
 

 

 

 

 

 

 

 

 

 

 

Ana Rita Simões Pereira  

 

First Advances in Near Fall Detection and Prediction when 

using a Walker 

 
 

 

Dissertação de Mestrado 

Mestrado Integrado em Engenharia Biomédica 

Ramo Eletrónica Médica  

 

Trabalho realizado sob a orientação de 

Professora Doutora Cristina P. Santos,  

Universidade do Minho 

 

 

Abril de 2020

Universidade do Minho 

Escola de Engenharia 

 



 

ii 

 

DIREITOS DE AUTOR E CONDIÇÕES DE UTILIZAÇÃO DO TRABALHO POR TERCEIROS 

 

Este é um trabalho académico que pode ser utilizado por terceiros desde que respeitadas as regras e 

boas práticas internacionalmente aceites, no que concerne aos direitos de autor e direitos conexos. 

Assim, o presente trabalho pode ser utilizado nos termos previstos na licença abaixo indicada. 

Caso o utilizador necessite de permissão para poder fazer um uso do trabalho em condições não 

previstas no licenciamento indicado, deverá contactar o autor, através do RepositóriUM da Universidade 

do Minho. 

 

Licença concedida aos utilizadores deste trabalho 



 

iii 

 

STATEMENT OF INTEGRITY 
 

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho. 

I hereby declare having conducted this academic work with integrity. I confirm that I have not used 

plagiarism or any form of undue use of information or falsification of results along the process leading 

to its elaboration. 



 

iv 

 

RESUMO 

As quedas representam uma grande preocupação para a sociedade. Várias lesões associadas 

às quedas necessitam de cuidados médicos e, no pior dos casos, uma queda pode levar à morte. Estas 

consequências traduzem-se em custos elevados para a população. A fim de ultrapassar estes problemas, 

várias abordagens têm sido endereçadas para deteção, previsão e prevenção das quedas.  

Os andarilhos são muitas vezes prescritos a sujeitos que apresentam um risco de queda maior. 

Desta forma, é essencial desenvolver estratégias para aumentar a segurança do utilizador perante uma 

situação de perigo iminente. Neste sentido, esta dissertação visa desenvolver uma estratégia que permita 

a deteção de uma quase queda (NF) e a sua direção, assim como a deteção incipiente de uma NF (INF). 

Para além disso, tem o objetivo de detetar dois eventos de marcha, o heel strike (HS) e o toe-off  (TO). 

As estratégias definidas, neste trabalho, basearam-se nos dados recolhidos através de um sensor 

inercial posicionado no tronco inferior e de sensores de força colocados nas palmilhas. Após a aquisição 

dos dados, a metodologia adotada para identificar as situações anteriormente referidas foi baseada em 

algoritmos de machine learning. Com o intuito de obter o modelo com melhor desempenho, várias 

combinações de diferentes classificadores foram testadas com três métodos de seleção de features. 

No que concerne à deteção da NF, os resultados alcançados apresentaram um Matthews 

Correlation Coefficient (MCC) de 79.99% sendo possível detetar uma NF 1.76±0.76s antes do seu final. 

Com a implementação do algoritmo de pós-processamento, grande parte dos falsos positivos foram 

eliminados, sendo possível detetar todas as NF 1.48±0.68s antes do seu final. Em relação aos modelos 

construídos para distinguir a direção da NF, o melhor modelo apresentou uma precisão (ACC) de 59.97%. 

A metodologia seguida neste trabalho não foi bem sucedida na deteção INF. O melhor modelo 

apresentou um MCC=23.87%. 

Relativamente à deteção dos eventos, HS e TO, o melhor modelo atingiu um MCC=86.94%. Com 

a aplicação do algoritmo de pós-processamento parte das amostras mal classificadas foram eliminadas, 

no entanto, foi introduzido um atraso na deteção do HS e do TO. Com o pós-processamento foi possível 

obter um MCC=88.82%, não incluindo o atraso imposto pelo pós-processamento.  

PALAVRAS-CHAVE 

Andarilho, Eventos da Marcha, Machine Learning, Quase queda, Quase Queda Incipiente, Seleção de 

features 
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ABSTRACT 

Falls are a major concern to society. Several injuries associated with falls need medical care, and 

in the worst-case scenario, a fall can lead to death. These consequences have a high cost for the 

population. In order to overcome these problems, a diversity of approaches for detection, prediction, and 

prevention of falls have been tackled.  

Walkers are often prescribed to subjects who present a higher risk of falling. Thus, it is essential 

to develop strategies to enhance the user's safety in an imminent danger situation. In this sense, this 

dissertation aims to develop a strategy to detect a near fall (NF) and its direction as well as the detection 

of incipient near fall (INF) while the subject uses a walker. Furthermore, it has the purpose of detecting 

two gait events, the heel strike (HS) and the toe-off (TO). 

The strategies established, in this work, were based on the data gathered through an inertial 

sensor placed on the lower trunk and force sensors placed on the insoles. Following data collection, the 

methodology adopted to identify the situations aforementioned was based on machine learning 

algorithms. In order to reach the model with best performance, many combinations of different classifiers 

were tested with three feature selection methods. 

Regarding the detection of NF, the results achieved presented a Matthews Correlation Coefficient 

(MCC) of 79.99% being possible to detect a NF 1.76±0.76s before its end. With the implementation of 

the post-processing algorithm, a large part of the false positives was eliminated being able to detect all 

NF 1.48±0.68s before its end. Concerning the models built to distinguish the direction of the NF, the 

best model presented accuracy of 58.97% being unable to reliably distinguish the three fall directions. 

The methodology followed, in this work, was unsuccessful to detect an INF. The best model 

presented MCC=23.87%, in this case. 

Lastly, with respect to the detection of HS and TO events the best model reached MCC=86.94%. 

With the application of the post-processing algorithm, part of misclassified samples was eliminated, 

however, a delay in the detection of the HS and TO events was introduced. With the post-processing it 

was possible to reach MCC=88.82%, not including the imposed delay. 

KEYWORDS 

Feature Selection, Gait events, Incipient Near Fall, Machine Learning, Near Fall, Walker  
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CHAPTER 1 – INTRODUCTION 

This dissertation presents the work developed during the academic year of 2018/2019 in order 

to complete the fifth year of Integrated Master’s Biomedical Engineering within the scope of the master’s 

in medical electronics. This work was performed at Biomedical Robotic Devices Laboratory (BiRD Lab) of 

the Center of MicroEletroMechanical Systems at the University of Minho, Portugal.   

The work developed in this dissertation arose through the project Adaptive System Behaviour 

Group Smart Walker (ASBGo SW), which has been developed on the BiRD Lab for rehabilitation and 

physical therapy. With this work, it is intended to enhance the user’s safety, reducing the number of fall-

related injuries. In this sense, the main objectives established were the detection of a Near Fall (NF) and 

an Incipient Near Fall (INF), and the division of the gait cycle into two phases while using a walker, i.e., 

an alternative system to ASBGo SW. For this purpose, an Inertial Measurement Unit (IMU) and Force 

Sensor Resistors (FSR) were used to record gait and lower trunk information related to the user. An 

approach focused on machine learning algorithms will be addressed to achieve the dissertation’s main 

goals presented in section 1.3.  

Thereby, in this dissertation the detection of a NF and an INF while using a walker are conducted 

with the purpose of building a prevention strategy in the future capable of changing the walker’s trajectory. 

1.1 Motivation  

Walking is an activity performed as a means of locomotion and has a huge importance in a 

person's daily life [1]–[3]. This activity can be done in several ways and several directions [2], and can 

be an essential indicator of health [1], [3]. Over the years, human gait has been extensively studied and 

diverse monitoring devices have been developed. Different systems of the body are involved in human 

gait, namely the nervous, cardiorespiratory and musculoskeletal systems. The gait disorders may be 

associated with dysfunctions in the brain, neuromuscular and musculoskeletal problems. The occurrence 

of this problem rises with age: 10% between 60-69 years and >60% for people over 80 years. The 

vertiginous gait is an example of gait disorder and people who presented this type of gait have a 

predisposition to fall to one side. The festination gait is characteristic of patients with Parkinson’s diseases 

(PD) and increases the risk of falling forward.  Gait impairments can lead to an increase risk of falling and 

consequently cause injuries [4]. Many other factors can increase the likelihood of falling, such as 
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medication, gender, diabetes, depression, Alzheimer's disease, visual problems, body mass index, 

sedentarism, race, and socioeconomic status [5]. 

Falling is actually a huge concern nowadays. They are the second main cause of death caused 

by accident or unintentional injury worldwide, according to the World Health Organization (WHO) [6]. 

About 646 000 people die each year with a large proportion of adults over 65 years old, and 37.3 million 

falls are severe enough to require medical attention [6]. 

The cost associated with non-fatal falls and fatal falls represents an economic burden to society. 

In 2012, in the United States of America (USA) a fatal fall costs on average $25,487 and direct costs 

were estimated $616.5 million were spent. Concerning non- fatal falls, in 2012, a fall cost $9463 and in 

total, the costs were $30.3 billion. In 2015, the costs associated with fatal falls and non-fatal falls 

increased to $637.2 million and $31.3 billion, respectively. In 2012, falls were more frequent in women 

than men in both fatal and non-fatal falls,  and  for both genders the occurrence of fatal falls increased 

with age [7].  

Falls can result in severe injuries for the subject, and 31% of falls required medical assistance. 

Head trauma, soft tissues injuries and fractures are examples of fall related consequences [8]. In addition 

to physical injuries, falls are also related to anxiety, depression and fear of falling [8]. In healthcare context, 

there are fall risk assessment measured based on functional tests and personal information as history of 

fall and medication. TimeUp&Go, Berg Balance and STRATIFY are examples of assessment tools to 

evaluate the risk of fall [9]–[11].  

There is an evident concern to decrease the costs and the injuries related to falls in order to 

improve the quality of life.  Thus, distinct systems have been developed in order to detect a fall [12], [13] 

as well as the pre-impact fall [14], and to prevent it [13]. In this context, wearables and non-wearables 

sensors have been used to gather information from subjects. Different methodologies have been 

implemented, such as methodologies based on machine learning and threshold algorithms [12]–[14].  

As mentioned, the impact of the user on the ground when it falls can cause physical and psychological 

damage. In order to mitigate the damage caused by the fall there is an interest to develop an approach 

that prevents the person from falling to the ground, as the work developed by [15].  

Normally assistive devices, such as canes and walkers are prescribed for people who have 

balance problems and need help to maintain it and for locomotion. These devices can decrease the load 

on the lower limbs, relieve joint pain, and help people who have gait problems, such as muscle weakness, 

arthritis or hemiplegia. There is controversy as to whether these devices increase the risk of falling or 

whether it is just an indicator of risk of falling and balance problems [16]. However, we can conclude that 
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people who use walking aids are prone to falling or due to the use of these devices or just because of 

their physical condition.  

1.2 Problem Statement 

 Fall-related injuries and the costs associated with them are a major concern to society, since they 

can be severe requiring medical care and the associated costs are high. Therefore, the exploration of fall 

detection and prevention has been the focus of interest with the purpose of improving the person's quality 

of life [13]. 

Walkers are assistive devices used by individuals who have some mobility problem, and inherently 

have an associated risk of falling. In this sense, it is important develop a strategy that can detect a fall 

and, mainly, prevent it. Therefore, literature research related to the sensors and the approaches 

implemented to detect and prevent falls is imperative. 

 The detection of NF is the first step to be taken in order to develop a strategy that prevents the 

subject from falling to the ground in a dangerous situation when using a walker. In this way collect 

subject’s information during the locomotion is important. Through gait and lower trunk information several 

features were calculated and several combinations of feature selection methods with machine learning 

algorithms were explored, in order to detect a NF. Detecting the direction of the NF is the second step, 

this information is important to develop a more focused and robust approach to avoid the NF. The time 

in advance to detect a dangerous situation is essential, in this sense the recognition of an INF is an 

interesting case of study to be explored. In this regard, a methodology similar to the detection of NF was 

addressed. Based on machine learning algorithms, two gait events, toe off (TO) and heel strike (HS), will 

be detected to extract more information about the users’ gait.  

 All the aspects mentioned show relevance in the detection of NF and this study is a contribution 

to increase the knowledge in this research area. 

1.3 Goals and Research Questions  

 The main objectives of this dissertation are to develop a strategy to distinguish a NF and an INF 

from normal walking, and to detect two gait events while using a walker, TO and HS. In order to achieve 

these objectives, it is necessary to acquire knowledge about the sensors that can be employed and their 

locations as well as the methodologies developed for the detection, prediction, and prevention of fall and 

NF events. Additionally, it is essential to understand the basic concepts of human gait.  
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Thereby, with this dissertation, it is necessary to achieve the following goals: 

• Goal 1: To analyze and extract pertinent information related to falls and NF. It is important 

to know what are the types of fall and the risk that contribute to a fall, i.e., related to the 

subject – intrinsic - and related to the environment - extrinsic.  It is also crucial to 

understand the variety of sensors and their locations on the subject’s body as well as the 

methodologies implemented concerning fall and NF detection, prediction and prevention.  

• Goal 2: To perform a literature search, similar to goal 1, focused on fall-related strategies 

implemented in smart walkers. After a state of the art, it intends to recognize the potentials, 

issues, challenges and future directions.  

• Goal 3: To prepare an existing system allowing the resolution of goals 4, 5 and 6. This 

goal considers the outcome information from goals 1 and 2. 

• Goal 4: To implement a strategy to distinguish the normal walking from a NF situation 

and, subsequently, classify the NF direction (right, left and forward). It is intended to define 

which is the most relevant feature set for detecting the NF and its direction as well as the 

most suitable machine learning algorithm. 

• Goal 5:  To distinguish the normal walking from an INF using machine learning algorithms 

and feature selection methods. It is intended to analyze the minimum number of features 

required and which is the best combination of classifier and feature selection method. 

• Goal 6:  To detect two gait events, namely, TO and HS, during normal human walking, 

only through the signals achieved with an IMU. The approach implemented is based on 

machine learning algorithm as in the goals 4 and 5. 

 

The following Research Questions (RQ) are expected to be answered in the present work:  

• RQ1: Which sensors have the highest potential for detecting a NF and what is the most 

viable strategy for the problem under study?  This RQ is addressed in Chapter 4. 

• RQ2: What is the minimum number of features necessary, and what is the best 

combination of feature selection method and classifier algorithm to detect a NF and its 

direction while using a walker? This RQ is addressed in Chapter 5. 

• RQ3: Is it possible to detect an INF while using a walker?  This RQ is addressed in 

Chapter 6. 
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• RQ4: What is the best combination of classifier, feature selection method, and the 

number of features that presented the best performance in detecting gait events while 

using a walker? This RQ is addressed in Chapter 7. 

1.4 Contributions 

The main contributions of this work are:  

• A survey of existing strategies implemented in smart walkers to detect and prevent a fall. 

• A NF detection strategy also capable of determining the NF direction while the subject uses 

a walker at different velocities.  

• A study to explore the reliability of the INF detection based on different machine learning 

algorithms.  

• An automatic method to detect the HS and TO gait events of each foot through a feature 

set computed from inertial signals.  

1.5 Publications 

From the work developed during this year, it was achievable public two conference articles.  

• A. Pereira, N. F. Ribeiro and C. P. Santos, “A Survey of Fall Prevention Systems 

Implemented on Smart Walkers”, 2019 IEEE 6th Portuguese Meeting on Bioengineering 

(ENBENG), Lisbon, Portugal, 22-23 February 2019.  

 

• A. Pereira, N. F. Ribeiro and C. P. Santos, “A Preliminary Strategy for Fall Prevention in 

the ASBGo Smart Walker”, 2019 IEEE 6th Portuguese Meeting on Bioengineering 

(ENBENG), Lisbon, Portugal, 22-23 February 2019.  

1.6 Thesis Outline 

 This dissertation is organized as follows. Chapter 2 presents a state of the art addressed to the 

four points: i) the different types of fall; ii) the intrinsic and extrinsic fall-related risk factors; iii) the 

consequences of falls; and iv) the technologies approaches to detect, predict and prevent a fall or a NF. 

This comprises the sensors used, the sensor’s location, features computed and the performance of the 

systems. 
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 In chapter 3, a detailed description of ASBGo SW is presented. This chapter also presents a 

survey centered on different approaches implemented on smart walkers to detect or prevent a fall. A brief 

description of approaches, sensors used, and their locations are provided.  

 Chapter 4 describes the system and the methodology followed to detect a NF. A detailed 

explanation of the sensors used, the pre-processing methodology, the feature computation, the feature 

selection methods, and the different machine learning algorithms are provided. This chapter also presents 

the volunteers characteristics and the activities description performed during the trials while using a 

walker. 

 In chapter 5, it shows all procedures stages performed to distinguish a NF from normal walking. 

These stages involve the process of data labelling, the features computation, the model construction, the 

classifiers performances achieved and, lastly, the techniques implemented to improve the outcomes. This 

chapter is divided in two parts: distinguish between a NF and normal walking, and distinguish three 

different NF directions (forward, right and left).  

 Chapter 6 presents the results and the discussion of the outcomes achieved to distinguish an 

INF from normal walking.  In chapter 7, the gait events, HS and TO of each foot are detected based on 

inertial signals and compared with the ground truth. In both chapters the methodology implemented was 

similar to the one used in chapter 5.   

 Chapter 8 presents the general conclusion of the work developed during this dissertation, the 

answers to the RQ, and what are the future challenges to be addressed.  
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CHAPTER 2 – STATE OF THE ART 

Falls are responsible for numerous deaths worldwide being the second cause of death by accident 

or unintentional injury [6]. The consequences linked to fatal and non-fatal falls represent an economic 

burden on society [7].  Hence the fall related effects lead to a reduction in subjects’ quality of life. In order 

to comprehend more concretely the problematic of falls, this chapter begins with a contextualization of 

falls, specifically: the definition of a fall and a NF; the types of fall and in which phases can be divided; 

the factors that contribute to increase the risk of falling; and the consequences that can result from a fall. 

It is followed by an overview of fall-related systems, divided into two main parts: systems that use wearable 

and non-wearable sensors. The chapter ends with a discussion of all the knowledge acquired throughout 

these sections.  

2.1  Fall and Near Fall Definition 

First of all, it is necessary to define and distinguish a fall from a NF. Thereby, according to the 

WHO a fall is  “an event which results in a person coming to rest inadvertently on the ground or floor or 

other lower level” [6]. While a NF is, generally, defined as a result of the loss of balance that can be 

recovered, i.e., the person does not fall to the ground, for instance, slip, trips, and missteps [17]. 

Nonetheless, Maidan et. al [18] proposed a new definition of a NF. These authors consider that for a NF 

to happen, two of the following actions should be taken in order to compensate the loss of balance: 

lowering of the center of mass (COM); trunk inclination; an unexpected change in the movement of the 

arms and/or legs; a sudden variation in the size of the stride; and an unforeseen alteration in the speed 

of the stride.  

2.2  Types and Phases of a Fall  

The falls can occur in various ways and in different scenarios. Yu et al. [19] considered four kinds 

of fall based on scenarios, i.e., fall from sitting (e.g. when the subject is sitting in the chair and starts to 

fall), bed, walking and standing on the floor, and standing on support. On the other hand Noury et al. [20] 

classified the falls in three different forms, i.e., forward, backward, sideward. These falls can happen, for 

instance due to transfers “Stand to sit”, stumble on an obstacle, backward slip and walking. 

  Falls can be discriminated into different phases, however there is not only one form of division. 

Noury et al. [21] divide the fall into four phases. The first phase, called pre-fall phase is the period the 
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subject is executing activities of daily live comprising fast movements. The second phase designated as 

the critical phase corresponds the period since an abrupt movement happen until to vertical impact on 

the ground (300-500ms). The third phase, post-fall phase, the subject gets immobile. Lastly, the recovery 

phase, the faller gets up. However, Hsieh et al. [22] only considered three phases: the free-fall phase, 

the impact phase, and the rest phase. The free-fall phase is characterized by rapid movements; the 

impact phase consists of the subject shock on the ground; and lastly, the rest phase, the subject remains 

immobilized.  

