8 research outputs found

    Gait monitoring system for patients with Parkinson’s disease

    Get PDF
    Background: Wearable monitoring devices based on inertial sensors have the potential to be used as a quantitative method in clinical practice for continuous assessment of gait disabilities in Parkinson’s disease (PD). Methods: This manuscript introduces a new gait monitoring system adapted to patients with PD, based on a wearable monitoring device. To eliminate inter- and intra-subject variability, the computational method was based on heuristic rules with adaptive thresholds and ranges and a motion compensation strategy. The experimental trials involved repeated measurements of walking trials from two cross-sectional studies: the first study was performed in order to validate the effectiveness of the system against a robust 3D motion analysis with 10 healthy subjects; and the second-one aimed to validate our approach against a well-studied wearable IMU-based system on a hospital environment with 20 patients with PD. Results: The proposed system proved to be efficient (Experiment I: sensitivity = 95,09% and accuracy = 93,64%; Experiment II: sensitivity = 99,53% and accuracy = 97,42%), time-effective (Experiment I: earlies = 13,71 ms and delays = 12,91 ms; Experiment II: earlies = 12,94 ms and delays = 12,71 ms), user and user-motion adaptable and a low computational-load strategy for real-time gait events detection. Further, it was measured the percentage of absolute error classified with a good acceptability (Experiment I: 3,02 ≤ ε%≤12,94; Experiment II: 2,81 ≤ ε%≤13,45). Lastly, regarding the measured gait parameters, it was observed a reflection of the typical levels of motor impairment for the different disease stages. Conclusion: The achieved outcomes enabled to verify that the proposed system can be suitable for gait analysis in the assistance and rehabilitation fields.This work was supported by FCT national funds, under the national support to R&D units grant, through the reference project UIDB/04436/2020 and UIDP/04436/2020, and under the Reference Scholarship under grant SFRH/BD/136569/2018

    First advances in near fall detection and prediction when using a walker

    Get PDF
    Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)Falls are a major concern to society. Several injuries associated with falls need medical care, and in the worst-case scenario, a fall can lead to death. These consequences have a high cost for the population. In order to overcome these problems, a diversity of approaches for detection, prediction, and prevention of falls have been tackled. Walkers are often prescribed to subjects who present a higher risk of falling. Thus, it is essential to develop strategies to enhance the user's safety in an imminent danger situation. In this sense, this dissertation aims to develop a strategy to detect a near fall (NF) and its direction as well as the detection of incipient near fall (INF) while the subject uses a walker. Furthermore, it has the purpose of detecting two gait events, the heel strike (HS) and the toe-off (TO). The strategies established, in this work, were based on the data gathered through an inertial sensor placed on the lower trunk and force sensors placed on the insoles. Following data collection, the methodology adopted to identify the situations aforementioned was based on machine learning algorithms. In order to reach the model with best performance, many combinations of different classifiers were tested with three feature selection methods. Regarding the detection of NF, the results achieved presented a Matthews Correlation Coefficient (MCC) of 79.99% being possible to detect a NF 1.76±0.76s before its end. With the implementation of the post-processing algorithm, a large part of the false positives was eliminated being able to detect all NF 1.48±0.68s before its end. Concerning the models built to distinguish the direction of the NF, the best model presented accuracy of 58.97% being unable to reliably distinguish the three fall directions. The methodology followed, in this work, was unsuccessful to detect an INF. The best model presented MCC=23.87%, in this case. Lastly, with respect to the detection of HS and TO events the best model reached MCC=86.94%. With the application of the post-processing algorithm, part of misclassified samples was eliminated, however, a delay in the detection of the HS and TO events was introduced. With the post-processing it was possible to reach MCC=88.82%, not including the imposed delay.As quedas representam uma grande preocupação para a sociedade. Várias lesões associadas às quedas necessitam de cuidados médicos e, no pior dos casos, uma queda pode levar à morte. Estas consequências traduzem-se em custos elevados para a população. A fim de ultrapassar estes problemas, várias abordagens têm sido endereçadas para deteção, previsão e prevenção das quedas. Os andarilhos são muitas vezes prescritos a sujeitos que apresentam um risco de queda maior. Desta forma, é essencial