 Curve 

The driver is traveling approaching a 

S-curved road section (one travel 

lane in either direction). At the end of 

the first curve (beginning of the 

second curve), a car  is parked on 

right side of the curved road section.  

 

2 Intersection 

The driver is approaching towards an 

uncontrolled intersection (two travel 

lanes in either direction). The 

adjacent traffic is controlled by a stop 

sign. Driver has the right of the way.  

 

3 Invisible lane 
The driver approach the section of 

the road where the lane marking have 

been deteriorated 
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4 

Vulnerable road 

users 

The driver is approaching a bike-

trail. A bicyclist in the bike lane 

crossing the street 

 

5 

Stationary 

objects 

on the road 

The driver is travelling on a two-way 

road with two lanes in each side, 

when they encounter a construction 

zone 

 

6 
Truck 

The driver approaches an oversized 

vehicle moving at a slower speed 

than the speed limit. The oversized 

vehicle takes up an entire travel lane 

with its leftmost wheels protruding 

into the driver’s travel lane. 

 

7 Distracted 

Driver 

The drivers is travelling on a two-

way road when they encounter a 

vehicle repeatedly swerving in and 

out of its lane. 

 

8-14 
No take-over 

Seven Control scenarios with no take 

back control events in different 

environmental settings (rural, urban, 

suburban) 
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4.2. Method 

In this experiment, first a PC- based training program was designed using 3M approach 

based on scenarios where DSF reaches its ODD limit and need drivers to take back control 

from the L2 system. Seven type of scenarios were considered in the training program. After 

which 36  participants were recruited and randomly assigned to one of the three training 

condition groups (User manual, Training and control). Participants in user manual training 

group received a document indicating user manual information. Participants in PC-based 

training group went through the training session. Participants in placebo training group 

received a training regarding other driver support features apart from ACC and Lane 

Centering System which were the focus of PC-based training. All participant then drove 

through post-test scenarios on driving simulator.  

4.2.1. Participants 

Thirty six participants were recruited from the University of Massachusetts Amherst 

campus and Amherst town using flyers and email advertisements. Only individuals with a 

valid United States driving license who did not wear eyeglasses were included in the study.  

4.2.2.   Scenarios 

To test the effectiveness of the training program, 10 scenarios were designed (Table 9). All 

these scenarios were designed considering the 7 categories introduced in section 4.1. To 

design these scenarios ODD limitation of L2 systems mentioned in owners-manual of 

actual L2 vesicles were considered (Cadillac, 2018; Tesla, 2019). Scenario 1-3 are similar 

to the scenarios used in experiment 1. 
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Table 9. Post-drive Scenario Description for Experiment 2 

No. Name Description 
Takeover   

required? 
Image 

1 Merge 

The driver reaches the end of a 

four-lane road (two travel lanes 

in either direction) which merges 

onto a two-lane road (one travel 

lane in either direction). There is 

a car following behind the driver 

into the merge. 

Yes 

 

2 Curve 

The driver is traveling along a 

curved road section, where a 

truck is parked on right side of 

the curved road section before a 

crosswalk. The truck is partly 

jutting onto the road obscuring a 

pedestrian. 

Yes 

 

3 Intersection 

The driver is approaching 

towards traffic signal-controlled 

intersection (two travel lanes in 

either direction) with a green 

light in the travel lane. A block of 

buildings obscures a pedestrian. 

Yes 

 

4 Bike 

The driver is driving on the right 

lane of a roadway and reaches a 

bicyclist riding on the extreme 

right side of the same lane  

Yes 

 

5 
Construction 

zone 

The driver is travelling on a two-

way road with two lanes in each 

side, when they encounter a 

construction zone 

Yes 

 

6 Truck 

The driver approaches an 

oversized vehicle moving at a 

slower speed than the speed limit. 

The oversized vehicle takes up an 

entire travel lane with its leftmost 

wheels protruding into the 

driver’s travel lane. 