2.3  Fall Risks 

It is elementary to realise which factors contribute to fall risks in order to reduce the number of 

falls and prevent them. Falls result due to a number of factors that can be separated into two groups: 

intrinsic and extrinsic [23], [24].  The intrinsic risk factors are related to the patients while the extrinsic 

risk factors are associated to the surrounding environment. The first group mentioned includes, e.g. visual 

problems, weakness in the lower extremities, and cognitive impairments among the elderly population 

[23]. Concerning the second group, lack of light, inappropriate shoes and slippery surfaces that lead to 

slip are some of the factors that increase the fall risk [23]. Furthermore, the assistive devices may also 

contribute to an increased risk of a fall in the aging population [23], [25]. In this section, further factors 

which play a crucial role in the fall risks will be introduced. As a result of this, it is intended to identify 

who is more prone to suffer a fall. 

In the older adult population, the fall is a considerable concern. People over 80 years old have a 

higher risk of suffer multiple falls than older adults with 65-79 years old [24], and subjects between 75 

and 85 years old experience falls more frequently [26]. Moreover, the possibility of a fall causing an injury 

doubled for subject with 85 years old or more and for women [26].  The fall rate and the severity level of 

the injury are higher for women than for men [25]–[27]. Given the fact of females have a loss of lower 

bone mass quicker than males, and, with age, females are more likely to have osteoporosis, which can 

be an explanation for a higher incidence of fall in this gender [25], [27].  In addition, women with ageing 

have a reduction in muscle mass which may also contribute to the risk of falling [25]. Beyond the age 

and the gender, the race is another risk factor. In the USA white men are more likely to fatal-fall and the 

rate of fatal-falls decrease for white women followed by black men, and black women [5]. Elderly people 

with low educational levels [5], [25], and older women with lack of social relationships have a higher fall 

risk [5]. 

The number of medications may contribute to increase the fall risk due to adverse effects and 
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also by interaction of different medicines [25]. The intake of more than four medications considerably 

contribute to the fall risk [5], [25], and it is linked  to the fear of falling [5]. Some of the drugs associated 

with falls are, e.g. antidepressants, antihypertensives, antipsychotic and sedatives [28], [29]. The drugs 

can provoke balance problems, mental confusion, decrease in blood pressure and urinary incontinence 

that rise the fall possibility [23]. As a result of the number of times that the person needs to go to the 

bathroom and because of loss of balance when the person goes hastily to the bathroom can increase the 

fall danger [25].  

Physical problems, such as muscle weakness that causes changes in balance as well as cognitive 

problems from dementia, and foot problems (e.g. toe deformity) are considered biological risk factors [5]. 

Muscle weakness and gait problems are conditions linked to osteoarthritis that can contribute to an 

increased risk of falling in patients who suffer from this disease [25]. Subjects with neurological 

impairments are more prone to fall than subjects without any neurological impairments. Homann et al. 

[30] revealed that 50% of ambulatory neurological patients experienced at least one fall in one year. 

Patients with PD and who suffer stroke are five and six times, respectively, more prone to fall than control 

group. In Figure 1, it is possible to observe the most common neurological diseases with highest 

frequency of fall [30].  

Usually, PD patients fall forward. This type of fall is common related to wrist fractures since  in a 

fall situation the person try to support themselves with the hand [31]. However, PD patients have more 

hip fractures. This can be explained by abnormal arm movement that prevents PD patients from 

Figure 1 - Difference in frequency of having at least one fall within a period of a year for patients 
with neurological disorders [30].   
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supporting themselves with the hand. In Figure 2, it is possible to observe how PD patients and the elderly 

react when they fall [31].  

 

Different conditions associated with PD contribute to an increased risk of falling [31]. The freezing 

of gait episodes, i.e., incapacity to step during a short period of time or short steps [32],  leads to a  

variability in foot strike and stride length which can potentiate the fall event [31], [33]. Movements like 

turning, performed transfers (for instance, rising from a chair) and execute dual tasking can be difficult 

to PD patients, also leading to a higher risk of falling [31].  

 

As previously referred, stroke is one of the most prone neurological diseases to fall. One of the 

common effects in people who suffered a stroke is hemiplegia, which means that one side of the body 

remains paralyzed [28]. The hemiparesis is other effect of a stroke that provokes weakness on one side 

of the body. These two effects can conduct to a fall [29].The weakness of one of the lower limbs (i.e., hip, 

knee, or ankle) may lead to a loss of balance contributing to the occurrence, e.g. of a trip [28]. However, 

the upper limbs when in postural instability (e.g. NF) in particular the arms, are important to stabilize the 

balance and prevent people from falling [28], [34]. The stroke can also cause a loss of proprioception of 

one of the side of limbs, which can increase the possibility of a fall  [28], [35]. Depending on the part of 

the brain affected, the stroke can cause for example: partial or total visual problems leading people not 

to notice the obstacles; walking disorders; and loss of muscle tone making the person unable to hold 

Figure 2 - Different fall mechanisms that occur with aging and with person with 
Parkinson disease [31]. 
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their body weight. All these factors can potentiate a fall event [28], [34]. The medication prescribed for 

patients who have experienced a stroke, and post fall syndrome, also contribute to the increase risk of 

falling [28], [29]. In these patients the fall can happen in several forms, since it depends on the part of 

the brain affected[28]. 

2.4 Consequences of a Fall 

Several consequences can occur when a person fall, and some injuries can be severe.  Head 

injuries, fractures, dislocations, lacerations, and hematomas are some examples of consequences of falls 

[36], [37]. After a fall, the victim cannot be able to stand up and can experience, for instance, dehydration, 

hypothermia, pressure injuries and pneumonia [36]. Once a subject experiences a fall may be afraid to 

fall again, have less confidence while walking and even develop depressions [36], [37].  

Falls have a significant impact in the elderly community, representing high costs, thus, this is a 

concern that has been studied for several years, being a current theme, since it is necessary to minimize 

the effects [38].   

2.5 Fall-related Systems  

 Much work has been done to minimize the number of falls and related injuries. Fall risk 

assessment tools and a few systems have been developed over the years in this respect.  The fall risk 

assessment is performed to identify the subject’s risk level [9].  

 Regarding clinical fall risk assessment tools, according to [9], it is possible to divide them in 

functional assessment tools and nursing assessment tools. The functional assessment tools, in general, 

are performed by physical therapists. The Timed Up & Go, Berg Balance test, elderly fall screening test, 

and Tinetti performance are examples of functional assessment tools. The nursing assessment tools 

access information about the patient, such as age, history of falls, mental status or cognitive impairment, 

and incontinence. A few examples of the tests performed are STRATIFY, Morse fall scale, and Hendrich 

fall risk model. Depending on the setting and the person responsible for performing the evaluation, one 

of the assessments may be more suitable.  In the acute care setting, the nursing assessment scales may 

be more indicated since an easy and quick assessment is essential. In the case of outpatient setting, the 

functional assessment may be more correct. Regarding the extended care setting, the screening may not 

be advantageous since these patients, in general, have a high risk of fall and should be implemented a 

fall prevention plan [9]. 
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There are tools to assess the risk of fall as were mentioned above. However, throughout the 

years, systems with sensors have been developed to detect a fall or to detect a NF in order to minimize 

post-fall consequences. Systems based on wearable sensors (for instance, accelerometers, gyroscope, 

and force sensors) and non-wearable sensors (for instance, cameras and thermal sensors) have been 

studied in this respect. In the next section, some of these systems will be presented. 

2.5.1  Non-Wearable Systems 

 Non-wearables sensors are not in contact with the subject, for instance, the infrared-based depth 

sensors, thermal sensors, and pressure sensors. In Table 1, it can be observed the features computed, 

the sensors local attachment, the results, and the characteristics of the subjects who participated in the 

tests per study.   

 In articles [39]–[41]  systems based on the Kinect depth camera were proposed. It is notable 

that due to the infra-red led of the depth camera, the illumination of the environment does not influence 

anything the system results. The aforementioned works used a Microsoft Kinect SDK. In [39], first, a 

binary image was achieved and the noise reduced, then with the canny filter the contour of the image 

was obtained. After that, the tangent vector angle of each white pixel in the contour was determined to 

detect the fall event in real-time based on thresholds. In [40], the authors used depth and colour 

information, the initial step was detect a moving object from the video by ground event segmentation and 

subsequently calculate the features. Through the support vector machine (SVM), the event was classified 

and if a fall is detected, a message is sent. In [41] the features were extracted based on joints data and 

the skeleton furnished by the camera. The approach performed, in this work, to detect a fall event was 

based on the adaptive threshold.   

 In articles [42]–[47] authors proposed an approach focused on a camera. In [42], the ellipse 

approximation and motion history images techniques were implemented to extract the features. Once 

again, the methodology followed to detect the fall event was based on threshold algorithms. In this 

particular case, the best outcome was achieved by combining the two techniques. In [43], the system 

developed concentrated on analysis of the human shape and head detection. Through the features 

extracted was possible detect a fall event.  It is noteworthy, that in this work, the human shape was 

approximated to an ellipse, alike the study advanced by  [42]. Regarding the fall event identification, it 

was determined according to certain established conditions. In [44], similarly to other papers mentioned 

above, the authors used the ellipse approximation and motion history images techniques. However, 

before applying these techniques, the background and foreground were segmented with the Gaussian 
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mixture model. With the several features proposed in this work, it was possible to identify the fall event 

based on the threshold algorithms. In [45], the approach followed was centered on the accumulated 

image map and motion vector. Then, to identify a falling situation, the authors employed the k-nearest 

neighbor (KNN) classification algorithm. In [46], the objects were detected by the threshold approach. 

Next, the object was approximated by an ellipse and a rectangle in order to extract the features. The 

system detects whether or not a fall occurs through the rule-based approach. In [47], the authors used 

inclination angle and aspect ratio features, since it was computationally less intensive. The researchers 

applied threshold approach to detect a fall event.    

 Concerning the articles [48]–[50] the approaches developed to detect falls were not based in 

vision methods like the previous studies.  In [48], a total different sensor was used, namely, the thermal 

sensor. This sensor allowed to notice the heat of any subject without contact. In order to detect the fall 

event using the temperature information, three different neuronal networks were tested, long short-term 

memory (LSTM), gated recurrent unit, and bidirectional LSTM (Bi- LSTM). The best result was achieved 

with Bi-LSTM. The system proposed in [49] was based on ultrasonic array sensors. The approach 

developed, in this study, decides whether or not a fall event happens based on distance variation 

calculated through ultrasonic sensors information. The last non-wearable system, [50], presented in this 

section was developed  based on Ultra-WideBand (UWB) technology.  In order to detect a fall event, the 

authors employed the random forest algorithm. 
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Table 1- Characteristics of non-wearable fall detection systems 

Sensors 
Best Sensor 

Location 
Features Subjects Types of fall Best result Article 

- Microsoft 

Kinect  

- Cupboard - Tangent vector angle 

- 3 subjects 

- Height: 170– 185 cm 

- Ages: 24 – 40 years 

- Weight: 60 -90 kg 
 

- Falling horizontal 

- Falling declining 

- Sensitivity: 94.9 % 

  - Specificity: 100 % 

   - Accuracy: 97.1 % 

 

[39] 

- Room 

- Velocity 

- Acceleration 

- Width height ratio  

- Fall motion 

* * * [40] 

* 

- Head velocity 

- Hip vertical velocity 

- Hip horizontal velocity 

- The height difference between 

hip and head 

- 10 subjects  

- Ages: 25-33 years 
* F1-measure: 0.944 [41] 

 
 
 
 
*  Not specified 
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Table 1 – Continued 

 
 
 
*  Not specified 
 
 

Sensors 
Best Sensor 

Location 
Features Subjects Types of fall Best result Article 

- Video camera 

- Room 

- Standard deviation of 

orientation 

- Standard deviation of 

eccentricity 

- Motion velocity 

* 
- Sideward fall 

- Front fall 

- Accuracy: fall 86.66% 

- Accuracy: non-fall 90% 
[42] 

- Room 

- Ellipse center 

- Ellipse orientation 

- Length of major and minor 

semi-axes of the ellipse 

- Head detection: edge points of 

the head; distance between the 

corresponding edge points on 

every consecutive line 

- Bounding box ratio. 

* * 

 

- Accuracy 94.0% 

 

[43] 
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Table 1 – Continued 

 
 
*  Not specified 

 
 

Sensors 
Best Sensor 

Location 
Features Subjects Types of fall Best result Article 

- Video camera 

- Room 

- Acceleration 

- Angular acceleration 

- Orientation standard deviation 

- Ratio standard deviation from 

the ellipse 

- Intensity of each pixel in motion 

history image 

* * * [44] 

- Room 
- Motion Co-Occurrence features 

- Accumulated image map 
* * * [45] 

- Outdoor 

environment 

and home 

environment 

- Aspect ratio 

- Angle 
* * 

- Sensitivity: 90.0 %           

- Specificity: 98.93%         

-  Accuracy: 92.5% 

[46] 
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Table 1 – Continued 

 
 
*  Not specified 

Sensors 
Best Sensor 

Location 
Features Subjects Types of fall Best result Article 

- Video camera - Room 

- Aspect ratio 

- Inclination angle 

 

* 

- Sideway fall 

- Forward fall 

- Backward fall 

* [47] 

- Thermal 

sensor 

- Corner of 

room 
- Temperature from each pixel 

- 4 subjects 

- Age: 25-37 years 

- Height: 147-182 cm 

- Weight: 47-79kg 

- Backward fall 

- Forward fall 

- Sideward fall 

- Accuracy (95%CI): 93% 

(88.4%-95.9%) 

- Sensitivity (95%CI): 93% 

(85.5%-97.0%) 

- Specificity (95%CI): 93% 

(86.4%-96.9%) 

[48] 

- Ultrasonic 

array sensors 

- On top and 

wall of the 

room 

- Distance * *  - Accuracy: 92% [49] 

- Ultra-Wide 

Band 
- Ceiling 

- Time of arrival 

- Velocity 
1 subject 

- Forward fall 

- Sideward fall 
* [50] 
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2.5.2   Wearable Systems 

Table 2, 3, and 4 present the characteristics of wearable systems like Table 1 for non-wearable 

sensors. Most of the wearable systems presented in Table 2 used at least an accelerometer or a 

gyroscope to detect fall events. Nonetheless, other sensors like magnetometers, reflective markers, 

electromyography probes, FSR are also used for fall detection.  

López et al. [51] developed an approach to identify falls based on accelerometer signals. The 

data acquired through the sensor exhibited a different pattern when a person was falling compared to 

other activities performed by the subject. In this sense, the authors developed an algorithm based on 

thresholds which enabled the detection of a fall event in real-time.  

In article [52], the authors used an accelerometer and gyroscope incorporated in a jacket. From 

the signals provided by the sensors, two characteristics were computed with a sliding window, namely, 

acceleration signal vector magnitude and Kalman filtered attitude angles. In order to detect the fall event 

eight classifiers were explored. Nonetheless, the best performance was achieved with KNN classifier. It 

is important to mention that the authors conducted two studies, one that considered the fall direction (i.e. 

backward and sideward falls) and the other that did not consider it.  However, the best outcome was 

reached ignoring the fall direction.  

Quadros et al. [53] developed a system based on IMU. In order to realize the best approach to 

classify a fall, three different methods were tested: the threshold-based method; threshold-based method 

with Maggwick’s decomposition; and machine learning methods. Regarding machine learning methods, 

the KNN, Linear Discriminant Analysis (LDA), logistic regression, Decision Tree (DT) and SVM were 

implemented. Despite the two first methods reached accuracy values of 89.1% and 91.1%, respectively, 

the best performance was achieved with KNN classifier with 99.0% (Table 2). 

Araújo et al. [54] proposed a system based on a smartwatch, more specifically on accelerometer 

signals. In this work, the authors proposed a threshold algorithm method to detect a fall. The algorithm 

implemented can be divided in four main stages. Firstly, it was detected a free fall phase. Subsequently, 

it was verified if occurred impact on the ground. Then, the standard deviation was calculated and 

analysed. Lastly, the state of the user was recognized in order to distinguish a fall from other activities.   

Tao et al. [55] proposed a shoe system with eight FSR in each insole to detect a fall and the fall 

direction. In this study the sensors needed to be first calibrated.  Then, the researcher to reduce the 

number of sensors implemented the Principal Component Analysis (PCA). Different values of pressure 

corresponding to a different action. No pressure means lying on the floor, low-pressure corresponding to 
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sitting, and high pressure means that the subject is walking or standing. In this article, an artificial neural 

network was used to classify the pressures mentioned above. However, to detect a fall direction, it was 

employed the nearest neighbour method that learned from tilted standing data, once the data to detect 

the fall direction was reduced.   

Montanini et al. [56] developed a system based on the FSR  and accelerometer signals placed 

on shoes. The FSR signals were used to identify the gait cycle phases and the accelerometer to give 

information on foot orientation. Concerning data acquisition, a laboratory experiment was performed to 

simulated falls and activities of daily life with healthy subjects. Moreover, real-life data was collected from 

two elderly people performing activities of daily life. The algorithm developed to detect a fall event was 

based on thresholds. 

The articles [57]–[59],  developed systems to detect a pre-impact fall.  Sivaranjani et al. [57] 

proposed an approach based on gyroscope and accelerometer sensors  incorporated in the jacket. The 

jacket inflates when a pre-impact fall phase was detected through a threshold-based algorithm 

implemented. With this system, the authors intended to protect the hip and the head of the subject and 

reduce the impact on the ground. The approach developed by Rescio et al. [58] was based on surface 

electromyography signals to detect the pre-fall phase. For data gathering a movable platform was utilized 

to induce a fall. With the data acquired ten time-domain features were calculated. However, with the 

intention of reducing the feature set, the Markov Random Field selector based on Fisher-Markov was 

implemented.  Afterward, the LDA classifier was selected to identify the pre-fall phase. It is worth 

mentioning that an analysis of the size of the window and the most appropriate frequency was also carried 

out. Furthermore, a post-processing was implemented with a filter by vote (50ms temporal window) to 

improve the result performance.   In article [59], a movable floor surface was used to create slip-induced 

falls. This system was based on the IMU and six cameras to measure the 3-D position of the reflective 

markers. The participants, while doing the test, used a harness for protection. In order to detect fall events 

prior to impact phase, a threshold-based approach was addressed.  

Systems for NF detection have also been developed in addition to the systems mentioned above. 

The approaches implemented in these systems are described below. 

Aziz et al. [60] developed a system based on acceleration and angular velocity signals to detect 

a NF. In this study, the participants watched videos with real fall situations and performed a similar falls 

or NF.  In order to establish the effect of the number of sensors and their location on the outcomes, the 

researchers studied different combinations. The sensors were attached on thighs, ankles, head, waist 



 

20 

 

and chest.  The best combination was determined through the results achieved by SVM with radial basis 

function.   

Iluz et al. [61] proposed a system based on inertial data to detect missteps in subjects with PD. 

Thus, the authors developed a novel algorithm based on thresholds. In this study, data were collected in 

the laboratory with PD patients using a harness to ensure their safety. In order to simulate the missteps 

were placed obstacles in the path. In addition, real data was also collected for three days, however this 

data due to the lack of notes were considered “suspected missteps”. Besides the novel algorithm 

developed, this study also implemented learning algorithms (e.g. K-means) and machine learning 

algorithms (e.g. Ada boost) with different features from those mentioned in Table 4. However, the results 

reached with these approaches were not satisfactory. This system has shown potential to help identify 

subjects with high risk of falling. 

Chehada et al.[62] developed a system based on acceleration data. In this research, only one 

accelerometer was used for data gathering. However, seven different positions (i.e. left ankle, left pocket, 

left wrist, right ankle, right pocket, right wrist and chest) on the body were tested to determine which is 

the best location. The tests were conducted with people blindfolded and listen to loud music. In order to 

simulate the near fall, the authors placed an obstacle in the path.  A Gaussian model with threshold 

algorithm was implemented to detect stumbles and the best result was achieved with the accelerometer 

placed on chest. 