desenvolver estratégias para aumentar a segurança do utilizador perante uma situação de perigo iminente. Neste sentido, esta dissertação visa desenvolver uma estratégia que permita a deteção de uma quase queda (NF) e a sua direção, assim como a deteção incipiente de uma NF (INF). Para além disso, tem o objetivo de detetar dois eventos de marcha, o heel strike (HS) e o toe-off (TO). As estratégias definidas, neste trabalho, basearam-se nos dados recolhidos através de um sensor inercial posicionado no tronco inferior e de sensores de força colocados nas palmilhas. Após a aquisição dos dados, a metodologia adotada para identificar as situações anteriormente referidas foi baseada em algoritmos de machine learning. Com o intuito de obter o modelo com melhor desempenho, várias combinações de diferentes classificadores foram testadas com três métodos de seleção de features. No que concerne à deteção da NF, os resultados alcançados apresentaram um Matthews Correlation Coefficient (MCC) de 79.99% sendo possível detetar uma NF 1.76±0.76s antes do seu final. Com a implementação do algoritmo de pós-processamento, grande parte dos falsos positivos foram eliminados, sendo possível detetar todas as NF 1.48±0.68s antes do seu final. Em relação aos modelos construídos para distinguir a direção da NF, o melhor modelo apresentou uma precisão (ACC) de 59.97%. A metodologia seguida neste trabalho não foi bem sucedida na deteção INF. O melhor modelo apresentou um MCC=23.87%. Relativamente à deteção dos eventos, HS e TO, o melhor modelo atingiu um MCC=86.94%. Com a aplicação do algoritmo de pós-processamento parte das amostras mal classificadas foram eliminadas, no entanto, foi introduzido um atraso na deteção do HS e do TO. Com o pós-processamento foi possível obter um MCC=88.82%, não incluindo o atraso imposto pelo pós-processamento

    HUMAN ACTIVITY RECOGNITION FROM EGOCENTRIC VIDEOS AND ROBUSTNESS ANALYSIS OF DEEP NEURAL NETWORKS

    Get PDF
    In recent years, there has been significant amount of research work on human activity classification relying either on Inertial Measurement Unit (IMU) data or data from static cameras providing a third-person view. There has been relatively less work using wearable cameras, providing egocentric view, which is a first-person view providing the view of the environment as seen by the wearer. Using only IMU data limits the variety and complexity of the activities that can be detected. Deep machine learning has achieved great success in image and video processing in recent years. Neural network based models provide improved accuracy in multiple fields in computer vision. However, there has been relatively less work focusing on designing specific models to improve the performance of egocentric image/video tasks. As deep neural networks keep improving the accuracy in computer vision tasks, the robustness and resilience of the networks should be improved as well to make it possible to be applied in safety-crucial areas such as autonomous driving. Motivated by these considerations, in the first part of the thesis, the problem of human activity detection and classification from egocentric cameras is addressed. First, anew method is presented to count the number of footsteps and compute the total traveled distance by using the data from the IMU sensors and camera of a smart phone. By incorporating data from multiple sensor modalities, and calculating the length of each step, instead of using preset stride lengths and assuming equal-length steps, the proposed method provides much higher accuracy compared to commercially available step counting apps. After the application of footstep counting, more complicated human activities, such as steps of preparing a recipe and sitting on a sofa, are taken into consideration. Multiple classification methods, non-deep learning and deep-learning-based, are presented, which employ both ego-centric camera and IMU data. Then, a Genetic Algorithm-based approach is employed to set the parameters of an activity classification network autonomously and performance is compared with empirically-set parameters. Then, a new framework is introduced to reduce the computational cost of human temporal activity recognition from egocentric videos while maintaining the accuracy at a comparable level. The actor-critic model of reinforcement learning is applied to optical flow data to locate a bounding box around region of interest, which is then used for clipping a sub-image from a video frame. A shallow and deeper 3D convolutional neural network is designed to process the original image and the clipped image region, respectively.Next, a systematic method is introduced that autonomously and simultaneously optimizes multiple parameters of any deep neural network by using a bi-generative adversarial network (Bi-GAN) guiding a genetic algorithm(GA). The proposed Bi-GAN allows the autonomous exploitation and choice of the number of neurons for the fully-connected layers, and number of filters for the convolutional layers, from a large