Yes 
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4.2.3.   Equipment 

In terms of driving simulator and eye-tracker, the same equipment as experiment 1 was 

used in this experiment.   

PC based training program was designed and presented using Microsoft PowerPoint.    The 

program included  3 parts. In the first part of the training, participants were introduced to 

the training program and its interface, buttons and the task they would need to perform. 

They were instructed that they would receive several scenarios in the training and they 

would need to decide whether they should take back control from the system or not. In the 

7 Car-cut 

The driver approaches a 

driveway. A car cuts into the 

drivers pathway 

Yes 

 

8 No takeover 1 

 

 

This is a scenario in a suburban 

setting with no hazards 

 

 

 

No 

 

9 No takeover 2 

 

 

 

This is a scenario in a rural 

setting with no hazards 

 

 

 

No 

 

10 No takeover 3 

 

This is a scenario in an urban 

setting with no hazards 

 

 

 

No 
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second part, participants were presented with 14 scenarios (Table 8)  where each scenario 

was presented by a sequence of snapshots (7 snapshots in total) from the drivers’ point of 

view. Each snapshot lasted for 2 seconds. Seven of these scenarios included those situations 

where L2 system reached its ODD limit and the participants would need to take back 

control while the other seven would not require them to take back control. In cases where 

participants successfully took back control from the system on their first attempt, they were 

asked about the reasoning for their takeover action. If their response was incorrect, they 

were provided by the correct reason. If participants did not take back control for those 

scenarios where L2 system reached its ODD limits, participants received a message which 

guided them about their mistake and explained to them why it was necessary to take back 

control at that situation. Each participants had three attempts to gain mastery over each 

scenario. This was done to make sure that participants had enough chances to master their 

skills. Figure 20 shows the interface of the training program designed for this study.  

 

Figure 20. PC-based training program interface 
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User manual training program included a text-based manuscript prepared based on 

the owner’s manual of a real L2 system. In that manuscript, only those sections of the 

owner’s manual related to the L2 systems and their limitations were included. After which, 

they received a multiple choice question test regarding the information presented in the 

manuscript. This was done to make sure they will read and pay attention to the material. 

The participants were informed that they will receive this test prior to them reading through 

the manuscript.  

Placebo training program designed using Microsoft PowerPoint (Figure 21). This 

program included slides that informed the participants about the functionality and 

limitation of other driver support  features apart from ACC and Lane Centering system. 

The features included in these slides were as follows: Automatic Parallel Parking,  

Automatic Reverse Braking, Anti-Lock Braking System, Drowsiness Alert, High Speed 

Alert, Back-up Camera, Parking Sensors, Temperature Warning, Hill Start Assist and Hill 

Descent Assist. The information provided for participants for these slides were adapted 

from mycardoeswhat.org. (My Car Does What, 2020). After which consistent with the 

other two training groups, they received a multiple choice question test regarding the same 

features.  
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Figure 21. Placebo training program 

4.2.4.   Experimental Design and Dependent variables and Hypotheses 

The between-subjects independent variable in the experiment was the training program 

(PC-based training, user manual, placebo ). The within-subjects independent variable in 

the experiment was the Post-drive scenario. The Post- drive scenarios (Table 8) were used 

to assess the effectiveness of the training program.  

One dependent variable similar to phase III of first experiment, was drivers’ 

takeover reaction, which was binary coded (Successful transfer of control as scored ‘1’ and 

unsuccessful transfer of control was scored ‘0’). The second dependent variable was 

takeover time to hazard, the time interval at which drivers take back control up until the 

critical event. The third dependent variable was the overall SART score. The fourth 
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dependent variable was participants’ trust which was measured using trust questionnaire 

designed by Jian et al (2000). (Jian et al , 2000).  