Kareal et al. [63] developed a system based on accelerometer signals to detect stumbles. For 

the purpose of simulating stumbling, the participant had a rope attached to each ankle to disturb both 

legs. The tests were performed in a treadmill equipped with a harness and emergency stop to ensure the 

participants safety. The approach implemented in this study was based on wavelet with threshold.
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Table 2 – Characteristics of wearable fall detection systems 

Article Sensors 
Best Sensor 

Location 
Features Subjects  Types of fall Best Results 

[51] - Accelerometer - Torso 
- Magnitude of the 

acceleration  

- 10 subjects 

- Age: 25-56 years 

- Weight: 65-80 kg 

- Height: 169-185 cm 

- Forward fall 

- Backward fall 

- Sideward fall 

- Vertical fall 

- Sensitivity:93.2% 

- Specificity: 87.5% 

[52] 
- Accelerometer 

- Gyroscope 
- Torso 

- Attitude angle 

- Acceleration signal 

vector magnitude 

- 20 subjects  

- Age: 20-26 years 

 

- Backward fall 

- Sideward fall 

- Accuracy: 95.8% 

- Average sensitivity: 

95.8% 

- Average specificity: 

99.2% 

 

[53] 

- Accelerometer 

- Gyroscope 

- Magnetometer 

- Wrist 

Related to: 

- Acceleration 

- Displacement 

- Velocity 

- Spatial orientation 

angles  

- 22 subjects 

- Age: 26.09 ± 4.73 years 

- Height: 1.68 ± 0.11 m 

- Weight: 67.82 ± 12.24 kg 

- Forward fall 

- Backward fall 

- Sideward fall 

- Fall after rotating the 

waist clockwise and 

counterclockwise 

- Accuracy: 99.0 % 

- Sensitivity: 100% 

- Specificity: 97.9% 
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Table 2 – Continued 

Article Sensors 
Best Sensor 

Location 
Features Subjects  Types of fall Best Results 

[54] 
- Accelerometer 

 

- Wrist 

(smartwatch) 

- Square root of the sum 

of the square of the axis 

of the accelerometer 

- Standard deviation 

- Age: 30 years 

- Fall with support 

- Fall without 

support 

- Sensitivity: 92.9% 

- Specificity: 95.5% 

- Accuracy: 94.4% 

[55] - FSR 

- Foot (5 

metatarsal heads, 

hallux, and the 

heel) 

- Force * 

- Forward fall 

- Backward fall 

- Sideward fall 

- Correct 

classification rate: 

75% 

[56] 
- FSR 

- Accelerometer 

FSR: 

- Heel, the 1st, and 

5th metatarsal 

heads 

Accelerometer: 

- Shoe 

- Gait cycle phases (heel 

contact; flat foot contact; 

heel off; and limb swing) 

- Pitch 

- Roll 

 

 

Laboratory experiment: 

- 17 subjects 

- Average age: 28 (±9.3) 

- Average height for males: 

176 (±8.4) cm 

- Average height for females: 

164 (±5.3) cm 

 

- Backward fall  

- Forward fall  

- Sideward fall 

- Accuracy: 97.1% 

(Laboratory tests) 

*  Not specified 
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Table 2 – Continued 

Article Sensors 
Best Sensor 

Location 
Features Subjects  Types of fall Best Results 

    

- Average weight for males: 

72(±8.4) kg 

- Average weight for females: 

62(±11.1) kg 

Real-Life experiment: 

- 2 elderly subjects 

- Age: 67 years 

- Height for female: 170 cm 

- Height for male: 183 cm 

- Weight for female: 67 kg 

- Weight for male: 99 kg 
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Table 3 - Characteristics of wearable pre-impact fall systems 

Article Sensors 
Sensor 

Location 
Features Subjects Types of fall Best Results 

[57] 
- Accelerometer  

- Gyroscope 
* 

- Acceleration 

- Angular velocity 
* * * 

[58] 
-Electromyography 

probes 

- Lower limb 

(Gastrocnemius 

lateralis and tibialis 

anterior muscles) 

- Integrated EMG 

- Co-Contraction index 

- Willison Amplitude 

 

- 15 subjects  

- Age: 32.6 ± 9.3 years 

- Weight: 68.3 ± 9.2 kg 

- Height: 1.74 ± 0.4 m 

 

- Forward fall 

- Backward fall 

- Sideward fall 

- Specificity: 89.5 % 

- Sensitivity: 91.3% 

- Lead time before the 

impact 770ms 

[59] 
- IMU 

- Reflective markers 
- Close to sternum 

- Trunk sagittal extension 

angle 

- Trunk sagittal angular 

velocity  

- 10 elderly 

- Age: 75 ± 6 years 

- Weight: 74.1 ± 9.1 kg 

- Height: 174 ± 7.5 cm 

- Backward fall 

(slip) 

- Sensitivity: 100% 

- Specificity: 95.65% 

- Response time: 

255ms 

 

*  Not specified 
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Table 4 - Characteristics of wearable NF systems 

Article Sensors 
Sensor 

Location 
Features Subjects Types of NF Best Results 

[60] 
- Accelerometer 

- Gyroscope 

- Left Foot 

- Right Foot 

- Right Thigh 

- Waist 

- Head 

- Mean 

- Variance 

- 10 subjects 

- Age: 22-32 years 

 

- Slip 

- Trips 

   - Incorrect            

transfers 

- Missteps 

- Hit and bump by 

another subject 

- Sensitivity: 100% 

- Specificity: 100% 

[61] 
- Accelerometer 

- Gyroscope 
- Lower Back 

- Peak difference 

- Maximum amplitude 

- Step number 

- Entropy 

- Frequencies above 

threshold 

- 40 PD subjects 

- Age: 62.16 ± 10.02 

years 

 

- Missteps 
Laboratory tests: 

- Specificity: 98.6% 

[62] - Accelerometer - Chest 

- Maximum values of 

magnitude acceleration 

vector 

 

- 9 subjects - Stumble 
- Sensitivity: 94% 

- Precision: 99% 
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Table 4 – Continued 

Article Sensors 
Sensor 

Location 
Features Subjects Types of NF Best Results 

   

- Non linear energy operator of 

magnitude acceleration vector 

- FFT of magnitude acceleration 

vector 

   

[63] -Accelerometer - Sacrum - Wavelet decomposition 

91 subjects: 

- 41 young 

- 50 elderly  

-Age: 24±4 years 

and 67± 5 years  

- Stumble 
- Sensitivity: 98.4% 

- Specificity: 99.9% 

 

 



 

27 

 

2.6. Discussion 

 Throughout the research conducted in this chapter, it was possible to establish the existence 

of numerous factors that increase the risk of falling. Among them, neurological diseases, age, gender, 

race, medication and physical conditions [5], [23]–[30]. Severe injuries can arise from a fall, for 

instances, fractures, head injuries, and death in the worst case [6], [36], [37]. Hence, there is a 

considerable interest by researchers in developing systems to minimize fall-related problems such as 

those mentioned above. 

 The apparatus used to detect falls or NF can be divided into two categories: non-wearables and 

wearables. Concerning non-wearable technology, several works were encountered which resorted to the 

use of cameras [39]–[47]. Nevertheless, other types of sensors were used, such as thermal sensors 

and UWB [48], [50]. Of all the studies mentioned in the Table 1, it was observed that the majority of 

the sensors are placed in a room [39], [40], [42]–[45], [47]–[49].This leads to one of the problems 

associated with non-wearable sensors. Typically, the sensors are restricted to a specific locale and 

indoor environment. Apart from this problem, there are others, especially with regard to cameras. First, 

the confidentiality problem since personal information of the participants is recorded.  Second, these 

sensors often have occlusion problems [64].   

 With regard to wearable sensors, several works have been developed. While in the category of 

non-wearable only systems for detect falls were presented, in this category the systems were divided 

into three groups. Namely, fall detection (i.e. the subject impacts on the ground), pre-fall phase detection 

and NF detection (i.e. the subject can restore balance) systems. These three groups are scrutinized in 

Tables 2, 3, and 4, respectively. There is at least one aspect in common between these groups: the use 

of an accelerometer sensor and/or gyroscope sensor in the majority of studies [51]–[54], [56], [57], 

[59]–[63]. Besides these sensors, other studies also used magnetometer [53], FSR [55], [56], and 

electromyographic probes [58]. Concerning the position of the sensors on the body differs from study 

to study. The sensors are placed in one or more of the following locations: lower limbs, upper limbs, 

head and torso [51]–[63]. For the purpose of determining the best possible sensor placement, two 

studies have investigated this issue [60], [62]. Both wearable and non-wearable sensors have some 

disadvantages, such as follows: i) the subject needs to remember to place the sensor on the body; ii) 

these devices are dependent on an external supply; and iii) if the user performs a sudden movement, 

the device can detect incorrectly a fall [64].   
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 In both categories, wearable and non-wearable, the whole fall and NF data was simulated by 

the participants. The problem with simulated falls lies in the fact that their pattern may be different from 

a real fall. This situation may lead to better results than would be achieved with real falls [14].  

 In the majority of the articles mentioned in Tables 1 to 4 the experimental data were performed 

with young and healthy adults [39], [41], [48], [51]–[54], [56], [58], [60]. It is presumed that these 

systems will not be tested in the elderly because of their safety. One of the problem of falls or NF 

simulated by young adults is related to postural control characteristics, since these are different in the 

elderly when confronted with perturbation [65]. However, three studies included tests with the elderly 

[59], [63], and one with PD patients [61].  

  Throughout the fall-related system section of this chapter, the most commonly implemented 

approaches were based on machine learning [45], [48], [50], [52], [53], [55], [58], [60], [61] and 

thresholds algorithms [43], [44], [46], [47], [49], [51], [54], [56], [57], [59], [61]. Other algorithms 

were also applied such as the wavelet [63] and the Gaussian model [62].The performance achieved 

with these algorithms overall was high. The sensitivity and specificity values found in the studies reported 

range from 91.3%-100% and 85%-100%, respectively. 

 In conclusion, there are some problematic aspects associated with the fall, which need to be 

addressed in order to develop more robust systems. These include, for instance, gathering data from 

people with associated fall risk factors and real falls. The development of approaches that allow the 

detection of the fall before the impact is also an important aspect to be addressed. In order to be able 

to develop strategies to avoid an eminent fall and, thus, minimize the consequences. 
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CHAPTER 3 – SMART WALKERS 

The main objective of this chapter is to conduct a survey of the strategies implemented in smart 

walkers to detect and prevent a fall. Initially, a contextualization of the different types of walkers and 

their final purpose is accomplished. Following an overview of the ASBGo SW, which includes its 

accessories and the functionalities provided. Finally, a comprehensive survey is performed of the fall-

related strategies previously studied when using a walker in literature. Moreover, a research of 

commercial smart walkers and patents that have implemented a fall-related strategy is also carried out. 

3.1. Introduction 

 Assistive devices have an essential role for people with mobility impairment. These devices have 

some benefits, such as enhancing the balance, decreasing the load on the lower limbs and assist 

propulsion. For elderly people, these kind of devices are fundamental due to the bad consequences of 

neurological and age-related  diseases [66]. Thus, the recommendation of the assistive devices should 

be done very carefully, and it is necessary to take into consideration other conditions. Such as,  vision, 

cognitive function and muscle strength [67].Walkers are examples of assistive devices, and they are 

widely used to partial body weight support and to improve the dynamic and static stability. There are 

different types of walker: standard, two-wheeled, rollator and hands-free  [67]. These devices are shown 

in Figure 3. Depending on the user’s condition, each one of these devices can be properly prescribed. 

For subjects who have difficulty in lifting the walker of the floor, a two-wheeled walker can be more 

suitable than a standard walker [67], [68]. The rollator (four- wheeled) is advised when subjects do not 

need constant bodyweight support but is important a large walking base [67], [69]. Finally, the hands-

free allows the reduction of weight supported by the upper extremities and promoted at the same time 

support of the corporal weight [67]. Over time, these assistive devices suffered great evolutions, mainly 

because of electronic incorporation, i.e., human-machine interface, sensors, and control [67][69].  
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3.2. ASBGo SW 

The ASBGo SW was developed by the Adaptive System Behaviour Group. This assistive device 

has rehabilitation and physical therapy purpose, intending to aid patients with gait disorders, and 

improve their physical conditions. The ASBGo SW provides a technological alternative to standard 

walkers with higher levels of safety and quality rehabilitation. A threshold-based fall prevention strategy 

was already implemented in the ASBGo SW [70]. This assistive device can be divided into two parts: 

the upper part and the lower part.  

The ABSGo SW has a handlebar with two handle grips that allow driving the device at the upper 

part. The smart walker is also equipped with a wooden table with forearms support (possible to adjust 

using velcro tape) to sustain the patient’s weight. In order to adjust the height of smart walker, the upper 

part fits into two adjustable electrical columns.  A touchscreen is located on the center of the wooden 

table for better human-machine interaction.  An emergency button is available in front of the monitor to 

immediately block the smart walker in case of dangerous situations. Furthermore, this device is 

equipped with a Kinect, an infrared sensor, and an IMU. Figure 4 depicts the upper part of the ASBGo 

SW.  

 

 

Figure 3 – Different walkers: (a) Standard; (b) Two-Wheeled; (c) Rollator; 
(d) Hands-Free [67]. 
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The lower part is equipped with four wheels; encoders to record movement information (velocity 

and distance); motors on rear wheels which are responsible for the walker movement; manual brakes 

to lock and unlock the motors; and a laptop responsible for collecting, processing and saving data. The 

device also has two rechargeable batteries to provide power to the whole system. The lower part of the 

ASBGo SW is shown in Figure 5. 

Figure 5 - Lower part of ASBG SW. 

Figure 4 - Upper part of ASBGo SW. 
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Table 5 shows all the sensors, overall, and their purpose. These sensors allow the computation 

of different features related to the patients and, consequently, relevant functionalities.  

Table 5 - Purpose of all sensors present on ASBGo SW 

Sensors Purpose Previous works 

Angular 

potentiometer 

Detect the angular displacement variation performed by 

the handlebar (forward/stop). 
[71] 

IMU (wearable) Detect gait events and assessment of fall risk.  [72] 

Infrared Measure the distance between the user and the device. [73][70] 

Linear potentiometer 
Detect the linear displacement variation performed by the 

handlebar (turn left/right). 
[71] 

Strain gauge 
Detect if the patient has the forearms on the forearm 

support.  
[70] 

Ultrasonic Obstacles detection (Not available at the moment). [74] 

 

The functionalities of the ASBGo SW were developed in order to improve patient rehabilitation. 

The acquired patients’ information is related with their stability, balance, and gait. A multitasking game 

to evaluate the capacity of the patient to do more than one task and information related to their lower 

limbs is also available. More information about the functionalities can be found in Table 6. 

Table 6 - Functionalities of ASBGo SW 

Functionalities Sensors Purpose 

Balance IMU 

Evaluate balance. Three static tests (static 

stance, static semi-stance tandem, and static 

semi-tandem) and one dynamic test. 

Biofeedback 
Kinect camera (Not 

available until the moment) 

Show the lower limbs on the screen for visual 

feedback and gait correction stimulation. 

Forearm support Strain gauge Record force values. 

Gait analysis 

IMU (foot) 

Kinect camera (Not 

available until the moment) 

Compute spatiotemporal parameters. 

Multitasking game * 
Evaluate reaction time and the capacity of the 

patients to maintain a natural gait. 
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Table 6 - Continued 

Functionalities Sensors Purpose 

Stability IMU 

Evaluate the stability. Four tests are 

performed: front tilt, rear tilt, lateral tilt to 

the left, and lateral tilt to the right.  

* Not specified 

 

Additionally, different modes of driving can be chosen when patients use the smart walker, such 

as local driving, remote driving, autonomous driving, and treadmill. The physiotherapist can therefore 

choose the most appropriate mode, depending on the patients’ difficulties.  The local mode allows the 

selection of parameters of driving, such as the velocity and the curvature of the walker. In this mode the 

user guides the walker. On the other hand, in remote control, the physiotherapist has a joystick to 

control the walker’s trajectory in the environment. A treadmill mode can also be select. In this mode, 

the user, while uses the treadmill, can benefit the ASBGo SW functionalities at the same time. Finally, 

the autonomous mode is not implemented in the latest version of the ASBGo SW. This mode allows the 

physiotherapist or the user to choose the desired coordinate position.  

With respect to fall detection in ASBGo SW, an infrared sensor was placed on the smart walker 

in order to measure the distance from the user to the walker. Based on this distance, an algorithm was 

developed to detect a forward fall because, in these events, the distance will decrease abruptly. In this 

case, the walker stops. Regarding backward falls two FSR were placed on each handlebar, and if the 

user does not have his hand on the handlebar the walker will stop. The same happens when the user 

does not have the forearm in forearm support. In this case, it detects by using FSR. Note that the walker 

does not move backwards, thus if the user pulls the walker, the walker stops [70]. 

3.3. Current Smart Walkers 

3.3.1. Search Strategy 

On October 22nd, 2018, a comprehensive survey was conducted on Scopus and on the Web of 

Science. The following keywords were used: (“Walking support” AND fall), (“Smart walker” AND fall), 

(“Smart rollators”), and (“Walking-aid” AND fall). This survey has the purpose to know which smart 

walkers are available in the literature and the fall-related strategies applied. 
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The points of interest during the analysis of the systems were the following: i) the sensors used; 

ii) the sensors location on the walker; iii) the strategy implemented to prevent and detect a fall or a NF 

event; iv) the algorithm developed. 

3.3.2. Search Results 

A few smart walkers were found through the search performed, which included strategies 

implemented to detect or prevent a fall. The search results, i.e., the smart walkers and fall-related 

strategies are described follows. 

RT Walker is a passive device used in three studies [75]–[77]. This assistive device has rear 

wheels with powder brakes, which enable the change of the torque considering the current applied. All 

the above-mentioned studies reported the stop of the walker when they detect that the user is falling. In 

article [75], two laser range finder (LRF) were used. One was located at the same height as the user’s 

hip to measure the distance along the vertical direction between the walker and the user. The other 

laser was placed at the base of the walker and measure the distance between the user’s leg and the 

walker. Based on the information of LRF was generated the 7-link human model. Next, a stability region 

was determined based on support polygon formed by the walker and the feet of the user. The system 

detects that the user is falling when the center of gravity is out of the region of stability. 

In article [76], the device had two stereo cameras in order to track the head, hands, shoulders, 

and hip to get the 3D upper body model. The 3D coordinates of the parts of the body were used to 

classify the normal state walking, sitting, standing and falling.  In article [77], a depth camera was used 

to extract the upper body centroid position. In order to detect human action (standing, walking, sit, fall 

right, fall left, fall backward, fall, and fall forward), two approaches were used, namely, multivariate 

normal distribution function and Hidden Markov Model (HMM). The first approach mentioned detected 

96.25% of the falls, and the second one 98.75% of the falls.  

Xu et al. [78] developed an approach to prevent the user of the walking-aid robot from falling. 

Two human motion intentions were studied, the upper and lower limbs of the user. The FSR were 

positioned on the handle to monitor the user’s upper limbs, and the LRF was placed on the lower part 

of the walker to monitor the user’s leg movement. A state of normal and abnormal gait was distinguished 

in this work. In the second state mentioned different falls could occur, namely falling forward, to the left 

and to the right. The SVM was the approach used to classify the state of gait and, consequently, detect 

a possible fall. If the user is falling  the walker stops moving.  
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Irgenfried et al. [79] developed a device that uses a 6D-force/torque sensors (FTS) for 

connecting the walker with the handlebar. A mathematical model of the human body was applied to 

help identify possible fall situations in FTS signal. With the purpose to test the system the participants 

simulated stumbles. The experimental results revealed a peak in the sensor values that can be used to 

detect a possible fall. In order to prevent a fall, the authors suggest stopping or slowing down the walker.  

 Huang et al. [80] used a different approach. In this work, wearable and non-wearable sensors 

were used to detect possible falls, while in the works previously presented only non-wearable sensors 

were employed. A tri-axial accelerometer, a tri-axial magnetometer, and a tri-axial gyroscope were 

positioned on the waist, both thighs, and both shanks to measure the acceleration and the angular 

velocity. The force sensors used on the handlebar enable to obtain the forward and lateral force and 

rotation torque of the walker. The center of pressure (COP) was extracted, and then, the authors 

calculated the relative position between the midpoint of the feet and the COP. This information is 

important to determine if a fall happen along the horizontal direction. In order to detect the vertical falls, 

was calculated the height of the human waist. The fuzzy threshold was the approach implemented to 

detect the fall. Different types of fall were performed: due to weakness in the legs (vertical direction); 

falling forward (horizontal direction); and falling to the left side (horizontal direction). When the possible 

fall is detected, the walker brakes and stops. 

Mou et al. [81] and Azqueta-Gavaldon [82] developed a walker targeted to PD patients and the 

elderly. The first authors used a LRF in order to analyze the gait. Furthermore, the force sensors were 

placed on the handle to determine the follow actions: turning, stop, push, pull, and going backward. 