range of values. The Bi-GAN involves two generators, and two different models compete and improve each other progressively with a GAN-based strategy to optimize the networks during a GA evolution.In this analysis, three different neural network layers and datasets are taken into consideration: First, 3D convolutional layers for ModelNet40 dataset. We applied the proposed approach on a 3D convolutional network by using the ModelNet40 dataset. ModelNet is a dataset of 3D point clouds. The goal is to perform shape classification over 40shape classes. LSTM layers for UCI HAR dataset. UCI HAR dataset is composed of InertialMeasurement Unit (IMU) data captured during activities of standing, sitting, laying, walking, walking upstairs and walking downstairs. These activities were performed by 30 subjects, and the 3-axial linear acceleration and 3-axial angular velocity were collected at a constant rate of 50Hz. 2D convolutional layers for Chars74k Dataset. Chars74k dataset contains 64 classes(0-9, A-Z, a-z), 7705 characters obtained from natural images, 3410 hand-drawn characters using a tablet PC and 62992 synthesised characters from computer fonts giving a total of over 74K images. In the final part of the thesis, network robustness and resilience for neural network models is investigated from adversarial examples (AEs) and automatic driving conditions. The transferability of adversarial examples across a wide range of real-world computer vision tasks, including image classification, explicit content detection, optical character recognition(OCR), and object detection are investigated. It represents the cybercriminal’s situation where an ensemble of different detection mechanisms need to be evaded all at once.Novel dispersion Reduction(DR) attack is designed, which is a practical attack that overcomes existing attacks’ limitation of requiring task-specific loss functions by targeting on the “dispersion” of internal feature map. In the autonomous driving scenario, the adversarial machine learning attacks against the complete visual perception pipeline in autonomous driving is studied. A novel attack technique, tracker hijacking, that can effectively fool Multi-Object Tracking (MOT) using AEs on object detection is presented. Using this technique, successful AEs on as few as one single frame can move an existing object in to or out of the headway of an autonomous vehicle to cause potential safety hazards

    Computer Vision Algorithms for Mobile Camera Applications

    Get PDF
    Wearable and mobile sensors have found widespread use in recent years due to their ever-decreasing cost, ease of deployment and use, and ability to provide continuous monitoring as opposed to sensors installed at fixed locations. Since many smart phones are now equipped with a variety of sensors, including accelerometer, gyroscope, magnetometer, microphone and camera, it has become more feasible to develop algorithms for activity monitoring, guidance and navigation of unmanned vehicles, autonomous driving and driver assistance, by using data from one or more of these sensors. In this thesis, we focus on multiple mobile camera applications, and present lightweight algorithms suitable for embedded mobile platforms. The mobile camera scenarios presented in the thesis are: (i) activity detection and step counting from wearable cameras, (ii) door detection for indoor navigation of unmanned vehicles, and (iii) traffic sign detection from vehicle-mounted cameras. First, we present a fall detection and activity classification system developed for embedded smart camera platform CITRIC. In our system, the camera platform is worn by the subject, as opposed to static sensors installed at fixed locations in certain rooms, and, therefore, monitoring is not limited to confined areas, and extends to wherever the subject may travel including indoors and outdoors. Next, we present a real-time smart phone-based fall detection system, wherein we implement camera and accelerometer based fall-detection on Samsung Galaxy S™ 4. We fuse these two sensor modalities to have a more robust fall detection system. Then, we introduce a fall detection algorithm with autonomous thresholding using relative-entropy within the class of Ali-Silvey distance measures. As another wearable camera application, we present a footstep counting algorithm using a smart phone camera. This algorithm provides more accurate step-count compared to using only accelerometer data in smart phones and smart watches at various body locations. As a second mobile camera scenario, we study autonomous indoor navigation of unmanned vehicles. A novel approach is proposed to autonomously detect and verify doorway openings by using the Google Project Tango™ platform. The third mobile camera scenario involves vehicle-mounted cameras. More specifically, we focus on traffic sign detection from lower-resolution and noisy videos captured from vehicle-mounted cameras. We present a new method for accurate traffic sign detection, incorporating Aggregate Channel Features and Chain Code Histograms, with the goal of providing much faster training and testing, and comparable or better performance, with respect to deep neural network approaches, without requiring specialized processors. Proposed computer vision algorithms provide promising results for various useful applications despite the limited energy and processing capabilities of mobile devices