In this study, our first hypothesis was that the participants in the PC-based training 

group would take back control more successfully than drivers in user manual training group 

and placebo training group (H1). The second hypothesis was that the participants in the 

PC-based training group would take back control sooner than drivers in user manual 

training group and placebo training group (H2). The Third hypothesis was that the 

participants in the training group would have higher overall SART scores compared to the 

participants in user manual training group and placebo training group (H3). Our fourth 

hypothesis was that the participants’ trust in automation would increase for those drivers 

in PC-based training group after receiving the training program compared to those in user 

manual training group or placebo training group (H4).  

4.2.5.   Procedure 

After participants gave their consent, they were randomly assigned to either the control, 

user manual or PC based training groups. Participants were asked to fill out trust 

questionnaire. Participants in all groups were presented with a brief explanation of the L2 

vehicles. Participants in user manual training group would further receive a document 

indicating user manual information regarding those limitations considered in the 10 

scenarios mentioned in Table 8. Participants in PC-based training group went through the 

training session presented on Microsoft PowerPoint. Participants in placebo training group 

received the placebo training in the same platform as PC-based training group.  All 

participants then drove through 10 designed scenarios on simulator.  After each scenario 

they will be asked to fill the SART questionnaire. The procedure for the simulator drives 
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were similar as the one explained in experiment 1. After driving through the scenarios 

participants will complete the trust questionnaire once again, and also fill out the 

demographics questionnaire and driver behavior questionnaire .  

4.3. Results 

For descriptive purposes drivers average age and average experience in each group (PC-

based, user manual and placebo) was calculated. The average age of the drivers were 22.05 

(SD = 1.68) for PC-based training, 22.92 (SD =3.28) years for User-manual group and 

21.95 years (SD = 0.97) for Placebo group. To investigate if there was significant different 

between groups in terms of average age, ANOVA analysis was conducted. Results showed 

that there was no significant difference between groups (F = 0.706, P-value =0.5).  

The average drivers’ experience were 4.25 years (SD =2.203) for PC-based training 

group, 4.67 (SD =3.55) years for User-manual group and 4.79 years (SD = 0.65) for 

Placebo group. To investigate if there was significant different between groups in terms of 

average age, ANOVA analysis was conducted. Results showed that there was no significant 

difference between groups (F = 0.158, P-value =0.85). 

The analysis of driver behavior questionnaire have been conducted based on a 

previous driving study (Reimer et al., 2005).  ANOVA analysis showed that there was no 

significant difference in terms of Error (F=0.2350 , P-value =0.791) or Lapse (F= 0.2 , P-

value = 0.819) or Violation (F=1.25, P-value = 0.299) between groups (PC-based, user 

manual and placebo). 
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4.3.1. Binary Takeover Responses 

For descriptive purposes, the percentage of participants who took back control in each 

training group was calculated (Figure 22). In all scenarios, the percentage of successful 

take back control was highest in the PC-based training group compared to the User manual 

and Placebo  training groups. In total, the percentage of participants who successfully took 

back control on time were higher for PC-based training group (91.71%) when compared to 

user manual group (27%) and placebo training group (23.71%). It should be noted that 

none of the participants took back control in the No-takeover scenarios, with the exception 

of one participant in the Placebo group who took back control for No-takeover 3 scenario.  

 

Figure 22. The percentage of participants who successfully took back control for each 

group  

To determine whether the effect of dashboard was significant , a logistic regression model 

within GEE framework was used. Here, training group (PC-based , User manual , Placebo) 
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was included as between subject factor, and takeover scenarios were included as within 

subject factor. Data analysis showed a significant main effect of training group (Wald Chi-

Square = 25.732 , p-value < 0.001) and main effect of scenario (Wald Chi-Square = 33.287 , 

p-value < 0.001). 