Lastely, through an adaptative HMM was possible to classify the three kinds of gaits from two type of 

sensors (festinating gait, freezing of gait and normal gait).  For this purpose, the information acquired 

through the force sensors and the LRF was considered. In order to prevent users from falling the walker 

stops when the sudden push is detected. 

Azqueta-Gavaldon et al. [82] developed a walker that monitors the walking movement of the 

user. The rollator used in this study has a depth camera placed at the same height as the rollator seat. 

This sensor measures the distance between the user’s leg and the rollator. In order to test the system, 

three different possible falling situations were tested, freezing of limbs, stumble, and loss of balance (all 

forward falls). It is important to highlight that the tests were performed by healthy subjects. However, 

the system was conceived for subjects with lower reflexes, so it is important to test the system with 

these patients instead of healthy people. When the distance between the user and the rollator is higher 
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than a threshold, the rollator stops to prevent the fall (the delay in brake activations is 80-90ms). The 

overall accuracy was 95% and the precision was 93% of the braking system.  

It is possible to note that those different sensors were used in order to detect a possible fall 

event. The force sensors were used in the handlebar to monitor the upper limbs as well as the LRF 

placed on the upper part of the walker. On the other hand, the LRF placed on the lower part of the 

walker allowed monitoring the lower limbs of the user. The cameras were used to track the head, 

shoulder, lower limbs and hips, and to calculate the body centroid. The wearable sensors were used 

only in one study, and they were placed on the waist, thighs, and shanks. An overview of the sensors 

used as well as their positions on the walker and user is shown in Table 7 and Figure 6. 

Table 7  Sensors present on the smart walkers 

Article 
Force 

Sensors 
LRF 

Accelerometer; 

Gyroscope; 

Magnetometer 

Stereo 

Camera 
Kinect 

Depth 

Camera 

[75]  1,2     

[76]    3   

[77]     4  

[78] 5 6     

[79] 7      

[80] 8  9,10,11    

[81] 12 13     

[82]      14 

Figure 6 – Scheme of the location of the sensors on the smart walkers and the user according to Table 7. 
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3.4. Commercial Smart Walkers 

A search was performed on Google in order to find which smart walkers are commercially 

available nowadays. In this search, only the walkers with the characteristics mentioned in the previous 

section were included. Only two smart walkers were found, namely RT.1 [83] and RT.2 [84], shown in 

Figure 7 and 8, respectively .  

 

  

 The RT.2 and the RT.1 smart walkers provide a few particularities that became the use of the 

walker more attractive. When the user is on uphill the torque is automatically controlled, and on 

downhills the brake torque is also automatically controlled, which facilitates its use. In the case of lateral 

inclination, it is possible to walk straight despite the gravity. If the user releases the walker on the slope 

unintentionally (detect by the sensor in the grip), the walker will stop. Which would not happen in 

standard walkers. Furthermore, if there is an abrupt increase of speed for some reason, e.g. a fall, the 

Figure 8 - Commercial smart walker RT.2 (Image adapted from [84]). 

Figure 7 - Commercial smart walker RT.1 [83]. 
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speed will decrease due to automatic braking. The RT.1 provides other services related to internet of 

things (IoT) [83], [84]. 

3.5. Smart Walker Patents 

3.5.1. Search Strategy 

Between October 31st, 2018, to November 4th ,2018, an advanced patent search was performed 

on United States Patent and Trademark Office (http://patft.uspto.gov ).  On November 10th, 2018, 

another patent search was performed on Espacenet (https://worldwide.espacenet.com). The select 

keyword used from search were [("walker") AND ("near-fall" OR "falling" OR "fall prediction" OR "fall 

detection" OR "fall prevention")]. The selection of patents was performed in three steps, first based on 

the title, second based on abstracts and schemes and ultimately based on the full text.  

3.5.2. Search results 

At the end of the process, a total of 10 patents were selected related to walkers. On United 

States Patent Trademark Office, a total of 17550 patents was found, while on Espacenet, it was found 

126 patents. After eliminating the duplicate patents and based on title, 201 patents were selected. 

Based on abstracts and drawing 185 patents were excluded. Finally, based on full text, 10 patents were 

selected, and from these 8 were from States Patent Trademark Office and 2 from Espacenet, 

respectively. Figure 9 shows a flow diagram of the whole process for selecting patents. 

The patents study performed on two databases included patents related to biological systems, 

soybean, child walkers, wagering games, walker improvements, another type of assistive device (for 

instance, canes), surgical devices among others not related with fall detection and prevention. All of 

these devices and systems were excluded. It is noteworthy that this search only included electronic 

systems implemented in walkers that can prevent or detect falls. The three patents presented in Table 

8 are the closest or more important related to the concepts developed in the previous section. 

http://patft.uspto.gov/
https://worldwide.espacenet.com/


 

39 

 

 
 
 
Table 8 – The three most significative patents to the fall prediction/detection system developed 

Name Patent Number Scheme 

Walking assistive device 9,687,410 

  

 

 

 

Figure 9 - Flow Diagram PRISMA for Patent Review. 
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Table 8 - Continued 

Name Patent Number Scheme 

Anti-falling walker CN20181022168720180317 

 

 

Electric walking assistance 

device 
WO2014JP0270620140522 

 

 

 

The “Walking assistive device” approach is based on the distance to prevent the user from 

falling. This walker has a distance detection sensor, which enables the measurement of the distance 

between the walker and the user, and a control unit to control the driving unit that moves the walker. If 

the distance measured between the walker and the user is out of the safety distance range, the control 

unit will actuate in the motor and determine the rotation of this in order to prevent the user from falling.  

In this patent, other embodiments are addressed based on distance as well. One of these embodiments 

also uses a sensor that calculates the angle of inclination and sends it to safety distance range setting 

unit. Other embodiments are used, such as a sensor of pressures, speed sensor, among other always 

to improve the method to prevent falls. The patent number as well as its scheme are presented in Table 

8.  

The second patent in Table 8, the “Anti falling-walker” has mechanisms to avoid falls. This 

device has a hip strap that, in case of fall, can hold the user of the walker and prevent injuries associated 

with the possible fall. The walker is equipped with an alarm device, a displacement sensor, and a motor. 

All of these components are connected to the battery. When the user is falling and reaches a set position 
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the displacement sensor will send a signal to the alarm device. The motor turns on and seat cushion 

will rotate downward, in order to prevent a fall.  

 The third patent in Table 8 has motors and a speed limiting unit, which allow the limitation of 

the rotation of the wheel when the speed is greater than a predetermined value. This device also has a 

leg motion detection unit that allows measuring the distance between the user and the walker. When 

the distance increases, the motor can stop or reverse the rotation. An attitude detection sensor is used 

to detect the attitude of the device and control the rotation of the wheel. With a grounding sensor is 

possible to know if the device is in contact with the ground. It is possible to control the rotation of the 

wheel according to the situation. In one situation which the walker changes the inclined state (for 

example, downward inclined state to the horizontal state) through these sensors is possible to detect 

the inclination, and the motors can be controlled in order to provide stable conduction. It is possible to 

conclude that all the sensors in the walker allow safe conduction that prevents the user from falling. 

This device also has a brake unit on handle controlled by the user. 

3.6. Discussion 

 The walkers are  essential to improve  the quality of life and also the subject’s mobility problems 

[66]. According to the WHO, millions of falls occur each year, and a large portion happens in older 

people. Medical assistance is needed in many cases [6]. Thus, it is possible to note that there is a clear 

necessity to decrease the number of falls and the injury associated with them.   

Concerning smart walkers, in all devices found the only fall prevention strategy implemented 

was to stop the walker [75]–[82]. This prevention measure provides an increase in user safety, mainly 

in forward falls due to the support act of the walker. Regarding sideward falls and backward falls, this 

mechanism cannot be so efficient. Thus, more studies should be performed, and other strategies should 

be implemented in order to mitigate this problem improving the user’s stability and balance. Regarding 

commercial smart walkers, only two devices were found, and the fall prevention strategy is similar to 

the literature. In relation to the patents selected, the approaches presented to prevent fall events are 

identical to those found in both literature and commercial devices.  
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CHAPTER 4 – SYSTEM OVERVIEW  

 Falls can culminate in various injuries and, in the worst-case scenario, death. In this respect, 

the main goal of this work is to develop a strategy that can be implemented in ASBGo SW to improve 

patient safety. In this chapter, an initial overview of the system is presented, which encompasses the 

selected sensors as well as their positions on the body. Then, all the components that compose the 

device are described in more detail, focusing mainly on the sensor characteristics. Once the device that 

was adapted for this work has been introduced, the experimental procedure for data acquisition is 

explained. Finally, the whole implemented methodology is presented, which can be divided into four 

parts: i) data processing; ii) data labeling; iii) feature computation; and iv) machine learning 

methodology. 

4.1. System Overview 

In order to collect data, a rollator, an IMU on lower trunk, and FSR underneath the shoes were 

used (Figure 10 a, b and c). The data acquired with these sensors will be used to implement the NF, 

INF and gait events detection approaches (Chapter 5, 6, and 7).  

 The IMU and FSR sensors and their location were selected for two main reasons. First, ASBGo 

SW already has one IMU implemented to be used on lower trunk. Second, the FSR can provide part of 

the information that can be acquired with the depth camera which is being developed. Furthermore, 

through literature analysis, it was possible to notice that the IMU as well as the force sensors have been 

used to develop fall-related strategies. In addition to the criteria aforementioned, the following aspects 

were also taken into account for the choice of sensors and their location: fewer sensors possible; not 

limiting the user’s movements; lightweight; and easy to place on the subject.  

(a) (b) 

Figure 10 – (a) Rollator; (b) IMU position on-body; (c) FSR position on insoles. 

(c) 
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The IMU was placed, more specifically, close to the COM, i.e., near to L5 lumbar vertebra and 

S1 sacral vertebra in adults [85]. The body COM is important in the study of human gait and balance 

control [86]. The acceleration acquired in the lower back position provide information about gait events 

(e.g., HS and TO) and gait parameters, such as walking speed [87]. This information can be useful to 

detect a NF once the balance and gait modifications can increase the risk of falling.   

In this study FSR were used to detect NF and INF as the IMU but also as ground truth for the 

detection of gait events from inertial data (Chapter 7). The shoes used were equipped with two FSR in 

each insole, one placed on the front of the insole (toe zone) and the other on the back of the insole 

(heel zone) as shown in Figure 10 c).  

The system is therefore formed by an IMU, placed in a waistband, and shoes with FSR [88]. A 

few system characteristics, as power supply were adapted for this study and will be presented in the 

following section. 

4.2. Global Architecture 

 The system comprises a processing unit, an IMU to achieve inertial data from user’ lower trunk, 

gait shoes equipped with FSR to detect when the foot contact on the ground, and lastly a computer. The 

computer supplies the system and saves all acquired data that will be analyzed later. A schematic of 

system overview is shown in Figure 11. The application initiates or stops the data collection. It is 

important to note that the defined sampling frequency was 100 Hz for all data sensors.  

Figure 11 – The system architecture overview. 
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4.2.1 Sensors Overview 

 This section will present the characteristics of the sensors, namely the IMU and the FSR (Figure 

12 and 13, respectively), and why some characteristics are important for the work developed. 

 The MPU-6050 (Motion Processing Unit) has a 3-axis gyroscope and 3-axis accelerometer.  The 

small sensor dimension (4x4x0.9mm) is a positive aspect at one time it will be positioned on the user. 

This sensor enables to program the full-scale range of accelerometer and gyroscope sensors. Selecting 

the limit of which the accelerometer and gyroscope can read is a central aspect to be considered since 

the wrong choice can influence the data measured. In the case of the accelerometer, the full-scale range 

selected was ±8g and the gyroscope full-range scale chosen was 2000°/s which is the closest use in 

the study [89]. 

 

 It is necessary to apply a calibration procedure in order to minimize the measurement errors. 

In this regard, the technique used consists of placing the sensor in a horizontal table and recording the 

acceleration axis parallel to gravitational force for six different positions, as shown in Figure 14 [89]. In 

this study, the acceleration in each position was stored during 10s and the mean values of each axis 

was calculated to achieve the maximum and the minimum value to adjust the range. 

Figure 12- MPU 6050. Figure 13 – Force sensor resistor. 

Figure 14 – The six position for accelerometer calibration. 
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 Gyroscope calibration consisted of placing the sensor in one of the six positions and record 

samples during 10s. Later the mean of samples for each axis was calculated, and the offset values was 

subtracted to further collected samples. 

 From the signals acquired with the four square FSR, it is possible determine when heel or toe 

or both are in contact with the ground through the variation observed in the signal. These sensors have 

low weight and they are thickness, which means they do not influence the user’s gait. 

4.3 Data Acquisition Methods  

This study was conducted with ten healthy young subjects (five females and five males; 

66.5±11.32kg; 1.69±0.11m; 25±1.61 years).  Before the tests none of the participants reported any 

disorder that could influence the gait pattern or compromise the tests. All participants agreed to perform 

the tests after the explanation of the whole procedure.  

The first step performed before start record data from the participants consisted in collecting the 

data to calibrate the sensors as described in the previous section (once a day). After the conclusion of 

the first step, the participant was instrumented. Thus, the shoes and waistband were placed on the 

subject and also a strap on the sensors to fix better. The MTw Awinda (Xsens system) was a 

complementary system used during the tests for human motion tracking. This system is based on IMU, 

and in this particular case, it was applied the lower body configuration as represented in Figure 15. The 

Xsens system IMU that should be placed in the pelvis area was placed as close as possible to the 

waistband IMU. In order to guarantee that the information collected by the two systems is as reliable as 

possible and, consequently, it can be compared. Afterward prepared the participant the Xsens system 

was calibrated.  It is important to mentioned that the waistband and the gait shoes described previously 

was synchronized with the Xsens system with a sampling frequency of 100 Hz.  

For the experimental tests, the participants use a rollator to walk as shown in Figure 15.  Four 

different activities were executed three times for two different velocities. It was asked the participant to 

walk at a comfortable velocity for him and another one very slow. These two velocities were selected to 

have more variability of data. Furthermore, users of ASBGo SW usually walk at a slow velocity, hence 

this is such a critical velocity. 
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The different activities performed by the participants are described in Table 9. For activities 2, 3 

and 4 (Table 9), the subject walked during a certain time, undefined, and then simulated a NF for 

forward, right and left, respectively. The moment that the subject simulates the NF was determined 

either by an audible signal or the volunteer himself determined the instant.  The selected approach was 

determined based on the volunteer’s best performance, i.e. the one in which the volunteer was able to 

get closer to a real NF. A total of sixty trials were recorded for each activity. However, a few trials were 

removed because sensors failed, i.e., the data was not recorded correctly. 

Table 9 – Activities description simulated with the rollator for a comfortable and slow velocity 

Number Activity Description 

1 Walking straight for ten and a half meters with a rollator 

2 Walking straight and simulate a forward NF with a rollator 

3 Walking straight and simulate a right NF with a rollator 

4 Walking straight and simulate a left NF with a rollator 

Figure 15 - IMU placement on the user’s body and the rollator 
during the test. 
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4.4 Software Methodology Overview  

 Once the data acquisition is completed, it is necessary to process data in order to be further 

used for NF, INF and gait event detection. The data pre-processing involves data calibration, and filtering 

the data gathered with a high-pass and an exponential filters. Then, these data were labeled according 

to the intended purpose, i.e., to detect a NF or detect an INF or detect the gait events. Following, several 

characteristics were computed from the inertial data. After the dataset with all features was obtained, 

three different types of feature selection methods were applied. Finally, machine learning algorithms 

were implemented in order to determine whether a NF or an INF occurs or to detect gait events.  A 

general overview of the methodology implemented in chapters, 5, 6 and 7 is shown in Figure 16.  

 

4.4.1 Data Pre-Processing and Feature Computation 

 The pre-processing data is a crucial step, since it allows the elimination of irrelevant information, 

retaining the essential one. In this respect, the accelerometer and gyroscope data were calibrate as 

mentioned previously. Thereafter, different filters were applied for each axis. In this study, one of the 

main goals is to develop a strategy that can be applied in real-time, thus, it is crucial not introduced 

delayed in data recorded. In this respect, it is desirable that the filters applied only depend on the current 

sample and the previous samples.  

 When a rotation is performed in the coronal plane, roll, and sagittal plane, pitch, the value of 

gravity acceleration measured change, so it is necessary compensated roll/pitch motion. Windau et al. 

[89], to obviate this problem, estimate the roll and pitch angle and then applied a rotation matrix to 

obtain the acceleration data measured in the normalized coordinate system. Therefore, in this 

dissertation, the roll and pitch angles were obtained based on a Kalman filter because the gyroscope is 

susceptible to drift, and this makes the angle obtained by integration unreliable. This filter is based on 

fusion sensor, it uses the gyroscope and accelerometer data to achieve a more reliable angle value [90]. 

After calculating the roll and pitch angle, a rotation matrix as described in [91] was implemented. After 

the aforementioned steps, a high-pass filter was applied to remove the gravity component (9.8m/s2). In 

Figure 16 - General overview of the implemented methodology. 
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sum, for vertical acceleration axis, roll and pitch compensation were applied and then a high pass filter 

[92] represented by Equation (1):  

 Where y(n) is current output sample and x(n) current input sample. For anteroposterior and 

mediolateral axis, first was applied a high pass filter in order to eliminate the DC component and then 

an exponential filter represented by Equation (2) was used to smooth the signal.  

 Where, α is the smoothing factor (0< α<1), y(n) current sample filtered, x(n) current sample 

and y(n-1) the previous sample filtered. In order to choose the best factor, the acceleration signal 

obtained with the waistband IMU was compared with Xsens lower back IMU based on Root Mean Square 

Error (RMSE) for both directions, anteroposterior and mediolateral. Only the exponential filter was used 

for each axis of the gyroscope (vertical, anteroposterior and mediolateral directions). The best factor 

was also chosen through RMSE between the recorded waistband and Xsens data. The results are 

presented in Table 10. It is important to highlight that just the data collected from the IMU placed on 

the waistband, with the participants walking forward, were used to compare with the Xsens acceleration 

and gyroscope data. The inertial signals obtained for three directions (vertical, mediolateral and 

anteroposterior) with Xsens and the IMU of waistband after filter process are shown in Figure 17 and 

Figure 18. The last step accomplished of pre-processing data was the data normalization based on the 

height of the participants. 

Table 10 – RMSE results achieved with the Xsens signal and the signal recorded after the filtering process 

Axis RMSE mean Exponential factor 

Vertical acceleration 0.1935 - 

Mediolateral acceleration 0.4409 0.3 

Anteroposterior acceleration 0.5488 0.3 

Vertical angular velocity 2.977 0.8 

Mediolateral angular velocity 3.004 0.8 

Anteroposterior angular velocity 3.8756 0.7 

 

  

(1) yሺnሻ = ሾxሺnሻ − xሺn − 1ሻሿ + 0.995yሺn − 1ሻሿ 

(2) yሺnሻ =  α. xሺnሻ + ሺ1 − αሻ. yሺn − 1ሻ 
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Once the data have been filtered, they were labelled in 4 different ways as described in Table 11. 

For data labelling, the acceleration and angular velocity signals in the three axis, the FSR signals and 

acceleration sum vector magnitude signal (√𝑥2+𝑦2 + 𝑧2) were used, except for the gait event 

Figure 18 - Comparation between the the Xsens signal with the waistband filtered signal from the three axis of the gyroscope data. 

Figure 17 - Comparation between the Xsens signal with the waistband filtered signal from the three axis accelerometer data. 
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labelling. For this particular case, a thresholds-based algorithm was developed using only FSR signals.  

For each situation described in Table 11, more details will be given in the next chapters. 

 Concerning data labelling the first gait step was excluded because it was observed that FSR 

signals in some trials were not in accordance with what was expected. This may have happened because 

the subject while still in stance position is not entirely motionless and exerts more/less pressure in one 

of the FSR.  

Table 11 - Description of different labelled signals 

Number Description 

1 Normal walking and NF 

2 NF direction (Forward, Right and Left) 

3 Normal walking and INF 

4 Gait events (TO and HS for each foot) 

 

 After the data pre-processing and data labelling were completed, several features were 

computed through acceleration and angular velocity data. These features were selected based on 

several studies presented in Appendix 1 Table 35. In addition to the features computed, other features 

were used, such as the FSR signals also presented in Appendix 1 Table 35. In this table only one extra 

feature is missing which is computed through the FSR data, described in Chapter 6. 