    Multi-sensor data fusion in mobile devices for the identification of Activities of Daily Living

    Get PDF
    Following the recent advances in technology and the growing use of mobile devices such as smartphones, several solutions may be developed to improve the quality of life of users in the context of Ambient Assisted Living (AAL). Mobile devices have different available sensors, e.g., accelerometer, gyroscope, magnetometer, microphone and Global Positioning System (GPS) receiver, which allow the acquisition of physical and physiological parameters for the recognition of different Activities of Daily Living (ADL) and the environments in which they are performed. The definition of ADL includes a well-known set of tasks, which include basic selfcare tasks, based on the types of skills that people usually learn in early childhood, including feeding, bathing, dressing, grooming, walking, running, jumping, climbing stairs, sleeping, watching TV, working, listening to music, cooking, eating and others. On the context of AAL, some individuals (henceforth called user or users) need particular assistance, either because the user has some sort of impairment, or because the user is old, or simply because users need/want to monitor their lifestyle. The research and development of systems that provide a particular assistance to people is increasing in many areas of application. In particular, in the future, the recognition of ADL will be an important element for the development of a personal digital life coach, providing assistance to different types of users. To support the recognition of ADL, the surrounding environments should be also recognized to increase the reliability of these systems. The main focus of this Thesis is the research on methods for the fusion and classification of the data acquired by the sensors available in off-the-shelf mobile devices in order to recognize ADL in almost real-time, taking into account the large diversity of the capabilities and characteristics of the mobile devices available in the market. In order to achieve this objective, this Thesis started with the review of the existing methods and technologies to define the architecture and modules of the method for the identification of ADL. With this review and based on the knowledge acquired about the sensors available in off-the-shelf mobile devices, a set of tasks that may be reliably identified was defined as a basis for the remaining research and development to be carried out in this Thesis. This review also identified the main stages for the development of a new method for the identification of the ADL using the sensors available in off-the-shelf mobile devices; these stages are data acquisition, data processing, data cleaning, data imputation, feature extraction, data fusion and artificial intelligence. One of the challenges is related to the different types of data acquired from the different sensors, but other challenges were found, including the presence of environmental noise, the positioning of the mobile device during the daily activities, the limited capabilities of the mobile devices and others. Based on the acquired data, the processing was performed, implementing data cleaning and feature extraction methods, in order to define a new framework for the recognition of ADL. The data imputation methods were not applied, because at this stage of the research their implementation does not have influence in the results of the identification of the ADL and environments, as the features are extracted from a set of data acquired during a defined time interval and there are no missing values during this stage. The joint selection of the set of usable sensors and the identifiable set of tasks will then allow the development of a framework that, considering multi-sensor data fusion technologies and context awareness, in coordination with other information available from the user context, such as his/her agenda and the time of the day, will allow to establish a profile of the tasks that the user performs in a regular activity day. The classification method and the algorithm for the fusion of the features for the recognition of ADL and its environments needs to be deployed in a machine with some computational power, while the mobile device that will use the created framework, can perform the identification of the ADL using a much less computational power. Based on the results reported in the literature, the method chosen for the recognition of the ADL is composed by three variants of Artificial Neural Networks (ANN), including simple Multilayer Perceptron (MLP) networks, Feedforward Neural