4.3.2. Takeover time to hazard  

To further investigate take back control action of participants the time which elapsed 

between when drivers took back control and when the critical event was reached (takeover 

time to hazard) was calculated for each group (Figure 23 ). In all scenarios, participants in 

the PC-based training group took back control sooner compared to the user manual and 

placebo  training groups. In average, participants in the PC-based training group took back 

control 7.05 seconds before the hazards (SD =1.17), participants in the user manual group 

took back control 1.93 seconds before the hazards (SD = 1.24) and participant in the 

placebo group took back control 1.83 seconds before the hazards (SD = 1.33).  
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Figure 23 . Average Takeover Time to Hazard for each training groups  

A 3 (training group) × 7  (scenario) factorial  ANOVA was performed. The result showed 

that there was a significant main effect of training group (F(2, 231) = 97.39 , p-value < 

0.001). There was a significant main effect of scenarios (F(6,231) = 3.27 , p-value < 0.01). 

To investigate which of the training programs were significantly different from each other, 

a Bonferroni post hoc analysis was performed, and results showed that there was a 

significant different between PC-based and user manual groups (p-value <0.001) and PC-

based and Placebo groups (p-value<0.001) but no significant different between Placebo 

and User manual groups (P-value > 0.05). 

4.3.3. Situational Awareness   

Overall SART scores of participants were calculated for all training groups. The mean 

overall SART scores for each group for different scenarios are presented in Figure 24. In 
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all scenarios, participants in the PC-based training group had higher total SART score 

compared to the User manual and Placebo training groups. In total, the mean total SART 

score for participants in the PC-based training group was 22.03 (SD =1.41), for participants 

in the User manual was 15.20 (SD = 2.59) and for the participant in the Placebo was 10.84 

(SD = 1.95). 

 

Figure 24. Mean overall SART scores for each training group                                        

 To determine if there was a significant difference between mean overall SART scores of 

participants between groups, A  3 (training group) × 7  (scenario) factorial  ANOVA was 

performed. Results  showed that there was a significant main effect of training (F(2,231) = 

48.20 , P-value<0.001). There was no significant effect of scenarios. Bonferroni post hoc 

analysis showed that there was a significant different between all the combination of the 

trainings (P-value <0.001).  
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4.3.4. Trust on Automation   

As mentioned earlier, participants were asked to fill the trust questionnaire (Jian et al., 

2000) once before the session and once after the session. Overall trust scores were 

calculated for each of the time and each group of training (PC-based, User manual, 

Placebo). The mean overall trust score for each group are presented in Figure 25. 

 

Figure 25. Mean overall trust scores for each training group                                             

To investigate the difference of mean overall trust scores between groups, One-way 

ANOVA analysis was performed separately for pre-trust questionnaire and post-trust 

questionnaire. Results showed that there was no significant difference between participant 

mean overall trust scores for pre-trust questionnaires (F(2,33) = 1.52 , P-value = 0.232). 

Results also showed that there was a significant effect of training program on participants 

scores for post-trust questionnaire (F(2,33) = 3.51 , P-value = 0.041), Bonferroni post hoc 

analysis showed that participant in training group had higher post-trust score than 
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participant in placebo group (P-value =0.048). There was no significant difference between 

participant in placebo and user manual group (P-value = 0.188).   

4.3.5. Combined results from Experiment 1 and Experiment 2 

Among all the scenarios considered for simulator testing, three scenarios (merge, curve, 

intersection) was common for both experiment. Takeover responses from both experiment 

for the mentioned three scenarios, show that the responses of participants were not that 

different for binary coded takeover data between two experiments (Advanced/Basic 

Dashboard vs PC-based training) as seen in Figure 25. Due to the difference of two 

experiments in terms of timing (The two experiment took place one year apart from each 

other), design of the experiments and presence of different scenarios and survey measures, 

the statistical analysis has not been conducted and we have to rely solely on descriptive 

information. As Figure 25 shows in most of the cases, participants in PC-based training 

group took back control as often as those in Advanced Dashboard group, despite the former 

group receiving no real time takeover feedback. 
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Figure 26. The percentage of participants who successfully took back control  

Similar to descriptive information regarding binary coded takeover responses, the takeover 

time to hazards for all of the above mentioned groups were also integrated into Figure 26. 