 One of the goals of this work is to develop an algorithm that can be implemented in real time. 

In this sense, all computed features only use the current or previous samples. The window size selected 

to compute certain features was 50ms with the exception of velocity and displacement that will be 

addressed later. It is important to note that some features mentioned in Appendix 1 were adapted for 

this work.  

 In order to calculate the three-axis velocity and displacement, it is necessary integrate one and 

two times the acceleration data, respectively. The steps followed to calculate the displacement were:  

1. Subtract acceleration means obtained with a specific window length 

2. Integrate acceleration to velocity by the trapezoidal method 

3. Subtract velocity mean obtained through a specific window length 

4. Integrate velocity to displacement by the trapezoidal method 

5. Subtract displacement mean obtained through a specific window length 
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 The window length for each axis was defined based on similarity between Xsens displacement 

recorded and waistband IMU displacement computed. The window sizes were 130, 80 and 60 samples 

for vertical, mediolateral and anteroposterior axis, respectively. It should be noted that it was necessary 

to apply a high pass Butterworth filter to Xsens data to compare the signals. The comparison between 

the Xsens displacement signals and the computed displacement signals for the three axis is illustrated 

in Figure 19.  

 In the subsequent section the following steps will be explained in more detail. More specifically, 

the feature selection methods and the machine learning algorithms used in this dissertation. 

4.4.2 Machine Learning Approach 

 Concerning approaches to learning algorithms, there are three distinct modes: supervised 

learning, unsupervised learning, and reinforcement learning. In a supervised learning approach, the 

input data and the wanted outputs are specified (labelled data), and the objective is to build a model 

that learns from this data and is able to predict the correct output for unseen data. The indicated method 

can be subdivided into two main categories: classification and regression. In the case of unsupervised 

learning, it is provided only the input data without the required response [93]. Reinforcement learning 

is a type of machine learning that learns by interacting with the environment. This learning is based on 

the rewards and punishment of the actions performed [94]. In this work, it will be implemented 

supervised learning algorithms for classification problems. The main goal is to predict a class label from 

Figure 19 - Comparation between Xsens signals and waistband signals from the three axis of pelvis displacement. 
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the input features provided to different classifiers and study which is the best classifier for different 

specific targets (NF detection, INF detection, and gait event detection). 

 The first two steps prior to study the classifiers algorithms are the normalization data and feature 

selection methods. Normalization data allows putting the data within a range, for instance, 0 and 1. 

This point is important for neural networks and algorithms concern to distance, such as KNN algorithm 

[95], [96]. Since the KNN is one of the algorithms studied in this work, the normalization data was the 

first step. In this case, the min-max normalization in the range [0 1] was implemented (Equation 3).  

 

 

 Where x is the original value, minA and maxA are the maximum and minimum value of A, 

respectively, and x’ is the normalized value.  

 The feature selection methods were implemented in order to rank the features and improve the 

machine learning algorithm's performance. The quality of the training data is essential to achieve a 

model that is able to classify and generalize well. Having a large number of features can impair the 

model's training process if they have irrelevant or redundant information as well as noise [97]–[99]. 

That is why it is so significant to implement methods that allow ranking the features according to their 

relevance in order to reduce the number of features needed to train the model efficiently. The feature 

selection methods can be divided into three main methods: filter, wrapper and embedded [100]. 

 Regarding the three methods mentioned, the filter is the least computationally expensive, in 

contrast to other methods, it does not use any classifier. This technique is based on the information of 

each feature individually.  The wrapper methods use a classifier algorithm that assigns a score to the 

dataset according to the performance of the classifier. Of the three methods, this is the most expensive 

computationally (Table 12). Finally, in the embedded method, feature selection is part of the learning 

process of the classifier, i.e., feature selection is built during the training of the model [98], [100]. As in 

the classifiers, feature selection methods can also be supervised or unsupervised.  

Table 12 - Use or not of classification algorithms and computational cost of feature selection method 

Method Classifiers Computational cost 

Filter    x + 

Wrapper ✓  +++ 

Embedded ✓  ++ 

 

(3) 𝑥′ =
𝑥 − 𝑚𝑖𝑛𝐴

𝑚𝑎𝑥𝐴 − 𝑚𝑖𝑛𝐴
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 For this work, it was selected the Relieff, the MRMR, and the PCA methods for ranking feature 

dataset.  The Relieff method is prone to redundant features but can deal with noise datasets. The MRMR 

identifies relevant and redundant features [99]. The first methods are supervised and the PCA is 

unsupervised, and all of them are filter methods. This type of method was chosen since they are less 

computationally expensive.  

 Different machine learning algorithms can be implemented for classification. Support Vector 

Machine (SVM), DT and KNN are some examples of supervised machine learning algorithms widely 

employed. 

 The KNN classifier is a simple learning algorithm. The construction of the model consists of 

saving the training data. The class assignment to an unknown point is based on the distances from that 

point to closest data training (k-neighbours). Thus, it is necessary to define the number of k-neighbours 

that will contribute to the decision. For example, if k = 1, the assigned class will be the same as the 

closest neighbour. In case the k is greater than 1, the assigned class will be the majority observed in 

the k-neighbours. In this model, the appropriate value of k is crucial since a k with a small value is very 

susceptible to data noise and the model is highly complex. However, with high k value the model is not 

so complex but can comprise several points of different classes [101], [102]. When exists different 

classes in the k-neighbours, it can be useful to assign a weight accordingly to the distances between 

the k-neighbour and the unknown point. In this way, closer neighbours would have a higher weight in 

the attribution of the class [103]. 

 The DT algorithm is based on questions. The DT is formed by nodes that connect to each other 

through branches. The process starts at a node called root that represents all the data. Each node will 

divide the instances according to the values of the input attributes. The intermediate nodes are called 

test. The last node that does not connect to any additional node is called leaf and represents the final 

decision (class label).  If the division of the nodes occurs successively until it reaches all leaves pure, 

we will have a more complex model and prone to overfitting the training data. There are two approaches 

to controlling complexity, namely, pre-pruning and pruning. The pre-pruning consists of stopping the 

formation of the tree previous (for instance, reduce the number of leaves). Pruning consists of removing 

nodes that are not crucial [101], [104]. 

 The SVM classifier tries to find a hyperplane in the n-dimensional space that best divides the 

classes. This hyperplane has an associated margin that is formed by only a few points of the training 

data (support vectors). Depending on the dataset a linear model may not be able to separate the classes 

in the best way. In this regard, nonlinear features can be added to represent the data, i.e., transform 
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the input data into a higher dimension features space. Therefore, classes that were not linearly 

separable in initial space in this new space are already possible. For this purpose different kernels can 

be used, for example, the polynomial or the Gaussian kernel [101]. 

 Other algorithms can be implemented for classification problems as well as Ensemble learning 

algorithms and LDA. Ensemble learning model consists of combining several classifiers to achieve better 

performance than would be achieved with any single model [105]. LDA algorithms are based on 

statistical data properties performed for each class. This model assumes that each class has Gaussian 

distribution and has same variance/covariance.  The classification of new data is performed based on 

the probability of the data belong to a certain class. There is some extensions of LDA, such as Quadratic 

Discriminant Analysis (QDA) and Flexible discriminant analysis [106].  

 After building the model, it is necessary to evaluate its performance with unseen data, because 

during the model training it may occur overfitting or underfitting.  One of the techniques used to evaluate 

the model performance is k-fold cross-validation. This method divides the data randomly in k folds. The 

classifier is trained and tested k times with different subsets. This means that k-1 folds are used to 

training the model and one fold for test and this is repeated until all folds have been used for testing 

[93], [106]. Throughout this dissertation a k=5 was always used.  

 Generally, the evaluation data are represented in a confusion matrix as shown in Figure 20. The 

row lines correspond to the actual classes and the columns represent the predicted class achieve by 

the classifier. The True Positives (TP) and True Negatives (TN) correspond to the correct classification 

and the False Negative (FN) and False Positive (FP) the misclassification. Different metrics can be 

calculated from the confusion matrix.  

 Some metrics usually employed are the Accuracy (ACC), Precision (PREC), Sensitivity (SENS) 

Specificity (SPEC), F-1 Score and Mathews Correlation Coefficient (MCC). These metrics are described 

thereafter.  

Figure 20 - Confusion matrix example. 
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 ACC is the fraction of correct prediction dived by the number of total samples (Equation (4)).  

This metric is not the best metric to evaluate imbalanced data that is to say when has a significant 

difference between the number of instances of each class. In this case, the classifier can predict a high 

number of the majority class and achieve a good ACC. In case of imbalance data, other metrics can be 

used such as PREC and SENS [107].    

 

 

 PREC is the fraction of TP divided by all positive (TP and FP). This metric measures the 

proportion of predicted positives that were correctly classified (Equation 5). 

 

 

 SENS is the number of TP divided by the sum of TP and FN (Equation 6).  

  

 SPEC is the number of TN dived by the sum of TN and FP. This metric measures the proportion 

of actual negatives that were correctly classified (Equation 7).  

 

 F1 -score is the harmonic mean of precision and sensitivity. This metric can be better for 

imbalanced data than ACC [93] (Equation 8).  

 

 

(4) ACC =
TP + TN

TP + TN + FP + FN
 

(5) PREC =  
TP

TP + FP
 

(6) SENS =  
TP

TP + FN
 

SPEC =
TN

TN + FP
 (7) 

F1 − score =  
2 ∗ ሺSENS + PRECሻ

SENS + PREC
 (8) 
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 The last metric presented is MCC that takes into account all confusion matrix (Equation 9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MCC =
TP ∗ TN − FP ∗ FN

√ሺTP + FPሻሺTP + FNሻሺTN + FPሻሺTN + FNሻ
 

(9) 
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CHAPTER 5 – NEAR FALL DETECTION 

The main goal of this chapter is to detect NF events and the direction of the NF when using a 

rollator.  Through the analysis of the literature, it is possible to conclude that there is an evident concern 

to prevent a fall situation. Many approaches were developed based on wearable and non-wearable 

systems [12], [14]. Regarding smart walkers different methodologies were found in literature in order 

to prevent a fall by stopping the walker when a dangerous situation is detected [75]–[82]. However, 

none of the articles found in the state of the art presents a strategy based only on IMU (Lower trunk) 

and FSR (shoes) signals to detect a NF and the NF direction with a smart walker. Nonetheless, these 

sensors have been studied by other researchers with the intention to detect a fall or even to distinguish 

the fall direction without a smart walker. It must be highlighted that the first advances in the identification 

of a NF as well as the direction, in this work, aim an implementation of a strategy to avoid the dangerous 

situation in the future. 

 In this chapter, the whole process developed to detect a NF and its direction will be presented. 

For this purpose, the device described in Chapter 4 was used to collect the data to be able to implement 

the strategy described throughout the next section. The methodology followed, the results achieved, and 

their critical discussion are presented below. 

5.1. Methods and Materials 

 In this chapter, it was performed two different studies one that consists of differentiating a NF 

from normal walking (Case 1), and another to distinguish the NF direction (Case 2). For this purpose, 

in the first place was necessary to collect the experimental data and perform the pre-processing as 

described in Chapter 4. Then, it was necessary distinguish between normal walking and NF, without 

considered the direction of the NF (data labelling, Case 1), and to distinguish the NF direction (data 

labelling, Case 2).  Following this, several features were computed (Appendix 1 Table 35) for each case 

aforementioned. Subsequently, different feature selection methods were applied. Finally, distinct 

classifiers were implemented in order to detect a NF (case 1) and its direction (case 2).  Case 1 is a 

binary classification problem and case 2 is a multiclass classification problem. In the second case, a 

distinction was made between NF to forward, right and left direction. In this study, the simulated 

backward NF were not performed since they presented a high risk of injury to the participants. Figures 
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21 and 22 depict an overview of the methodology implemented for case 1 and 2, respectively. Each 

case will be described in more detail below.  

5.1.1 Case 1 

The distinction between NF and normal walking for each trial was determined based on the 

following signals: the acceleration signals in the three axes; the angular velocity signals in the three axis; 

the acceleration sum vector magnitude signal; and the four FSR signals. After labelling the data, features 

were estimated and normalized, and the dataset was divided between training and test data by, 

approximately, 70% for training and 30% for testing. 

Three distinct feature selection methods were applied in data training to rank the features, 

namely, MRMR, Relieff and PCA (Figure 23). It was required to label the data before implementing the 

MRMR and Relieff algorithms, because these are supervised methods and, therefore, need labelling 

data. Only a specific number of features (X) were used for the next steps to reduce computational time. 

This number was defined based on PCA. First the number of Principal Components (PC) explaining at 

least 70% of the variance was estimated, afterward the values of these PC were summed and 

normalized. Then, the features where the sum of PC is greater than 1/ (number of features) were 

selected.  

Figure 21 -Schematic overview of the different steps performed to discriminate the NF direction.

Figure 22 - Schematic overview of the different steps performed to discriminate the NF from normal walking. 
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After concluding which features should be considered and, thus, obtaining the training dataset 

to be used, seven different machine learning algorithms were applied to build the models. In particular, 

LDA, QDA, DT, KNN with equal, inverse and squared inverse distance weight function and Ensemble 

algorithms. In order to know how many features were necessary to reach the best result, a progressive 

analysis was executed. This means that was built a model with the first most relevant feature, then with 

the first two most relevant features, this iteratively until the number of features be equal to X.  

 

Thus, 21 different models with the best feature set were built. Subsequently, the models were 

tested with unseen data to understand how reliable the models are (Figure 24). The performance of the 

models was evaluated based on the metrics mentioned in Chapter 4. 

 

 

In order to improve the outcomes, the hyperparameter optimization was performed for the three 

models with the best performance. In case of KNN, different ks were tested for Euclidean distance. For 

DT, the ‘auto’ hyperparameter optimization option provided by MATLAB was implemented. This option 

allowed to optimize the minimum number of leaf node observations. The Ensemble model 

hyperparameters was also optimized with ‘auto’ hyperparameter optimization option provided by 

MATLAB. In order to optimize the number of ensembles learning cycles, learning rate for shrinkage and 

the minimum number of leaf node observations.  

Figure 23 – Methodology implemented for building the machine learning models to detect a NF.   

Figure 24 - Methodology implemented for evaluating the model performance with unseen data to 
detect a NF. 
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Since the dataset is a case of unbalanced data, approximately 85% of one class and 15% of the 

other class, two other approaches were implemented. In the first approach the minority class data was 

duplicated. In the second approach different misclassification costs were tested in order to decrease 

the number of samples correspond to the NF that are classified as normal walking. 

The last step consisted in applying a post-processing algorithm to the data predicted by the best 

model built throughout the process described above. This post-processing aims to reduce the number 

of FP. A sample is only classified as NF if a given consecutive number of previous samples has also 

been classified as NF. A window size from 1 up to 25 samples was tested in order to achieve the best 

result. 

5.1.2 Case 2 

 The case 2 is a multiclass problem, since it is intended to classify three different directions 

(forward, right and left). The first step consisted of labelling the data with three different classes based 

on the signals mentioned for case 1. Afterwards, the features were calculated and normalized between 

0 and 1. The training dataset represented, approximately, 70% of entire dataset and the test dataset 

30%. The feature selection methods (PCA, MRMR and Relieff) were applied in this new dataset to get a 

new ranking. Before implementing the classification algorithms, the PCA was applied in order to define 

a maximum number of features to use in the next steps, as described in the previous case. 

 The SVM with three different kernels, linear, Gaussian and polynomial were used in addition to 

the models applied for Case 1. In this case, particularly, each class represent, approximately, 32%, 35% 

and 33% of the entire dataset.  At the end of this process, 3 models were obtained for each classifier 

(Figure 25). 

 

Figure 25 – Methodology implemented for building the machine learning models to discriminate the NF direction.   
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  The 30 built models were tested with unseen data as despicted in Figure 26. In order to 

understand how it actually behaves. After the analysis of all the models performance, the 

hyperparameters of the model that best distinguished the NF directions were optimized. For this, it was 

used the option of hyperparameters optimization, 'auto', provided by MATLAB. 

5.2. Results 

5.2.1 Case 1  

 After feature computation and the application of feature selection methods, the number of PC 

that explain at least 70% of the variance was estimated, which corresponds to 13 PC as depicted in 

Figure 27. Based on the information from the 13 PC, 22 features were selected. However, sixty features 

were used, which means that they are almost three times more features. The sixty most relevant 

features ranked by the MRMR, Relieff and PCA are presented in Appendix 2 (Table 36). 

Figure 26 - Methodology implemented for evaluating the model performance with unseen data to 
discriminate the NF direction. 

Figure 27 – Screen plot of PCA when using the dataset to detect a NF. 
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Subsequently, several models were built (LDA, QDA, DT, Ensemble, KNN Equal, KNN inverse, 

and KNN squared inverse) with different feature sets. The best cross-validation results for each 

combination of feature selection methods and classifiers algorithms are shown in Appendix 2 (Tables 

37, 38 and 39) for best feature sets found. For MRMR and Relieff selection methods, the best 

performances were achieved with DT, Ensemble, and KNN with different weight distance functions. The 

LDA and QDA presented the worst performances, being the best MCC = 51.41% for LDA classifier with 

MRMR method. After selected the best number of features for each model, the models were tested with 

unseen data. The results achieved are presented in Table 13. The Ensemble algorithm was the classifier 

that achieved the best performance ACC= 95.18%, SENS=71.63%, SPEC=99.33%, PREC= 94.96%, F1- 

score= 81.66% and MCC= 79.99%. 

Table 13 – Evaluation performance results achieved for all combinations of feature selection methods, number of features and machine 
learning models when tested with unseen data to detect a NF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number 

of 

Features 

Relieff 

LDA 87.19 57.48 92.42 57.19 57.33 49.79 23 

QDA 89.17 66.95 93.08 63.03 64.93 58.57 23 

KNN Equal 92.25 62.27 97.53 81.64 70.65 67.08 59 

DT 87.67 68.25 91.09 57.44 62.39 55.36 20 

Ensemble 93.72 71.40 97.65 84.25 77.29 74.01 41 

MRMR 

LDA 88.29 49.39 95.15 64.21 55.83 49.78 10 

QDA 90.58 61.42 95.72 71.65 66.14 60.95 3 

KNN Equal 93.91 68.66 98.36 88.05 77.15 74.46 60 

DT 91.05 72.67 94.29 69.14 70.86 65.61 45 

Ensemble 95.18 71.63 99.33 94.96 81.66 79.99 51 

PCA 

LDA 87.73 12.27 44.75 95.30 52.21 46.24 23 

QDA 87.63 12.38 47.25 94.74 53.35 46.88 23 

KNN Equal 89.04 49.31 96.04 68.69 57.41 52.25 60 

DT 84.67 64.19 88.28 49.10 55.64 47.19 37 

Ensemble 87.36 59.12 92.33 57.59 58.34 50.90 30 
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Since the best performance with unseen data were obtained by the DT, KNN Equal, and the 

Ensemble classifiers when using the MRMR feature section method, the hyperparameters of these 

models were optimized. Concerning the DT classifier, the minimum leaf size observation was the 

hyperparameter optimized, and the best value achieved for this hyperparameter was 2 (Appendix 2 

Table 40). It should be mentioned that the value used without optimization was 1 (default value). The 

DT model performance with hyperparameter optimization is shown in Table 14.  

Table 14 – Evaluation performance result of the DT model with the hyperparameter optimized when tested with unseen data to detect a 
NF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number of 

Features 

MRMR DT 91.38 72.57 94.69 70.62 71.60 66.53 45 

Respecting KNN Equal, different values of k were tested, namely, 1,4,8,9,11,13,15 and 20. 

Through cross-validation data the best result was achieve with k=4 (Appendix 2 Table 41). The model 

performance with unseen data for k=4 is presented in Table 15. It should be noted that the default value 

of k was 1 (model performance presented in Table 13). 

Table 15 – Evaluation performance result of the KNN Equal model with the hyperparameter optimized when tested with unseen data to 
detect a NF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC k 

Number of 

Features 

MRMR 
KNN 

Equal 
94.04 66.69 98.86 91.15 77.03 74.89 4 60 

 Concerning Ensemble classifier, the result of hyperparameters optimized is shown in Table 16. 