Networks (FNN) with Backpropagation, and Deep Neural Networks (DNN). Data acquisition can be performed with standard methods. After the acquisition, the data must be processed at the data processing stage, which includes data cleaning and feature extraction methods. The data cleaning method used for motion and magnetic sensors is the low pass filter, in order to reduce the noise acquired; but for the acoustic data, the Fast Fourier Transform (FFT) was applied to extract the different frequencies. When the data is clean, several features are then extracted based on the types of sensors used, including the mean, standard deviation, variance, maximum value, minimum value and median of raw data acquired from the motion and magnetic sensors; the mean, standard deviation, variance and median of the maximum peaks calculated with the raw data acquired from the motion and magnetic sensors; the five greatest distances between the maximum peaks calculated with the raw data acquired from the motion and magnetic sensors; the mean, standard deviation, variance, median and 26 Mel- Frequency Cepstral Coefficients (MFCC) of the frequencies obtained with FFT based on the raw data acquired from the microphone data; and the distance travelled calculated with the data acquired from the GPS receiver. After the extraction of the features, these will be grouped in different datasets for the application of the ANN methods and to discover the method and dataset that reports better results. The classification stage was incrementally developed, starting with the identification of the most common ADL (i.e., walking, running, going upstairs, going downstairs and standing activities) with motion and magnetic sensors. Next, the environments were identified with acoustic data, i.e., bedroom, bar, classroom, gym, kitchen, living room, hall, street and library. After the environments are recognized, and based on the different sets of sensors commonly available in the mobile devices, the data acquired from the motion and magnetic sensors were combined with the recognized environment in order to differentiate some activities without motion, i.e., sleeping and watching TV. The number of recognized activities in this stage was increased with the use of the distance travelled, extracted from the GPS receiver data, allowing also to recognize the driving activity. After the implementation of the three classification methods with different numbers of iterations, datasets and remaining configurations in a machine with high processing capabilities, the reported results proved that the best method for the recognition of the most common ADL and activities without motion is the DNN method, but the best method for the recognition of environments is the FNN method with Backpropagation. Depending on the number of sensors used, this implementation reports a mean accuracy between 85.89% and 89.51% for the recognition of the most common ADL, equals to 86.50% for the recognition of environments, and equals to 100% for the recognition of activities without motion, reporting an overall accuracy between 85.89% and 92.00%. The last stage of this research work was the implementation of the structured framework for the mobile devices, verifying that the FNN method requires a high processing power for the recognition of environments and the results reported with the mobile application are lower than the results reported with the machine with high processing capabilities used. Thus, the DNN method was also implemented for the recognition of the environments with the mobile devices. Finally, the results reported with the mobile devices show an accuracy between 86.39% and 89.15% for the recognition of the most common ADL, equal to 45.68% for the recognition of environments, and equal to 100% for the recognition of activities without motion, reporting an overall accuracy between 58.02% and 89.15%. Compared with the literature, the results returned by the implemented framework show only a residual improvement. However, the results reported in this research work comprehend the identification of more ADL than the ones described in other studies. The improvement in the recognition of ADL based on the mean of the accuracies is equal to 2.93%, but the maximum number of ADL and environments previously recognized was 13, while the number of ADL and environments recognized with the framework resulting from this research is 16. In conclusion, the framework developed has a mean improvement of 2.93% in the accuracy of the recognition for a larger number of ADL and environments than previously reported. In the future, the achievements reported by this PhD research may be considered as a start point of the development of a personal digital life coach, but the number of ADL and environments recognized by the framework should be increased and the experiments should be performed with different types of devices (i.e., smartphones and smartwatches), and the data imputation and other machine learning methods should be explored in order to attempt