Here we see that in most of the cases the PC-based training group took back control earlier 

than Advanced and Basic dashboard groups. Considering the above mentioned descriptive 

findings, one could argue that the PC-based training program was a good alternative 

method to improve drivers takeover responses for the mentioned scenarios. However, it 

also needs to be pointed out that the testing session for the training group took place 

immediately after the conclusion of training session. This may have caused the participants 

to better recall their newly acquired skills and knowledge compared to a real world 

situation where a person may not be able to recall and appropriately apply the skills for 

takeover situations. Whereas real-time feedback such as those seen in both Basic and 

Advanced dashboard would assist drivers to recognize and takeover control when needed.  
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Figure 27. Average Takeover Time to Hazard  

4.4 Conclusion  

The objective of this experiment was to determine whether a PC-based training program 

using 3M approach could help drivers to take back control successfully when L2 system 

limitations are reached, improve their situational awareness as well as increase their trust 

in automation. Three different training program were conceptualized and designed for the 

purposes of this experiment : PC-based training program, user manual training program 

and placebo training program. In the PC-based training program, participants had an 

opportunity to practice, make mistake, learn and become master in taking back control 

situations where L2 systems reached it limitations. In the user manual training program, 

participants were provided with a text-based manuscript based on a real world owner’s 

manual of an L2 system. Placebo training program was designed by including several other 
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driver support feature rather than ACC and Lane Centering system which were the focus 

of our PC-based training program.   

After completing their respective training programs, participants drove through ten 

scenarios on a fixed based driving simulator to test their response to different scenarios 

featuring both takeover and non-takeover situations during automated driving. Non-

takeover scenarios were presented to the participants to make sure that did not develop a 

biased expectation to take back control for all the presented scenarios and to make sure 

their experience with L2 system was similar to real world situations where takeover 

situation may not be as prominent. Their takeover response was collected through the 

vehicle output of the driving simulator. To assess their situational awareness, and trust in 

automation, they were provided with SART (Selcon & Taylor, 1990) and Trust (Jian et al., 

2000) questionnaires.  

Results from the analysis of binary coded takeover responses showed that there was 

a main effect of training program on successful takeover control instances whenever the 

L2 system reached its limitations.  PC-based training group took back control significantly 

more (91.71%) when compared to user manual training group (27%) and placebo training 

group (23.71%). This was consistent with our first hypothesis (H1). This may indicate that 

participants who received PC-based training recognized and took back control successfully 

when needed far more than their contour parts in other training groups. These results are 

consistent with past studies which showed that there user manuals were not sufficient to 

improve drivers knowledge regarding drivers support features (Boelhouwer et al., 2019; 

Jenness et al., 2008). Past studies also showed that many drivers do not read the user 

manuals completely (Leonard & Karnes, 2000). Considering the fact that the drivers in this 
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study received only a specific section of the user manual and were given enough time to 

read through it before driving through post-test scenarios right after, one could argue that 

drivers in the real world may have gained/recalled less information from the user manuals. 

It should be noted that none of the participants in the training group did not take back 

control for No-takeover scenarios. This indicates that PC-based training did not cause 

people to be overly sensitive. 

To further investigate the drivers takeover responses, takeover time to hazard was 

calculated for all the participants in each group. Results showed that participants in PC-

based training group took back control sooner (7.05 seconds before the hazards) when 

compared to user manual training group (1.93 seconds) and placebo training group (1.83 

seconds). This shows that not only PC-based training group took back control more 

successfully but also that they took back control significantly sooner than the other two 

groups. Post-hoc analysis showed that there was no significant difference of the takeover 

time to hazard between user manual and placebo training groups. This may indicate that 

user manual information regarding the L2 systems limitations may not be sufficient to 

educate drivers regarding those situations that they need to take back control from the 

system. This result was consistent with the finding from other studies which showed 

owner’s manual were not effective to improve the knowledge of the drivers regarding 

driver support feature (Boelhouwer et al., 2019; Jenness et al., 2008). These results were 

further strengthen our the results from binary coded takeover data and were consistent with 

our second hypothesis (H2). 