The overall metrics obtained for Ensemble classifier with 51 features and hyperparameters optimization 

are presented in Table 17.  

Table 16 – Ensemble hyperparameters values optimized to detect a NF 

Hyperparameters Value 

Ensemble Aggregation Method Bag 

Number of Learning Cycles 498 

Learn Rate NaN 
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Table 16 - Continued 

Hyperparameters Value 

Minimum Leaf Size 1 

Table 17 – Evaluation performance result of the Ensemble model with the hyperparameters optimized when tested with unseen data to 
detect a NF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC F1- score MCC 
Number of 

Features 

MRMR Ensemble 95.17 71.76 99.29 94.68 81.65 79.93 51 

 

In this study, the proportion of one class in the dataset is much higher than the other (unbalance 

data). In this regard, the first approach tested was the oversampling of training data. In other words, 

the data of minor class were duplicate. The metrics results are shown in Table 18. In this particular 

case, the MCC (79.13%) and F1-score (81.13%) decreased slightly concerning initial performance 

obtained. However, the SENS increased, approximately 0.4%. The cross-validation result is shown in 

Appendix 2 (Table 43). 

Table 18 – Evaluation performance result of the Ensemble model with data oversampling when tested with unseen data to detect a NF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number of 

Features 

MRMR Ensemble 94.98 72.02 99.03 92.89 81.13 79.13 51 

Different costs (5,3 and 10) were tested for FN. The results are shown in Table 19 for unseen 

data and the cross-validation results are shown in Appendix 2 (Table 44). 

Table 19 – Evaluation performances results of the Ensemble model with the 51 most relevant features ranked by the MRMR method for 
different misclassification costs when tested with unseen data to detect a NF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC Cost 

MRMR Ensemble 

95.00 71.95 99.05 93.02 81.14 79.16 3 

94.99 72.03 98.93 92.19 80.87 78.77 5 

94.53 71.76 98.54 89.64 79.71 77.23 10 
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Through Figure 28, it is possible to observe that from 15 features, the MCC, F1-score, SENS, 

and ACC do not increase significantly with cross-validation data.  It was analysed the model performance 

when built with fifteen features and tested with unseen data. The overall metrics achieved were ACC= 

94.90%, SENS= 70.88%, SPEC=99.14%, PREC= 93.53%, F1-score = 80.64% and MCC= 78.77% (Table 

20). The cross-validation results are shown in Appendix 2 (Table 45). 

 
Table 20 – Evaluation performance result of the Ensemble model with the 15 most relevant features ranked by the MRMR method when 
tested with unseen data to detect a NF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

MRMR Ensemble 94.90 70.88 99.14 93.53 80.64 78.77 

 

 A post-processing algorithm was applied to the data predicted by the Ensemble classifier with 

the 51 most relevant features ranked by MRMR. The best result was reached with a window size of 22 

samples. The NF is detected on average 710ms after the start and 1.48s before the end of the NF, 

Figure 28 – Evaluation performance results reach with the Ensemble model trained from 1 up 60 first features ranked 
by MRMR method with cross-validation data to detect a NF. 
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being able to detect 100% of the NF that occurred. The number of misclassified normal walking samples 

decreased, approximately 98%. The number of NF detected, time to detect a NF, time until NF over are 

presented in Table 21 with and without post-processing. Through Figure 29, it is possible to compare 

the results obtained with and without post-processing procedure for all unseen data, which represent 

56 NF in total. 

Table 21 - Comparison of the results using post-processing algorithm and non-using post-processing algorithm 

Post 

Processing 

Number of 

NF Detected 

 Time to 

Detect a NF 

(s) 

(mean ± std) 

Time until NF 

over (s) 

(mean ± std) 

Window 

Size 

NF Duration 

(s) (mean) 

x 56/56 0.42 ± 0.38 s 1.76 ± 0.76 s - 
2.19 ± 0.88 s 

✓  56/56 0.71 ± 0.48 s 1.48 ± 0.68 s 22 

 

(a) 

Figure 29 - Comparation between NF detection events non-use (a) and use (b) of the post-processing with a window size of 22 samples. 

(b) 
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5.2.2 Case 2 

According to the PCA it was possible to conclude that at least 70% of the variance is explained by 

17 PC as depicted in Figure 30. Based on the information from the 17 PC, 31 features were estimated.  

As in the previous case, 60 features were used to perform the progressive analysis of feature set size 

in order to get the best model. The sixty most relevant features ranked by the MRMR, Relieff and PCA 

are presented in Appendix 2 (Table 46). 

 

 

The results obtained for Case 2 are presented below, where the purpose is to detect the NF 

direction. Table 22 shows the performance achieve by several models when tested with unseen data. 

The best result was achieved by SVM classifier (Gaussian kernel) with the 60 most relevant features 

ranked by Relieff (ACC= 58.97%, SENS= 58.95%, SPEC=79.51%, PREC=58.96%, F1-score=58.92% and 

MCC = 38.45%). The worst performance was obtained by DT classifier with the 36 most relevant features 

ranked by PCA (ACC= 38.61%, SENS= 39.00%, SPEC=69.30%, PREC=38.31%, F1-score=38.47% and 

MCC = 8.04%). The cross-validation results are shown in Appendix 2 (Tables 47, 48 and 49). 

Figure 30 - Screen plot of PCA when using the dataset to detect the NF direction. 
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Table 22 – Evaluation performance results achieved for all combinations of feature selection methods, number of features and machine 
learning models when tested with unseen data to detect the NF direction 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number 

of 

Features 

Relieff 

KNN Equal 50.83 51.02 75.43 50.74 50.71 26.35 52 

DT 40.19 40.37 70.12 40.21 40.01 10.44 21 

Ensemble 48.26 48.54 74.26 49.12 48.27 23.07 24 

LDA 43.63 44.10 71.93 43.72 43.30 15.95 27 

QDA 45.98 46.32 73.16 46.96 45.87 19.79 29 

SVM Linear 49.54 49.54 74.83 49.71 49.53 24.43 56 

SVM 

Gaussian 
58.97 58.95 79.51 58.96 58.92 38.45 60 

SVM 

Polynomial 
54.88 54.76 77.42 54.42 54.75 32.19 36 

MRMR 

KNN Equal 44.62 44.90 72.38 44.78 44.52 17.25 7 

DT 41.74 42.05 70.92 41.73 41.72 12.85 36 

Ensemble 46.77 46.92 73.43 47.25 46.85 20.47 57 

LDA 45.54 46.13 72.92 45.12 45.03 19.20 4 

QDA 49.69 49.72 74.85 52.25 49.58 25.68 9 

SVM Linear 47.22 73.62 47.38 26.38 46.94 20.97 39 

SVM 

Gaussian 
55.79 55.87 77.86 56.04 55.77 33.82 53 

SVM 

Polynomial 
56.65 56.89 78.32 56.89 56.62 35.14 47 

PCA 

KNN Equal 44.05 44.09 72.02 43.98 44.01 16.06 59 

DT 38.61 39.00 69.30 38.31 38.47 8.04 27 

Ensemble 44.92 45.16 72.55 45.12 44.83 17.70 39 

LDA 45.78 45.74 72.88 46.00 45.59 18.75 58 

QDA 44.37 44.43 72.24 44.57 44.38 16.72 58 

SVM Linear 50.20 50.34 75.20 50.62 50.16 25.66 59 
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Table 22 – Continued 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number 

of 

Features 

PCA 

SVM 

Gaussian 
53.35 53.44 76.68 53.49 53.38 30.14 59 

SVM 

Polynomial 
55.49 55.48 77.80 55.69 55.47 33.35 58 

 

 Since the best performance was achieved by SVM classifier (Gaussian Kernel), the 

hyperparameters were optimized, focusing on box constraint, and kernel scale. The results for 

hyperparameters optimization are shown in Table 23.  

Table 23 –SVM Gaussian kernel hyperparameters values optimized to detect the NF direction 

Hyperparameters Value 

Box Constraint 865.73 

Kernel Scale 0.4531 

 

All the evaluation metrics results obtained by SVM Gaussian kernel with 60 features ranked by 

the Relieff method are presented in Table 24. The cross-validation result is shown in Appendix 2 (Table 

50). 

Table 24 – Evaluation performance result of the SVM Gaussian kernel with the hyperparameters optimized when tested with unseen data 
to detect the NF direction 

Feature 

Section 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number of 

Features 

 

Relieff 

SVM 

Gaussian 
54.24 54.61 77.22 54.50 53.97 31.83 60 
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5.3. Discussion  

 By analysing the performance of different models when tested with unseen data without the 

optimization of hyperparameters, it can be concluded that the best result was reached with Ensemble 

classifier using the MRMR method.  The ACC, SPEC, PREC values are closer to 95%, and F1-score 

values and MCC are, approximately, 82% and 80%, respectively. The lowest value of all metrics was the 

SENS with 71.63%, which indicates a considerable number of FN. This means, the model is classifying 

samples as normal walking when they should be classified as NF. In this case, the subject is in a danger 

situation, and the model is unable to detect. The KNN Equal and DT classifiers present lower MCC and 

F1-score than Ensemble with MRMR. The performances obtained for each model during the validation 

were much higher than those obtained with the unseen data. This may indicate that the models may 

be adapting too much to the training data. 

 In order to improve the model performance, the hyperparameters of KNN Equal, DT and 

Ensemble classifiers were optimized when using the MRMR. The hyperparameter optimization in the 

case of Ensemble classifier did not present an improvement. When comparing with the initial model 

built, the difference was 0.01% for F1-score and 0.06% for MCC. For KNN Equal and DT classifiers the 

hyperparameters optimization also did not conferred a significant difference in the model performance.  

 In Case 1 the dataset is unbalanced, so in the sense of increasing the number of samples from 

minority class, the NF samples were duplicated. The Ensemble classifier with the 51 most relevant 

features ranked by MRMR was built with the new dataset. Although SENS has increased 0.4% and the 

SPEC 0.3%, on the other hand, PREC, F1-score and MCC decreased, 2.1%, 0.5%, 0.9%, respectively. It 

is possible to conclude that the oversampling of minority class does not improve the model performance 

despite the SENS increase. With misclassification costs, 3, 5 and 10, the SENS improved as pretended, 

however the SPEC, PREC, F1-Score and MCC decreased. Reduce the number FN is crucial but increase 

the FP is not beneficial. If a NF prevention strategy is applied, such as stop the walker, and the user is 

not prepared for this, a dangerous situation can be created. 

From Figure 28, which represents the model performance for Ensemble classifier using the 

MRMR method for several feature sets, it is possible to conclude that using 15 or more features the 

model performance is almost constant. It is intended to detect the NF as quickly as possible in order to 

act when a dangerous situation is detected. The model performance reach with 15 features did not 

decrease very significantly, considering that the dataset has been reduced 75%. Across this analysis, it 

is possible to deduce that the 45 extra features do not add much more information to the model. 
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 The Ensemble was the model that presented the best results in relation to the MCC and F1-

score with only 51 features. So, in order to reduce the number of FP, a post-processing algorithm was 

applied. From the results obtained, the number of FP decreased considerably, 98%. However, the time 

required to detect the NF from the moment it starts increased by an average of 290ms for a window of 

22 samples. However, it is still possible to detect a NF 1.48s before it ends. Although the model is not 

ideal, all NF were detected with and without post-processing. The window size defined to detect the NF 

may have to be adjusted depending on the prevention strategy that will be applied.  

 The diversity of data, since it was collected with two very different velocities which change the 

signal pattern as well as the small amount of NF data, can make the model not be able to learn as well 

as the intended.  

 In Case 2, to detect the NF direction, the models performance were very weak. The best 

performance was achieved with SVM Gaussian kernel using the Relieff method. However, the 

performance was very low with a F1-score of 58.92%, which means the model cannot reliably 

differentiate the NF direction. The performance obtained by SVM Gaussian kernel model with 

hyperparameter optimization was worse than registered without optimization.  

 The fact that the model built cannot distinguish the direction of the NF may be related to the 

small dataset. Another aspect, it is the fact that NF events can happen in several ways.  Since NF are 

involuntary and aleatory situations, the same person and different people do not always perform a NF 

the same way. 
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CHAPTER 6 – INCIPIENT NEAR FALL DETECTION  

This chapter presents the methodology followed to discriminate between an INF and normal 

walking based on machine learning classifiers. In this dissertation an “Incipient Near Fall” means the 

moment prior of a sudden change in the subject's balance. In particular, it is intended to investigate 

whether the INF presents any evidence which might indicate that the subject is in a dangerous situation. 

With the purpose to increase the time available for action to help the user to restore the balance as 

quickly as possible and, thus, avoid any accompanying injury or even a fall.  

The approach developed involves six main sequential parts, namely, data recording, data pre-

processing, data labeling, feature computation, feature selection methods and machine learning 

classifiers. The first two parts are described in detail in Chapter 4. Further details of the last four parts 

as well as the results obtained and their discussion are described below.  

6.1. Methods and Materials 

The Figure 31 depicts an overview of all steps accomplished subsequent to data acquisition and 

pre-processing. A total of n features was computed and normalized, after data labelling. Then, X most 

relevant features ranked by several feature selection methods were combined with different classifiers 

in order to achieve which feature combination produces the best classification performance. All these 

steps are described in more detail below. 

Before explaining the data labelling process, it is important to introduce two gait events:  the heel 

contact in the ground, HS, and the foot raising from the ground, TO. These two events can be detected 

using the FSR signals. The FSR placed in the heel zone allows the detection of the HS, when a quick 

rise in the signal value is evident. On the other hand, the FSR located in the front zone of the foot helps 

Figure 31 - Schematic overview of the different steps performed to discriminate an INF from a normal walking. 
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to detect the TO, when a quick decline in the signal value is observed. Both TO and HS events happen 

consecutively during walking since is a repetitive process [2][108]. 

The primary step to label the data was to determine the last gait cycle that happened before the 

beginning of the NF.  Subsequently, in each test, the INF was labelled from the gait event before the NF 

occurred until the same event previously detected.  For instance, if the last event before NF occurred 

was HSRight_NF, the duration of the INF is defined from the HSRight that occurred before the detection of the 

HSRight_NF to the HSRight_NF (complete gait cycle).  

 Several features were calculated after the data labelling, 170 in total. The first 169 features are 

the same as those computed in Chapter 5 and are presented in Appendix 1 (Table35). The new feature 

added is related to the HS and TO gait events. With these events it is possible to split the gait into four 

main states that are repeated over time, i.e., HSRight up TOLeft, TOLeft up to HSLeft, HSLeft up TORight, and lastly 

TORight up HSRight. Therefore, the new feature represents the duration of each state. The purpose of this is 

to investigate if the duration of each state is relevant to distinguish normal walking from INF situation. 

Data normalization between 0 and 1 was the last step conducted before the implementation of feature 

selection methods. 

Three feature selection methods and five machine learning classifiers were implemented.  The 

different classifiers used were, namely, DT, Ensemble and KNN, with an equal, inverse and squared 

inverse distance weighting functions. All combinations of feature selection methods, classifiers and 

number of features were tested to reach the best model performance. For this purpose, each model 

performance analysis was performed with a successive cross-validation with bigger feature sets. In each 

iteration, the next most significant feature given by the feature selection method is added to the feature 

set. Since executing an incremental analysis with 170 features is computationally expensive for five 

models, only X features were used. The number of features was determined based on PCA as performed 

in the previous chapter. The best feature set was selected according to cross-validation performance. It 

should be noted that the training dataset corresponds to approximately 70% of all data collected. At the 

end, 15 models were built (Figure 32). 

Figure 32 - Methodology implemented for building machine learning models to detect an INF. 
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The 15 models built were tested with unseen data which correspond to approximately 30% of all 

data acquired (Figure 33). Several metrics were calculated to understand how the models really 

generalize. The best model was selected based on the performance achieve with unseen data.   

 

In this chapter, the training data is unbalanced, i.e. there is a high disproportionately instance 

ratio between classes. Roughly, 84% of the data correspond to normal walking class, while only 16% are 

INF data. In this sense, the INF data was duplicated, and a new training dataset was generated. 

However, only the most successful combination of the feature selection method and machine learning 

classifier achieved with the previous normalization was applied. The methodology followed for this 

situation was similar to the previous described, with the exception that only one feature selection method 

and one classifier was implemented. 

Ultimately, the z-score normalization was implemented. For this specific case as for the 

preceding situation, just the best combination of the features selection method and classifier was 

employed. 

6.2. Results 

As depicted in Figure 34, 16 PC explain at least 70% of the variance. Then with the information 

contained in the 16 PC, 31 features were selected as the most relevant. However, it was decided to 

allocate almost the double of features (60 features) to provide a more complete analysis. The sixty most 

relevant features ranked by MRMR, Relieff and PCA are presented in Appendix 3 (Table 51). 

It was performed an analysis with 60 different feature sets for the 15 possible combinations (5 

classifiers with 3 feature selection methods).  The number of features selected was based on the models 

performance achieved with cross-validation data. The best cross-validation results are presented in the 

Appendix 3 (Tables 52, 53 and 54). The Ensemble classifier was the one that yielded the best output, 

Figure 33 – Methodology implemented for evaluating the model performance with unseen data to 
detect an INF. 
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in general, independently of the feature selection methods. The Ensemble classifier produced MCC and 

F1-score results over 99% when using the PCA (MCC=99.65% and F1-score=99.71%)  and Relieff 

(MCC=99.67% and F1-score=99.73%)  methods , and relatively poorer results when using the MRMR 

method (MCC= 85.74% and F1-score 87.11%). 

The models built were further tested with unseen data to determine the models behaviour. The 

overall metrics obtained are presented in Table 25. Evaluation performance metrics revealed that the 

Ensemble classifier presented the best results when using the 40 most relevant features ranked by the 

Relieff method. 

Table 25 – Evaluation performance results achieved for all combinations of feature selection methods, number of features and machine 
learning models when tested with unseen data to detect an INF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1 - 

score 
MCC 

Number 

of 

Features 

MRMR 

DT 70.14 21.94 79.05 16.22 18.65 0.88 57 

Ensemble 80.48 4.38 94.55 12.92 6.54 1.75 10 

KNN Equal 71.47 18.29 81.30 15.31 16.67 0.38 3 

 

Figure 34 - Screen plot of PCA when using the dataset to detect an INF. 
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Table 25 - Continued 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1 - 

score 
MCC 

Number 

of 

Features 

Relieff 

DT 73.10 32.21 80.66 23.54 27.20 11.39 11 

Ensemble 81.86 24.36 92.49 37.50 29.54 20.27 40 

KNN Equal 69.82 29.91 77.20 19.52 23.62 6.05 9 

PCA 

DT 70.76 22.95 79.60 17.22 19.68 2.29 44 

Ensemble 82.93 20.56 94.46 40.68 27.31 20.22 38 

KNN Equal 73.96 23.72 83.24 20.74 22.13 6.60 60 

 

 Figure 35 represents the evolution of ACC, SENS, MCC and F1-score performance obtained 

with the Ensemble classifier trained from 1 to 60 most relevant features ranked by the Relieff method. 

The analysis of Figure 35 shows that with only 8 features the overall model training performance is quite 

high (ACC=99.89%, SENS=99.95%, MCC= 99.62%, and F1-Score= 99.68%). It is noticeable that from 

the eight features the model performance during training remains almost constant.   

Figure 35 - Evaluation performance results reached with the Ensemble model trained from 1 up to 60 first features ranked 
by Relieff method with cross-validation data. 
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 Since the dataset used to train the model presents a significantly larger number of instances of 

one class than the other class, the data of the minority class (INF) was duplicated, and the Ensemble 

classifier with the features ranked by Relieff method was applied. In Appendix 3 (Table 55) is show the 

cross-validation performance achieve for the best feature set. Table 26 presents the result produced by 

the model when tested with unseen data. 

Table 26 – Evaluation performance result of the Ensemble model with data oversampling when tested with unseen data to detect an INF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1 - 

score 
MCC 

Number 

of 

Features 

Relieff Ensemble 84.40 15.94 97.05 49.99 24.17 21.68 47 

 

 Another type of normalization was applied, namely, the z-score normalization. For this study 

only the Relieff feature selection method, and the Ensemble classifier was implemented. The best 

performance result achieved with the cross-validation data for this combination was with the 20 most 

relevant features (Appendix 3 Table 56). Therefore, the model built with the most relevant features was 

subsequently tested with unseen data and the overall metrics reached are presented in Table 27. 