to increase the reliability of the framework for the recognition of ADL and its environments.Após os recentes avanços tecnológicos e o crescente uso dos dispositivos móveis, como por exemplo os smartphones, várias soluções podem ser desenvolvidas para melhorar a qualidade de vida dos utilizadores no contexto de Ambientes de Vida Assistida (AVA) ou Ambient Assisted Living (AAL). Os dispositivos móveis integram vários sensores, tais como acelerómetro, giroscópio, magnetómetro, microfone e recetor de Sistema de Posicionamento Global (GPS), que permitem a aquisição de vários parâmetros físicos e fisiológicos para o reconhecimento de diferentes Atividades da Vida Diária (AVD) e os seus ambientes. A definição de AVD inclui um conjunto bem conhecido de tarefas que são tarefas básicas de autocuidado, baseadas nos tipos de habilidades que as pessoas geralmente aprendem na infância. Essas tarefas incluem alimentar-se, tomar banho, vestir-se, fazer os cuidados pessoais, caminhar, correr, pular, subir escadas, dormir, ver televisão, trabalhar, ouvir música, cozinhar, comer, entre outras. No contexto de AVA, alguns indivíduos (comumente chamados de utilizadores) precisam de assistência particular, seja porque o utilizador tem algum tipo de deficiência, seja porque é idoso, ou simplesmente porque o utilizador precisa/quer monitorizar e treinar o seu estilo de vida. A investigação e desenvolvimento de sistemas que fornecem algum tipo de assistência particular está em crescente em muitas áreas de aplicação. Em particular, no futuro, o reconhecimento das AVD é uma parte importante para o desenvolvimento de um assistente pessoal digital, fornecendo uma assistência pessoal de baixo custo aos diferentes tipos de pessoas. pessoas. Para ajudar no reconhecimento das AVD, os ambientes em que estas se desenrolam devem ser reconhecidos para aumentar a fiabilidade destes sistemas. O foco principal desta Tese é o desenvolvimento de métodos para a fusão e classificação dos dados adquiridos a partir dos sensores disponíveis nos dispositivos móveis, para o reconhecimento quase em tempo real das AVD, tendo em consideração a grande diversidade das características dos dispositivos móveis disponíveis no mercado. Para atingir este objetivo, esta Tese iniciou-se com a revisão dos métodos e tecnologias existentes para definir a arquitetura e os módulos do novo método de identificação das AVD. Com esta revisão da literatura e com base no conhecimento adquirido sobre os sensores disponíveis nos dispositivos móveis disponíveis no mercado, um conjunto de tarefas que podem ser identificadas foi definido para as pesquisas e desenvolvimentos desta Tese. Esta revisão também identifica os principais conceitos para o desenvolvimento do novo método de identificação das AVD, utilizando os sensores, são eles: aquisição de dados, processamento de dados, correção de dados, imputação de dados, extração de características, fusão de dados e extração de resultados recorrendo a métodos de inteligência artificial. Um dos desafios está relacionado aos diferentes tipos de dados adquiridos pelos diferentes sensores, mas outros desafios foram encontrados, sendo os mais relevantes o ruído ambiental, o posicionamento do dispositivo durante a realização das atividades diárias, as capacidades limitadas dos dispositivos móveis. As diferentes características das pessoas podem igualmente influenciar a criação dos métodos, escolhendo pessoas com diferentes estilos de vida e características físicas para a aquisição e identificação dos dados adquiridos a partir de sensores. Com base nos dados adquiridos, realizou-se o processamento dos dados, implementando-se métodos de correção dos dados e a extração de características, para iniciar a criação do novo método para o reconhecimento das AVD. Os métodos de imputação de dados foram excluídos da implementação, pois não iriam influenciar os resultados da identificação das AVD e dos ambientes, na medida em que são utilizadas as características extraídas de um conjunto de dados adquiridos durante um intervalo de tempo definido. A seleção dos sensores utilizáveis, bem como das AVD identificáveis, permitirá o desenvolvimento de um método que, considerando o uso de tecnologias para a fusão de dados adquiridos com múltiplos sensores em coordenação com outras informações relativas ao contexto do utilizador, tais como a agenda do utilizador, permitindo estabelecer um perfil de tarefas que o utilizador realiza diariamente. Com base nos resultados obtidos na literatura, o método escolhido para o reconhecimento das AVD são as diferentes variantes das Redes Neuronais Artificiais (RNA), incluindo Multilayer Perceptron (MLP), Feedforward Neural Networks (FNN) with Backpropagation and Deep Neural Networks (DNN). No final, após a criação dos métodos para cada fase do método para o reconhecimento das AVD e ambientes, a implementação sequencial dos diferentes métodos foi realizada num dispositivo móvel para testes adicionais. Após a definição da estrutura do método para o reconhecimento de AVD e ambientes