In order to investigate the situational awareness of the participants during their post-

test drives on the simulator, their overall SART scores derived from their responses on the 
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SART questionnaire were analyzed.  The results indicated that participants in PC-based 

training group had significantly higher overall SART scores when compared to user 

manual and placebo training groups. As mentioned earlier, drivers in PC-based training 

group took back control more successfully that the other two groups. These results along 

with those from SART scores are consistent with past studies which have shown that 

drivers who had higher SART scores were more likely to successfully take back control 

from automated systems (Van Den Beukel & Van Der Voort, 2013).  This could serve as 

another indicator about the effectiveness of the PC-based training program and is consistent 

with our third hypothesis (H3). No significant differences were observed between user 

manual and placebo training groups during the post hoc analysis. It should be worth 

pointing out that owner’s manual were not at all sufficient to help drivers be situationally 

aware regarding the presented scenarios which featured some of the critical L2 system 

limitations.  

To examine the effect of the training programs on participants trust in automation, 

the overall trust scores derived from participants responses on trust questionnaire before 

and after the sessions were analyzed. Results showed that there was no difference between 

participants trust before they received their respective training program. This showed that 

the participants did not have different level of trust in each group before their exposure to 

the training program and simulator scenarios, thereby ruling out any possible confounds in 

their subsequent performance. Analysis of post-trust questionnaire showed that participants 

in PC-based training group came out of the session with a higher degree of trust when 

compared to the user manual and placebo groups. This was consistent with the findings 

from a past study (Payre et al., 2016) which showed that an elaborative training improved 
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the trust of the participants in automation. These results are also consistent with our third 

hypothesis (H3). One may point out the increase in trust levels may not necessarily be a 

good outcome of training, since it may cause drivers to over-rely on the system. However, 

considering the fact that the participants in PC-based training group performed 

significantly better with regards to their takeover responses and had the highest situational 

awareness among all the groups, we could assume that the training did not cause 

overreliance on the system but instead improved and calibrated their overall trust on the 

system.   

The study has some limitations as noted here. First, the driving session of the study 

was conducted on a driving simulator and despite the high fidelity of the driving simulator, 

to analyze constructs such as situational awareness and trust, the external validity could be 

improved by conducting an on road study. Second, due to the fact that the current study 

incorporated a between-subject design, it could be argued that complete homogeneity was 

not maintained across the groups despite random assignment. However, the results from 

demographics questionnaire and driver behavior (DBQ) questionnaire showed that there 

was no significant different in terms of age and driving experience and DBQ ratings 

between participants of different group. We also did a prescreening procedures to make 

sure none of the participants had any prior information or experience with L2 systems in 

vehicles.  This helped to minimize the confounds imposed by between subject design and 

yet benefit from this type of design by not having learning effect that would otherwise be 

caused by a within subject experimental design. Third, a larger sample size would be 

helpful to generalize the findings. Initial sample size considered for this experiment was 

larger but due to the onset of the COVID-19 pandemic, the sample size had to be reduced. 
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Fourth, the number of the takeover scenarios consider in this study were limited. Despite 

the effort to consider examples of all important types of takeover situation scenarios, there 

are many scenarios with difference in details, locations, road geometries, etc., which could 

not be included in this study due to the limited timing of each session. Modifying the PC-

based training and testing it for more scenarios could further improve generalization of this 

study’s results. Fifth, In this study, pre-test simulator drives were not included due to the 

time limitations for each session. Having baseline drives before exposing the participants 

to training could further show how a training program affected ones’ response before and 

after receiving it. It should also be mentioned that content presented in this dissertation 

reflects the views of the author and further validation may be needed to generalize the 

findings. 