Table 27- Evaluation performance result of the Ensemble model with z-score normalization when tested with unseen data to detect an INF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1 - 

score 
MCC 

Number 

of 

Features 

Relieff Ensemble 83.24 24.57 94.09 43.46 31.39 23.87 20 

6.3. Discussion 

 The first step was to determine the best feature set for each combination of feature selection 

method and machine learning algorithm through cross-validation. From all possible combinations, it 

was concluded that the Ensemble classifier with PCA and Relieff methods reached the highest MCC and 

F1-score outcomes, around 100%. However, the model performance when tested with unseen data 

decreased, drastically, around 80% and 70% for MCC and F1-score, respectively. Although high results 

were obtained with the cross-validation data, the same did not happen with the unseen data which 
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indicates overfitting. This means the model is adjusting very well to the training data, not being able to 

distinguish between normal walking and INF events.  

 By analysing Figure 35, it was possible to establish that from eight features the overall 

performance of the Ensemble classifier when using the Relieff method is practically constant. The 

difference in terms of MCC and F1-score was, roughly, 0.05% for both metrics. This indicates that the 

other features added do not provide a considerable benefit to the learning model process. Thus, 

increasing the number of features (more than 60 features) in this case will not improve the model 

performance.  

 As this is an unbalanced dataset, minority class data were oversampled in order to improve 

model performance. Nevertheless, it was observed that this failed, i.e., the model remained unable to 

distinguish the two classes. 

 The z-score normalization was implemented and a new model with the combination of the 

Relieff method and the Ensemble classifier was built. Even though there was a very insignificant 

improvement, the model still fails to discriminate between a normal walking and an INF event. It should 

be noted that as in the previous case, the model, although performing very well with the cross-validation 

data with unseen data this was not observed. 

 The poor performance of the models in distinguish between normal walking and an INF may 

indicate that there is no relevant information before the NF to detect that the user is in a dangerous 

situation. On the other hand, the machine learning algorithms applied may not have been the most 

indicated to identify the differences between normal walking and an INF event. It may be more suitable 

for this situation, for instance, deep learning algorithms. Another hypothesis that may have resulted in 

the poor performance of the models may have been the small amount of data available related to the 

INF situations.  
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CHAPTER 7 – GAIT EVENT DETECTION USING A WALKER 

The main objective of this chapter is to detect two gait events, TO and HS of each foot, when 

using a walker. It is intended to identify the HS and TO events using machine learning models with 

inertial signals acquired on the lower trunk as inputs. FSR signals gathered from each insole will be 

used as ground truth. 

 To do so, four major steps were followed after gathered data and pre-processing, namely:  i) data 

labelling; ii) computation of several features; iii) implementation of different feature selection methods; 

and iv) training and testing distinct machine learning models. Once again, the best feature set was 

analyzed for each machine learning algorithm determined by feature selection methods. The results 

obtained and their discussion are presented below, included a more detailed description of the approach 

applied. 

7.1. Gait analysis and Fall Risk 

The assistive devices for walking are generally used by subjects who have mobility problems and 

need aid for locomotion. Subjects who have experienced a fracture or who suffer from neurological 

disorders, e.g. stroke, may require a walking aid [109]. The neurological disorders can affect the gait 

pattern and increase the risk of falling, such as patients with PD who have a higher risk to fall forward 

due to the festinate gait [4].  In these cases, of gait abnormality, the gait analysis (GA) can provide an 

extra information related to the user and can be also useful for clinicians [110].  

The human gait is characterized by events that are repeated over time and can be described as 

a set of gait cycles [2], [108]. The gait cycle can be divided in two major phases: stance and swing. The 

first one comprises 60% of the gait cycle and the other 40%. The stance phase corresponds to the time 

while the foot is on the ground (starts with HS event), while swing phase correspond to period where 

the foot is in the air (starts with TO event). A complete gait cycle, generally, includes the period between 

ground contacts of the same heel, i.e., a gait cycle, is usually defined by the start and the end of a HS. 

The term stride has the same meaning as gait cycle and comprises two steps. One step starts with the 

heel contact and ends when the opposite heel contacts with the ground as exemplified in Figure 36 

[108], [111].  
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The stance and swing phases can also be subdivided in eight periods as shown in Figure 37, 

such as [108], [112], [113]: 

• Initial contact: corresponds to the instant the foot contacts the ground and represents 

the beginning of stance phase (0-2% of GC).   

• Loading response: corresponds to the period where both feet are in contact with the 

ground, starts with the initial floor contact and ends with opposite foot lifting on the 

ground (0-10% of GC). 

• Mid stance: starts when the opposite foot rise from the ground and continues till the 

bodyweight is aligned over the forefoot (10-30% GC).  

• Terminal stance: starts when the heel lifts from the ground and proceeds until the 

opposite foot is in contact with the ground (30-50% of GC). 

• Pre-swing: starts with the other foot contact with the ground and culminates with 

ipsilateral TO (corresponds to the transition of stance phase to the swing phase) (50-60% 

of GC) 

• Initial swing: starts with foot rises from the ground and continuous until the other foot is 

opposite the stance foot (60-73% of GC). 

• Mid swing: corresponds to the moment which swinging foot passes the opposite stance 

foot (73-87%). 

• Terminal swing: starts when the tibia is vertical and continue until the heel contact with 

the ground. 

 

Figure 36 - Representation of stride and step [111]. 
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Several parameters associated with gait movements can be considered for GA, such as: kinetic 

parameters related to torque and moment; kinematic parameters concerning to joint and lower 

extremities motions; electromyography parameters related to muscle activity; and the spatiotemporal 

parameters associated with the distance and time measurements (e.g. step length, cadence, stride 

length and swing time) [112], [114]. Several approaches have been developed in order to measure the 

different gait parameters. For this purpose, both non-wearable (e.g. cameras and force platform) and 

wearable sensors (e.g. IMU and pressure insoles) have been tackled [2], [110], [112], [115].  

The GA methods have an important role in medical field [110]. In the rehabilitation area it can 

be important to access the recovery process and planning the treatment, and can be also useful to 

diagnose and estimate the fall risk [112]. For example, patients with multiple sclerosis present 

modification in spatiotemporal parameter, translated by a decrease in steps length and cadence [110]. 

The use of assistive devices also alters the spatiotemporal parameters, such as, cadence, step time, 

step length, stance and swing time [109]. 

 

 

 

 

Figure 37- Human gait phases and corresponding events during a right gait cycle [113]. 
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7.2. Material and Methods  

The methodology followed to detect TORight, TOLeft, HSRight and HSLeft events is similar to methodologies 

adopted for Chapter 5 and 6. The experimental procedure for the IMU and FSR data gathering is 

common to that carried out for the other chapters and is described in Chapter 4. Nevertheless, for this 

specific study, only data of normal walking were included. This means that from the data collected 

during the tests which pretend to simulate a NF were excluded the information corresponding to INF 

and NF being used only the normal walking data. With the purpose of obtaining the maximum amount 

of data possible. Figure 38 shows a schematic of the methodology applied to detect the gait events after 

data collection and pre-processing. It is important emphasize that the focus is to detect the gait events 

using exclusively the inertial data collected on lower trunk.  

 

In order to detect the two gait events through the FSR signals, an algorithm was developed which 

detects the sudden alterations in force signals (TORight, TOLeft, HSRight and HSLeft). Therefore, through the FSR 

signals, the data was labelled in four states: TORight-HSRight (state1), HSRight-TOLeft (state 2), TOLeft-HSLeft (state 3) 

and lastly HSLeft-TORight (state 4) (Figure 39). It should be noted that each state transition corresponds 

either to HS or TO of the right or left foot. 

 

 

Figure 38 – Schematic overview of the different steps performed to discriminate human gait events. 

State 1 State 2 State 3 State 4 

TORight HSRight TOLeft HSLeft 

Figure 39 - Scheme of human gait division used for gait events detection. 

TORight 
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Subsequently, all the features presented in the Appendix 1 (Table 35) were used with the 

exception of the FSR data which were excluded for this analysis. Which means, that in total 166 different 

features constitute the final dataset. The dataset was further separated in approximately 70% for training 

and 30% for testing.  

After obtaining the final feature set, the data were normalized between 0 and 1. With the intention 

of obtaining the most relevant features, three feature selection methods were applied, namely, MRMR, 

Relieff and PCA. This whole process has to be performed again, since the dataset is different from that 

used in Chapter 5 and 6. Out of 166 features, only X were considered to achieve the best model as 

previously realized due to computational cost issues. The number of selected features was determined 

based on the PCA method as performed in the chapter 5.   

Concerning machine learning algorithms, 7 different classifiers were used: DT, LDA, QDA, 

Ensemble and the KNN with an equal, inverse and squared inverse distance weighting functions. A 

progressive analysis of the number of features for all possible combination of classifiers and feature 

selection methods was performed with the intention of getting the best feature set. Among the different 

feature sets used to build the models, the most suitable set was determined according to the cross-

validation performance. Thus, at the end, 21 different models were obtained (Figure 40).  

After building all models, each model was tested with unseen data (Figure 41). For evaluate the 

model performance all the metrics mentioned in Chapter 4 were calculated (ACC, SENS, SPEC, PREC, 

MCC and F1-score). Through the analysis of the metrics mentioned, the model that best generalizes 

was the model selected. 

Figure 40 - Methodology implemented for building the machine learning models to detect human gait events. 

Figure 41 - Methodology implemented for evaluating the model performance with unseen data to 
detect human gait events. 
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Since it is intended to implement a real-time gait event detector, the time required to feature 

computation is crucial. Thus, for the best combination of the classifier with the feature set ranked by a 

specific method achieved previously, an analysis of the cross-validation metrics for each feature set was 

performed (F1-score, MCC, ACC and SENS). Then, a new model was built and tested with the unseen 

data.  

All hyperparameter values were optimized for the best combination of classifier and feature 

selection for the best number of features encountered, with the intention of building a model with better 

performance. For this purpose, an option provided by MATLAB was used, which allows the optimization 

of all hyperparameters of the classifier. After building the model this one was tested with unseen data 

to test its predictive potential. 

Lastly, a post-processing algorithm was applied to the predicted data by the best model and they 

were compared against the classifier results. In order to determine if there was a more reliable event 

detection.  

The post-processing algorithm implemented is depicted in the flowchart of Figure 42. This 

algorithm aims to decrease the misclassified samples in a short period of time.  Initially, it is necessary 

to pre-define the window size (number of samples) that contains only previous samples. Then, it is 

checked which class is the most present and that class is assigned to the current sample. If there are 

classes that contain the same number of samples inside the window, the class assigned to the current 

sample is the same as that assigned to the previous sample. To enhance post-processing algorithm, 

two restrictions were imposed: 

- If the dominant class inside of window is the class 2 (state 2), the class assigned to the previous 

sample cannot be class 3 or 4. Therefore, if this happens, the class assigned to the previous sample is 

assigned to the current sample. 

- If the dominant class is class 4 (state 4) the class assigned to the previous sample cannot be 

class 1 or 2. If this is the case, the same procedure shall be followed as described above. 
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7.3. Results 

Through the PCA, it was determined that 18 PC explain at least 70% of the variance as illustrated 

in Figure 43. Based on the information from the 18 PC, 36 features were selected. However, for this 

study 60 features were considered which allows a more complete analysis of the minimum number of 

features required to build a reliable model. The sixty most relevant features ranked by MRMR, Relieff 

and PCA are shown in Appendix 4 (Table 57). 

Figure 42 - Flowchart of the post-processing algorithm implemented to detect human gait events. 
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The next step was to obtain the best number of features from the 60*number of feature 

selection methods possible sets for each machine learning classifier. The model that presented the best 

performance with cross-validation data was selected. The metrics obtained for each model during the 

validation phase for the best feature set are presented in the Appendix 4 (Table 58, 59 and 60). 

Subsequently, the models were tested with unseen data in order to find the best model. The evaluation 

performance (ACC, SENS, SPEC, PREC, F1-score and MCC) of each model with unseen data is shown 

in Table 28. The model that presented the best performance was the Ensemble with the first 52 most 

relevant features ranked by the Relieff method (ACC =91.11%, SENS=87.62%, SPEC=96.78%, PREC= 

90.70%, F1-score=88.98% and MCC= 86.04%). 

 

 

 

Figure 43 - Screen plot of PCA when using the dataset to detect human gait events. 
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Table 28 - Evaluation performance results of all machine learning models when tested with unseen data to detect human gait events 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number 

of 

Features 

MRMR 

LDA 74.73 67.05 91.17 68.79 67.74 57.20 32 

QDA 73.27 62.58 90.41 66.50 63.59 55.11 16 

KNN Equal 89.26 86.44 96.31 86.93 86.68 83.02 18 

DT 81.51 76.90 93.59 77.87 77.33 71.01 36 

Ensemble 90.82 87.42 96.69 90.21 88.66 85.60 48 

Relieff 

LDA 73.82 66.56 91.02 67.21 66.78 57.94 54 

QDA 73.87 65.06 90.79 67.50 65.90 57.21 54 

KNN Equal 85.11 81.25 94.77 82.73 81.93 76.82 50 

DT 80.33 76.39 93.24 76.36 76.37 69.61 30 

Ensemble 91.11 87.62 96.78 90.70 88.98 86.04 52 

PCA 

LDA 66.58 58.18 88.76 58.08 58.06 46.83 60 

QDA 66.89 59.50 88.99 59.16 59.23 48.18 60 

KNN Equal 66.76 62.45 88.39 62.21 62.32 50.70 59 

DT 79.33 75.16 92.88 75.24 75.19 68.08 59 

Ensemble 89.19 85.22 69.10 88.62 86.66 83.10 59 

 

With the purpose of achieve the best trade-off between model performance and number of 

features needed to decrease the computational time, the performance of the Ensemble classifier with 

different feature sets ranked by the Relieff method was evaluated. The sets analyzed included from 1 to 

60 most relevant features (Figure 44). 

The analysis of Figure 44 was followed by the construction of 3 Ensemble models with 18, 25 

and 30 most relevant features ranked by Relieff method. The performance results of each model built 

when tested with unseen data are shown in Table 29. Considering the three models, the best 

performance was obtained with 30 most relevant features but there was a decrease of ACC, F1-score 

and MCC values of, approximately, 2.6%, 3.3% and 4.1%, respectively. The cross-validation results are 

shown in Appendix 4 (Table 61). 
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Table 29 – Evaluation performance results of the Ensemble model trained with 18, 25 and 30 features when tested with unseen data to 
detect human gait events 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number 

of 

Features 

Relieff Ensemble 

87.58 83.35 95.57 86.14 84.56 80.40 18 

87.97 83.64 95.67 86.93 85.06 81.06 25 

88.56 84.36 95.89 87.44 85.70 81.90 30 

 

Once selected the model that most successfully identifies the human gait events, the 

optimization of its hyperparameters was performed. The six hyperparameters optimized were: Ensemble 

Aggregation Method, Number of Learning Cycles, Learning Rate, Minimum Leaf size, Maximum Number 

of Splits, Number of Variables to Sample and Split Criterion. The values get for each hyperparameter 

are shown in Table 30. The performance results achieved by the Ensemble classifier with 52 features 

Figure 44 – Evaluation performance result reached with the Ensemble model trained from 1 up to 60 most relevant features 
ranked by the Relieff method to detect human gait events. 
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ranked by the Relieff method and hyperparameters optimized when tested with unseen data is presented 

in Table 31. The cross-validation results are shown in Appendix 4 (Table 62). 

Table 30 - Ensemble hyperparameters values optimized to detect human gait events 

Hyperparameters Value 

Ensemble Aggregation Method RusBoost 

Number of Learning Cycles 453 

Learn Rate 0.0938 

Minimum Leaf Size 1 

Maximum Number of Splits 81017 

Number of Variable to Sample NaN 

Split Criterion Deviance 

 

Table 31 - Evaluation performance result of the Ensemble model with the hyperparameters optimized when tested with unseen data to 
detect human gait events 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number 

of 

Features 

Relieff Ensemble 91.66 89.48 97.11 90.12 89.79 86.94 52 

 

After building the model, it was analysed the data gathered through the Ensemble classifier with 

the hyperparameters optimization. In order to accomplish a further analysis of the output generated by 

the model when tested with unseen data. Figure 45 shows a comparison of the ground truth data with 

the data predicted for a part of the complete test dataset. The blue rectangles in Figure 45 represent 

the misclassified samples in a short period of time, and which occur throughout all the test dataset. 

Finally, the post-processing was applied to the output from the model in order to decrease the 

misclassified samples. The results obtained directly after post-processing for a window of 16 and 20 

samples are shown in Table 32. A significant overall reduction was observed in the metrics calculated 

when compared to metrics obtained without any post-processing. There was a decrease of 8.5% and 

11.5% in ACC, 10.7% and 14.2% in F1-score, lastly 13.6% and 18.1% in MCC for windows of 16 and 20 

samples, respectively. 
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Table 32 – Evaluation performance results achieved using the post-processing algorithm with a window of 16 and 20 samples in the data 
predicted by the Ensemble model with hyperparameters optimized 

Window (Samples) ACC SENS SPEC PREC F1- score MCC 

16 83.13 78.82 94.18 79.46 79.13 73.36 

20 80.21 75.31 93.17 75.91 75.60 68.82 

 

The post-processing algorithm applied produced a delay of 8 and 10 samples for a window with 

16 and 20 samples, respectively. This is due to the fact that the post-processing algorithm only classifies 

the current sample as TOright, TOleft, HSRight and HSleft if half of the samples in the window have also been 

classified with the respective event. Thereby the metrics were recalculated with the delay rectified. The 

Figure 45 - Comparison between ground truth and the data predicted by the Ensemble classifier with hyperparameters 
optimized for part of the test dataset. 
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results of the models performance are shown in Table 33 without the imposed delay in the transitions 

by the post-processing. In general, there was an improvement in overall metrics when compared with 

those obtained without post-processing. In particular, an increase of, approximately, 1.2% and 1.3% in 

ACC, 1.3% and 1.4% in F1-score, and 1.7% and 1.9% in MCC with windows of 16 and 20 samples, 

respectively. 

Table 33 - Evaluation performance results achieved using the post-processing algorithm with a window of 16 and 20 samples in the data 
predicted by the Ensemble model with hyperparameters optimized (without considering the delay) 

Window (Samples) ACC SENS SPEC PREC 
F1- 

score 
MCC 

16 92.82 90.64 97.50 91.51 91.07 88.62 

20 92.92 90.78 97.53 91.70 91.23 88.82 

 

The Figure 46 represents the comparison between the signal obtained after post-processing 

application against the ground truth for a part of the test dataset. The post-processing was applied to 

the data provided by the Ensemble classifier with the hyperparameters optimized and trained with the 

52 most relevant features ranked by the Relieff method. The blue rectangles represent the areas where 

the misclassified samples in a short period of time were removed. It is important to note that the signal 

presented in Figure 46 does not included the delay that is produced in the transition detection when a 

post-processing algorithm is employed. 

The performance achieved for each class is shown in Table 34 for the three cases with the 

most outstanding results. In other words, the results predicted by the Ensemble model with the 

optimization of the hyperparameters without the use of the post-processing algorithm and with the use 

of the post-processing algorithm with a window of 18 and 20 samples, without the influence of delay. 

In general, the best results were obtained with the application of post-processing algorithm with a 

window of 20 samples. There was an increase of 1.1% in F1-score and 1.7% in MCC for class 1, 1.8% 

in F1-score and 2.1% in MCC for class 2, 1% in F1-score and 1.5% in MCC for class 3, and, 1.9% in F1-

score and 2.2% in MCC for class 4 in relation to that obtained without the application of post-processing 

algorithm. 
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Figure 46 - Comparison between the ground truth and the data predicted by the Ensemble classifier with hyperparameters 
optimized when using the post-processing algorithm with a window of 20 samples. 
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Table 34- Evaluation performance results achieved for each class predicted by the Ensemble model with the hyperparameters optimized with 
used and non-used of post processing algorithm to detect human gait events 

7.4. Discussion 

With respect to the first step accomplished, which aims to obtain the different models with the 

best feature set, it is possible to conclude through the validation performance that the LDA and QDA 

classifiers were the models with worst results. This was also verified when the model was tested with 

unseen data.  Through the performances of the models with unseen data, it was noted that all models 

built with PCA method yielded worst performances than those obtained with MRMR and Relieff methods. 