usando dispositivos móveis, verificou-se que a aquisição de dados pode ser realizada com os métodos comuns. Após a aquisição de dados, os mesmos devem ser processados no módulo de processamento de dados, que inclui os métodos de correção de dados e de extração de características. O método de correção de dados utilizado para sensores de movimento e magnéticos é o filtro passa-baixo de modo a reduzir o ruído, mas para os dados acústicos, a Transformada Rápida de Fourier (FFT) foi aplicada para extrair as diferentes frequências. Após a correção dos dados, as diferentes características foram extraídas com base nos tipos de sensores usados, sendo a média, desvio padrão, variância, valor máximo, valor mínimo e mediana de dados adquiridos pelos sensores magnéticos e de movimento, a média, desvio padrão, variância e mediana dos picos máximos calculados com base nos dados adquiridos pelos sensores magnéticos e de movimento, as cinco maiores distâncias entre os picos máximos calculados com os dados adquiridos dos sensores de movimento e magnéticos, a média, desvio padrão, variância e 26 Mel-Frequency Cepstral Coefficients (MFCC) das frequências obtidas com FFT com base nos dados obtidos a partir do microfone, e a distância calculada com os dados adquiridos pelo recetor de GPS. Após a extração das características, as mesmas são agrupadas em diferentes conjuntos de dados para a aplicação dos métodos de RNA de modo a descobrir o método e o conjunto de características que reporta melhores resultados. O módulo de classificação de dados foi incrementalmente desenvolvido, começando com a identificação das AVD comuns com sensores magnéticos e de movimento, i.e., andar, correr, subir escadas, descer escadas e parado. Em seguida, os ambientes são identificados com dados de sensores acústicos, i.e., quarto, bar, sala de aula, ginásio, cozinha, sala de estar, hall, rua e biblioteca. Com base nos ambientes reconhecidos e os restantes sensores disponíveis nos dispositivos móveis, os dados adquiridos dos sensores magnéticos e de movimento foram combinados com o ambiente reconhecido para diferenciar algumas atividades sem movimento (i.e., dormir e ver televisão), onde o número de atividades reconhecidas nesta fase aumenta com a fusão da distância percorrida, extraída a partir dos dados do recetor GPS, permitindo também reconhecer a atividade de conduzir. Após a implementação dos três métodos de classificação com diferentes números de iterações, conjuntos de dados e configurações numa máquina com alta capacidade de processamento, os resultados relatados provaram que o melhor método para o reconhecimento das atividades comuns de AVD e atividades sem movimento é o método DNN, mas o melhor método para o reconhecimento de ambientes é o método FNN with Backpropagation. Dependendo do número de sensores utilizados, esta implementação reporta uma exatidão média entre 85,89% e 89,51% para o reconhecimento das AVD comuns, igual a 86,50% para o reconhecimento de ambientes, e igual a 100% para o reconhecimento de atividades sem movimento, reportando uma exatidão global entre 85,89% e 92,00%. A última etapa desta Tese foi a implementação do método nos dispositivos móveis, verificando que o método FNN requer um alto poder de processamento para o reconhecimento de ambientes e os resultados reportados com estes dispositivos são inferiores aos resultados reportados com a máquina com alta capacidade de processamento utilizada no desenvolvimento do método. Assim, o método DNN foi igualmente implementado para o reconhecimento dos ambientes com os dispositivos móveis. Finalmente, os resultados relatados com os dispositivos móveis reportam uma exatidão entre 86,39% e 89,15% para o reconhecimento das AVD comuns, igual a 45,68% para o reconhecimento de ambientes, e igual a 100% para o reconhecimento de atividades sem movimento, reportando uma exatidão geral entre 58,02% e 89,15%. Com base nos resultados relatados na literatura, os resultados do método desenvolvido mostram uma melhoria residual, mas os resultados desta Tese identificam mais AVD que os demais estudos disponíveis na literatura. A melhoria no reconhecimento das AVD com base na média das exatidões é igual a 2,93%, mas o número máximo de AVD e ambientes reconhecidos pelos estudos disponíveis na literatura é 13, enquanto o número de AVD e ambientes reconhecidos com o método implementado é 16. Assim, o método desenvolvido tem uma melhoria de 2,93% na exatidão do reconhecimento num maior número de AVD e ambientes. Como trabalho futuro, os resultados reportados nesta Tese podem ser considerados um ponto de partida para o desenvolvimento de um assistente digital pessoal, mas o número de ADL e ambientes reconhecidos pelo método deve ser aumentado e as experiências devem ser repetidas com diferentes tipos de dispositivos móveis (i.e., smartphones e smartwatches), e os métodos de imputação e outros métodos de classificação de dados devem ser explorados de modo a tentar aumentar a confiabilidade do método para o reconhecimento das AVD e ambientes
    corecore