This study adds to the literature regarding the effectiveness of training program to 

improve drivers interaction with L2 systems. As mentioned in Chapter 2, despite the 

important role of training programs, there have been only a few training programs 

regarding L2 systems designed and tested and most of them were not successful to improve 

drivers performance and knowledge of the system. Moreover most of these studies  

depended on self-reported questionnaire and lacked an objective analysis of the drivers’ 

performance. This study showed that a PC-based training program using 3M approach 

could help drivers learn from their mistake in a safe and controlled environment using an 

interactive PC-based platform. The tests showed that they performed significantly better 

than drivers who only received information from owners’ manual or those who were 

receiving placebo training. The results from this study can shed a light on new approaches 

to design training and user education methods with regards to vehicle automation which is 
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much needed considering unfortunate accidents reported due to the drivers lack of 

situational awareness and knowledge regarding the limitations of these type of vehicles.   
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CHAPTER 5 

OVERALL CONCLUSIONS AND FUTURE WORK 

5.1. Overall Conclusions 

The primary aim of this dissertation was to design and test methods to improve drivers’ 

behavior when L2 systems reaches its ODD limitations. Towards this end, this dissertation 

comprised of two main research objectives: 1) Design and test in-vehicle interfaces to 

improve drivers performance in transfer of control situations while driving with L2 

systems; and 2) Develop and test a training program for use in driver support features 

contexts, with a focus on training drivers to understand L2 system limitations and enable 

them to takeover control from the system when needed. 

To achieve the first objective, a three-phase research experiment was carried out 

resulting in design of three in-vehicle dashboard interfaces (Advanced, Basic and Original 

Dashboards). The testing phase for the effectiveness of the interfaces showed that 

participants took back control much more successfully and had higher situational 

awareness when they were exposed to the Advanced dashboard compared to the Basic and 

Original dashboard. However, despite the effectiveness of the Advanced dashboard, there 

are no current vehicles with the similar dashboard interfaces. Moreover, there are many 

situations where the L2 systems cannot detect and inform the drivers regarding its ODD 

limitations and takeover situations and hence, no dashboard interface could be effective for 

such cases. For example L2 systems like Cadillac Super Cruise cannot detect pedestrians 

and hence are not able to inform drivers to take back control in those situations which may 

involve any hazards regarding pedestrians. One also can argue that real-time feedback 

could be distractive and counterproductive for those situations where they are needed 
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repeatedly (e.g. intersections). All these reasons led to research to seek alternate approaches 

to improve driver situational awareness and takeover responses while driving with L2 

systems.  

In second experiment, a new PC-based training program was designed to help 

drivers gain knowledge regarding system limitations and takeover situations. This 

experiment included two other training programs which were tested in comparison to the 

newly designed PC-based training. One was based on an owner’s manual and in the other 

one,  participants received a placebo training which did not give them any information 

regarding the target L2 systems (combination of ACC and Lane Centering System), rather 

gave information about other driving features (e.g. Automatic Parallel Parking). The 

reasoning to include an owner’s manual method was to compare the effectiveness of 

existing information material with our newly designed PC-based training program. The 

results from this experiment showed that the participants who received the training from 

PC-based program were not only able to successfully takeback control more often but they 

did so much sooner than the participants in the other two groups. To add to this, they also 

had higher situational awareness regarding the takeover situation featured in this study. 

Despite the increased knowledge of the L2 system’s limitations, participants in PC-based 

training group did not lose their trust in automation system and in fact their trust seemingly 

increased as seen by their responses on the trust questionnaire.  

This study was an effort to address some of the human factors challenges while 

driving with L2 systems. Challenges such as lack of knowledge of drivers regarding ODD 

limitations of automated vehicles (Jenness et al., 2008; Larsson, 2012), driver 

disengagement and out-of-the-loop phenomenon (Navarro et al, 2016) while driving with 
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L2 systems, decreased situational awareness (Hirose et al, 2015; Merat & Jamson, 2009), 

as well as drivers confusion regarding the transfer of control situations. The first 

experiment attempted to address driver disengagement and decreased situational awareness 

by providing visual and auditory alerts through newly designed dashboard interfaces for 

effective transfer of control in limited number of roadway situations where L2 systems 

reached it ODD limits. The results showed that drivers took back control more effectively 

and had more situational awareness while using the newly designed interfaces. The second 

experiment was an effort to address drivers’ lack of knowledge and situational awareness 

regarding ODD limitations of  existing L2 systems where the systems cannot provide 

feedback to the drivers for several roadway situations and the drivers may need to depend 

on their prior knowledge about the systems’ limits. Past studies have indicated that the 

owner’s manual, as an available source of this information for drivers, were not effective 

when it comes to improving their knowledge (Mehlenbacher et al, 2002). Hence, there has 

been an urge for finding alternative tools  which can help drivers gain necessary 

information regarding these systems’ limitations and safety-critical situations. Training 

programs have been suggested as potential solutions which may help improve drivers’ 

interaction with automated systems (Beggiato et al., 2015; Forster et al., 2019; Koustanaï 

et al., 2012; Payre et al., 2016) , and therefore, the second experiment aimed to design and 

test a PC-based training program to achieve this. The results showed that drivers took back 

control more effectively and had more situational awareness after receiving the designed 

training program. 

To sum up, both experiments featured in this dissertation present compelling 

arguments to utilize different methods to improve drivers situational awareness and 
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takeover responses. Depending on the nature of the situation (e.g. whether the L2 systems 

can detect a certain hazard on the road or when real-time feedback are needed repeatedly) 

either one of the two methods presented in this dissertation or an intelligent combination 

of both could be helpful to improve the drivers safety while using L2 systems. For instance, 

for those scenarios where the system can detect a situation outside its ODD limits, real-

time feedback on the dashboard may serve as a good option. For example, most of L2 

systems may be able to detect merges on the road, and hence for this situation, providing a 

real time feedback has some advantages over training program which would require drivers 

to recall the information and react accordingly. However, one could argue that there is no 

way to provide any information on dashboard interfaces when the car itself cannot detect 

some of the hazards on the roadway. For example, L2 systems may not be able to detect 

the pedestrian on the road and hence, cannot provide any feedback to the drivers. In such 

cases, training would be a more suitable option to educate drivers regarding these specific 

system limitations. Another disadvantage of having feedback through dashboard interfaces 

maybe their effect on driver distraction. Having too many elements on the dashboard 

interface may results in drivers distraction (Brooks & Rakotonirainy, 2005; J. D. Lee, 

2017).  To find out the best balance between real-time feedback (e.g. alerts presented on 

dashboard interfaces) and training drivers, more research is needed to compare the effect 

of combinations of these two methods in a single experiment.  

5.2. Practical Implications and Future Works 

This dissertation contributed to human factors domain by addressing challenges related to 

L2 systems. The findings from this dissertation could have several practical implications 

in the real world. Concepts presented in this dissertation regarding the user-centered design 
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of dashboards could help researchers pursue more complex designs and build up on the 

present research. This could indirectly impact the way automobile manufacturer designs 

dashboard in commercial vehicles with L2 systems. Manufacturers could employ some of 

the key elements featured on our dashboard designs such as road geometry, object on the 

road way, etc., to improve their current dashboard designs to improve drivers interaction 

with automation system.  

Moreover, this study also sheds light on inherent problems regarding the 

information presented in the owners’ manual specially those related to the limitations of 

these systems which is critical safety related information for new owners. Both researchers 

and manufacturers could understand the urgency of looking into new ways to effectively 

transfer knowledge to the drivers. Alternatively they could build upon our PC-based 

training program to design a comprehensive and advanced training program to deliver at 

dealerships, driving schools, etc.  

This effort showed that 3M approach of training was efficient in transferring safety 

critical information to the drivers with regards the ODD limitations of L2 systems. Future 

research works could focus on delivering training using 3M approach in context of L2 

systems for other important constructs such as hazard perception, attention maintenance, 

etc.  They could also design and test this training program using more advanced platforms 

such as virtual reality and augmented reality or even deliver the training inside the vehicle.    
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