Nonetheless, the model with best result performance was the Ensemble classifier with the 52 most 

relevant features ranked by the Relieff method (ACC =91.11%, F1-score=88.98% and MCC= 86.04%).  

Since it is intended to implement the classifier in real time, it is important to explore if it is feasible 

to minimize computing time. In this regard, Figure 44 was analysed verifying that the model 

performance with validation data from 18 features remained almost constant. In this sense, three 

different models with 18, 25 and 30 features were built. However, it was concluded that the model 

Class 
Post-

processing 

Window 

(Samples) 
SENS SPEC PREC 

F1- 

score 
MCC 

TORight-HSRight 

(1) 

  x - 94.44 96.45 94.12 94.28 90.83 

✓  16 95.90 96.80 94.74 95.32 92.48 

✓  20 95.88 96.82 94.76 95.33 92.50 

HSRight-TOLeft 

(2) 

   x - 83.63 97.57 85.35 84.48 81.89 

✓  16 84.79 97.96 87.54 86.14 83.86 

✓  20 85.21 97.92 87.37 86.28 84.00 

TOLeft-HSLeft 

(3) 

   x - 94.48 96.22 92.91 93.69 90.34 

✓  16 95.29 96.80 93.98 94.63 91.79 

✓  20 95.42 96.79 93.98 94.69 91.88 

HSLeft-TORight 

(4) 

x - 85.38 98.19 88.10 86.72 84.69 

✓  16 86.59 98.46 89.82 88.17 86.38 

✓  20 86.61 98.60 90.69 88.60 86.89 
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performance worsened considerably.  A decrease of 2.6% in ACC, 3.3% in F1-score and 4.1% in MCC 

was registered for the best of the three models. 

Considering all the results mentioned above, the model that was most capable of predict the 2 

gait events (HSRight, HSLeft, TORight and TOLeft) was the Ensemble with the 52 most relevant features ranked 

by the Relieff method. With the objective of obtaining the best performance, the hyperparameters of the 

Ensemble classifier with the 52 most relevant features were optimized. Although there has been an 

improvement in the model performance, it was slightly significant with an increase of 0.6% in ACC, 0.8% 

in F1-score and 0.9% in MCC. Despite the small improvement in model performance, the Ensemble 

classifier with the hyperparameters optimized proved to be the best classification model built for the 

gait event detection (ACC =91.66%, F1-score= 89.79% and MCC =86.94%). 

The application of the post-processing algorithm aimed removing the misclassified samples in a 

short period of time which were observed in the predicted data. However, this post-processing implies 

a delay of 10 samples (with a window of 20 samples) in the transition detections. The metrics for 

assessing post-processing performance were calculated without the delay implied by post-processing. 

This is because it was noted that the model performance decreased considerably since 10 samples are 

misclassified at each transition. Otherwise, it was not possible to determine whether the post-processing 

algorithm effectively removes misclassified samples in a short period of time and its impact on the final 

results. Based on the results presented in Figures 45 and 46 it is proven that the misclassified samples 

in a short period of time were in fact removed. The ACC, F1-score and MCC increased by 1.3%, 1.4% 

and 1.9%, respectively with the post-processing algorithm. The delay caused by the algorithm may or 

may not be tolerable in real time depending on how accurate the detection of the events is required. 

For example, in the case of the calculation of spaciotemporal parameters, the presence of misclassified 

samples in a short period of time will have a strongly negative impact. 

An analysis of the metrics obtained for each class shows that, regardless of the use or non-use 

of post-processing the classes that are better identified are 1 (TORight-HSRight) and 3 (TOLeft-HSLeft) with F1-

score and MCC above 93% and 90%, respectively. The F1-Score and MCC metrics reached for each 

class were roughly 94% and 90% for TORight-HSRight class, 84% and 81% for HSRight-TOLeft class, 94% and 90% 

for TOLeft-HSLeft class, and, 87%, 85% for HSLeft-TORight class, respectively, without post-processing. With 

implementation of the post-processing algorithm with a window of 20 samples there was an 

improvement in overall metrics. Concerning F1-score and MCC, there was an increase of approximately 

1.1% and 1.7% for TORight-HSRight, 1.8% and 2.1% for HSRight-TOLeft, 1% and 1.5% for TOLeft-HSLeft, and 1.9% and 
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2.2% HSLeft-TORight. The greatest improvements were achieved in the classes that achieved the worst 

performance without the use of post-processing. 

The performance of the models may not have been better since the signals were collected at two 

very different velocities. However, in the future, the implementation of other algorithms, such as deep 

learning algorithms, and more robust feature selection methods should be investigated to increase the 

effectiveness in gait event detection. 
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CHAPTER 8 – CONCLUSION 

Throughout this dissertation, it was evident that the detection of falls and NF are a real concern 

to society, especially for the elderly and patients with neuromotor diseases. Several factors, intrinsic 

and extrinsic, contribute to an increased risk of falling. A large number of deaths by accident around 

the world are related to falls and have an economic implication on the population. In the scientific 

community, there is a notable focus on the development of fall detection systems as well as warning 

mechanisms. However, studies to detect the pre-impact phase and prevent the fall have also been 

addressed [14] [64].  

The walkers are frequently used by subjects who present a high risk of falling, hence the need 

for fall and NF detection methods when using walkers. In scientific literature, as well as in commercial 

systems, when a high-risk situation is detected, smart walkers generally stop automatically to support 

their user. New strategies must be built on this basis. Focusing on smart walkers, it was recognized that 

in the commercial area as research groups the fall detection and prevention is an important topic, and 

patents have been found in this regard. In this dissertation, the objective is to move forward to these 

strategies by taking the first steps towards the detection of a NF and an INF, and in addition the detection 

of two gait events, the TO and the HS. 

Inertial data close to the COM were gathered from the subject as well as FSR signals of the heel 

and toe of each foot. To this purpose, an existing system had to be adapted. The Xsens MTw Awinda 

was used to collect simultaneously inertial data from pelvis, near of COM, and the data were used to 

decide the pre-processing approach. This system was also important to develop an algorithm to estimate 

velocity and displacement from the adapted system data. NF were simulated in three directions 

(forward, right and left) at two different velocities, comfortable and slow. The slow velocity was crucial 

for this study, as it was noted that patients who use the ASBGo SW walk at very lower velocities. The 

comfortable velocity was defined in order to increase the data variability and, thus, allow to conduct a 

broader study. 

 Several features were computed mainly based on the inertial data collected in the three axis, in 

order to provide a better discrimination of the information and distinguish between a normal walking 

and a NF situation. The methodology followed throughout this dissertation was based on machine 

learning algorithms. In this sense, initially, all features were normalized between 0 and 1 followed by 

the application of three feature selection methods (MRMR, Relieff, and PCA). At the computational level, 

it was only possible, in this dissertation, to implement feature selection methods of the filter type. The 
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classifiers used were, in particular, Ensemble, DT, LDA, QDA, SVM with Gaussian, Linear, Polynomial 

kernels and the KNN with an equal, inverse and squared inverse distance weighting functions. It is 

important to mention that algorithms used for the NF, INF and gait events detection changed by time 

constraints. It was tested several combinations of classifiers and feature selection methods in order to 

reach the best model. An incremental analysis from 1 to 60 most significant features ranked by the 

feature selection methods was performed to find the best feature set. 

 Regarding the NF detection, it was investigated whether it was possible to detect it and identify 

its direction based on the features computed. With respect to the detection of a NF, the hyperparameters 

of the three models that obtained the best results with default hyperparameters were optimized. 

However, it was concluded that the best built model was the Ensemble with the 51 most relevant 

features ranked by the Relieff method (F1-score= 81.66% and MCC =79.99%) with default 

hyperparameters. Other strategies to improve the model performance were implemented, such as the 

oversampling of the minority class and the attribution of a cost to misclassification. Nevertheless, no 

improvement was produced.  The last step was to implement a post-processing algorithm to eliminate 

situations that were wrongly detected as a NF. Despite the post-processing algorithm detected a NF with 

a few milliseconds later, it was verified that about 98% of FP were eliminated. The NF were 100% 

detected with and without the application of post-processing, with 1.48±0.76s and 1.76±0.68s before 

the subject restores the balance, respectively. The post-processing algorithm can be crucial if a fall 

prevention strategy is implemented in the future, such as stopping the walker. This alteration can lead 

to a dangerous situation if the user is not expecting such reaction from the walker. However, this will 

have to be investigated thoroughly. Concerning the detection of the NF direction, it can be established 

that no model was able to distinguish it efficiently. The best performance was obtained by the SVM 

classifier (Gaussian kernel) with the first 60 features ranked by Relieff method (F1-score=58.92% and 

MCC=38.45%). 

The purpose of the INF detection was to investigate if moments before the NF occurred there 

was any information indicating the danger situation. The methodology implemented was ineffective for 

INF detection. The best model with data normalized between 0 and 1 obtained F1-score=29.54%. and 

MCC=20.27%, being clear that it cannot distinguish the normal gait from an INF. Nonetheless, the z-

score normalization as well as the oversampling of the minority class were implemented, however, there 

were no relevant improvements. These results suggest that there is no relevant information prior to the 

occurrence of the NF, which would allow detect the NF in advance. However, further studies should be 

addressed. 
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 The purpose of the gait events detection is to identify the TO and HS events that enable the 

division of the gait cycle into two phases, stance and swing. The GA allows the extraction of other user 

information that can be important for the medical professionals. In this case, the best combination 

reached was the Ensemble classifier with the 52 most significant features ranked by the Relieff method 

with the optimized hyperparameters (F1-score=89.79% and MCC=86.94%). A post-processing algorithm 

was also implemented to eliminate the misclassified samples in a short period of time verified in the 

model outcome. This post-processing implies a delay in the detection of transitions. However, its 

performance was analyzed without considering this delay. Thus, there was an improvement in the model 

performance but with the consequence of the delay that is imposed (F1-score= 91.23% and MCC = 

88.82%). 

The work accomplished throughout the dissertation enables to answer the RQ addressed in 

Chapter 1: 

• RQ1: Which sensors have the highest potential for detecting a NF and what is the most 

viable approach for the problem under study?   

The most suitable sensors are the IMU and the FSR because the inertial signals 

are widely used for the fall detection and the FSR are good option for gait event 

detection. Furthermore, the ASBGo SW is already equipped with an IMU used for the 

pelvis area. The approach selected as the most viable for the detection of the gait 

events, INF and NF was based on machine learning algorithms.  Since the dataset 

presents variability and some patterns and trends are not evident for threshold-based 

algorithms. 

• RQ2: What is the minimum number of features necessary, and what is the best 

combination of feature selection methods and classifier algorithms to detect a NF and 

its direction while using a walker?  

Regarding the NF detection, the best model built was the Ensemble classifier 

with the 51 most significant features ranked by the Relieff method (ACC=95.18%, 

SENS=71.63%, SPEC=99.33%, PREC=94.96%, F1-score=81.66% and MCC=79.99%). 

This model was able to detect all NF 1.76 ±0.76s before the subject restores the 

balance. With post-processing, a large percentage of FP were eliminated, and all NF 

were detected 1.48±0.68s before their end.  
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Concerning the detection of the NF direction, the best performance result was 

achieved with the combination of SVM classifier model with Gaussian kernel and the 

60 most relevant features ranked by the Relieff method (ACC=58.97%, SENS=58.95%, 

SPEC=79.51%, PREC=58.96%, F1-score=58.92%, and MCC=38.45%). 

• RQ3: Is it possible to detect an INF while using a walker?  

Based on the methodology followed, it was not possible to distinguish an INF 

from normal walking. The best model built was the Ensemble with the 20 most relevant 

features ranked by the Relieff method (ACC=83.24%, SENS= 24.57%, SPEC= 94.09%, 

PREC= 43.46%, F1-score= 31.39% and MCC=23.87%). In this case, the normalization 

applied was the z-score contrary to the other cases.  

• RQ4: What is the best combination of classifier, feature selection method, and the 

number of features that presented the best performance in detecting gait events while 

using a walker? 

The best model performance achieved for the detection of TO and HS events 

was the Ensemble classifier with the 52 most relevant features ranked by the Relieff 

method involving the optimization of hyperparameters. The results achieved for each 

class were: 

• TORight-HSRight: F1-Score=94.28% and MCC=90.83% 

• HSRight-TOLeft: F1-Score=84.48% and MCC=81.89%  

• TOLeft-HSLeft: F1-Score=93.69% and MCC=90.34%  

• HSLeft-TORight: F1-Score=86.72% and MCC=84.69%  

 With the application of the post-processing algorithm with a window of 20 

samples it was possible to eliminate most of the misclassified samples in a short period 

of time with the disadvantage of introducing a delay in the detection of gait events. The 

results obtained without considering the delay were: 

• TORight-HSRight: F1-Score=95.33% and MCC=92.50% 

• HSRight-TOLeft: F1-Score=86.26% and MCC=84.00% 

• TOLeft-HSLeft: F1-Score=94.69% and MCC=91.88% 

• HSLeft-TORight: F1-Score=88.60% and MCC=86.89% 
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7.1. Future Work 

For future work, it is imperative to implement the methodology in the ASBGo SW with more 

sensors and conduct more experimental tests that include other activities, such as walking in inclined 

surfaces and start/stop walking beyond those already performed. More discriminatory velocities should 

also be carried out in future experimental tests and, it is vital to conduct these tests with a broader age 

range to achieve a more robust approach. 

 Another important aspect that must be taken into account is the gathering of more information 

from the human body, such as data on the torso, head, legs, thighs, and information that permits 

determining if the hands are on the handle grip. This information can be an advantage to improve the 

model performance to detect a NF, but especially to build a model that is able to distinguish the direction 

of a NF and to reliably detect an INF. 

Regarding the machine learning methodology accomplished, embedded and wrapper feature 

selection methods should be implemented since in this dissertation only filter feature selection methods 

were employed. The construction of models based on deep learning, such as a multilayer perceptron 

or a convolutional neural network should be conducted for all the cases under study, mainly, for the 

detection of the NF direction and INF once the models obtained in this dissertation were not feasible. 

It is essential to detect more gait events beyond the HS and TO tackled in this work to augment 

patient-related information. The elaboration of an algorithm that computes the gait parameters is also 

one of the future steps that must be considered to improve the GA.  

A camera-based approach should be introduced as wearable sensors are not the most 

comfortable since the subject has to perform the tasks with them and it is necessary to place and 

remove them after each use of the walker. This procedure becomes even more relevant when the target 

is people with low mobility and/or physical restrictions due to illness conditions.  

Finally, a fall prevention strategy must be addressed to increase the subject's safety and avoid 

any injury due to the imbalance which could lead to a fall. This strategy can be, for instance, stop the 

walker and/or change the walker's trajectory to restore the subject's balance.  
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APPENDICES 

 Appendix 1 

 In this appendix is presented the complete list of features computed for chapter 4,5 and 6. 

Table 35 – List of features computed and its description 

Feature 

Number 
Feature Label Description Article 

1 Acc_V Vertical Acceleration * 

2 Acc_ML Mediolateral acceleration * 

3 Acc_AP Anteroposterior acceleration * 

4 Gyro_V Vertical angular velocity * 

5 Gyro_ML Mediolateral angular velocity * 

6 Gyro_AP Anteroposterior angular velocity * 

7 FSR_TR Force sensor resistor (toe right) * 

8 FSR_HR Force sensor resistor (heel right) * 

9 FSR_TL Force sensor resistor (toe left) * 

10 FSR_HL Force sensor resistor (heel left) * 

11 SVMAcc Sum vector magnitude of acceleration [116] 

12 SVMGyr Sum vector magnitude of angular velocity [116] 

13 sk_V_Acc Skewness of acceleration (Vertical axis) [117] 

14 sk_ML_Acc Skewness of acceleration (Mediolateral axis) [117] 

15 sk_AP_Acc 
Skewness of acceleration (Anteroposterior 

axis) 
[117] 

16 sk_SVMAcc Skewness of SVM of acceleration [117] 

17 sk_V_Gyr Skewness of angular velocity (Vertical axis) [117] 

18 sk_ML_Gyr 
Skewness of angular velocity (Mediolateral 

axis) 
[117] 

19 sk_AP_Gyr 
Skewness of angular velocity (Anteroposterior 

axis) 
[117] 
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Table 35 -Continued 

Feature 

Number 
Feature Label Description Article 

20 sk_SVMGyr Skewness of SVM of angular velocity [117] 

21 kur_V_Acc Kurtosis of acceleration (Vertical axis) [117] 

22 kur_ML_Acc Kurtosis of acceleration (Medial Lateral axis) [117] 

23 kur_AP_Acc Kurtosis of acceleration (Anteroposterior axis) [117] 

24 kur_SVMAcc Kurtosis of SMV of Accelerarion [117] 

25 kur_V_Gyr Kurtosis of angular velocity (Vertical axis) [117] 

26 kur_ML_Gyr 
Kurtosis of angular velocity (Medial Lateral 

axis) 
[117] 

27 kur_AP_Gyr 
Kurtosis of angular velocity (Anteroposterior 

axis) 
[117] 

28 kur_SVMGyr Kurtosis of SMV of angular velocity [117] 

29 MinAcc_V Minimum acceleration (Vertical axis) [118] 

30 MinAcc_ML Minimum acceleration (Mediolateral axis) [118] 

31 MinAcc_AP Minimum acceleration (Anteroposterior axis) [118] 

32 MinGyr_V Minimum angular velocity (Vertical axis) [118] 

33 MinGyr_ML Minimum angular velocity (Mediolateral axis) [118] 

34 MinGyr_AP 
Minimum angular velocity (Anteroposterior 

axis) 
[118] 

35 MinSVMAcc Minimum SVM of acceleration [118] 

36 MinSVMGyr Minimum SVM of angular velocity [118] 

37 MaxAcc_V Maximum acceleration (Vertical axis) [118] 

38 MaxAcc_ML Maximum acceleration (Mediolateral axis) [118] 

39 MaxAcc_AP Maximum acceleration (Anteroposterior axis) [118] 

40 MaxGyr_V Maximum angular velocity (Vertical axis) [118] 

41 MaxGyr_ML Maximum angular velocity (Mediolateral axis) [118] 

42 MaxGyr_AP 
Maximum angular velocity (Anteroposterior 

axis) 
[118] 

43 MaxSVMAcc Maximum SVM of acceleration [118] 
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Table 35 - Continued 

Feature 

Number 
Feature Label Description Article 

44 MaxSVMGyr Maximum SVM of angular velocity [118] 

45 MeanAcc_V Mean Acceleration (Vertical axis) [117] 

46 MeanAcc_ML Mean Acceleration (Mediolateral axis) [117] 

47 MeanAcc_AP Mean Acceleration (Vertical axis) [117] 

48 MeanGyr_V Mean Angular Velocity (Vertical axis) [117] 

49 MeanGyr_ML Mean Angular Velocity (Mediolateral axis) [117] 

50 MeanGyr_AP Mean Angular Velocity (Anterior posterior axis) [117] 

51 MeanSVMAcc Mean SVM of Acceleration [117] 

52 MeanSVMGyr Mean SVM of Angular Velocity [117] 

53 VarAcc_V Variance of Acceleration (Vertical axis) [117] 

54 VarAcc_ML Variance of Acceleration (Mediolateral axis) [117] 

55 VarAcc_AP Variance of Acceleration (Anteroposterior axis) [117] 

56 VarGyr_V Variance of Angular Velocity (Vertical axis) [117] 

57 VarGyr_ML 
Variance of Angular Velocity (Mediolateral 

axis) 
[117] 

58 VarGyr_AP 
Variance of Angular Velocity (Anteroposterior 

axis) 
[117] 

59 VarSVMAcc Variance of SVM of Acceleration [117] 

60 VarSVMGyr Variance of SVM of Angular Velocity [117] 

61 StdAcc_V 
Standard Deviation of Acceleration (Vertical 

axis) 
* 

62 StdAcc_ML 
Standard Deviation of Acceleration 

(Mediolateral axis) 
* 

63 StdAcc_AP 
Standard Deviation of Acceleration 

(Anteroposterior axis) 
* 

64 StdGyr_V 
Standard Deviation of Angular Velocity 

(Vertical axis) 
* 
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Table 35 - Continued 

Feature 

Number 
Feature Label Description Article 

65 StdGyr_ML 
Standard Deviation of Angular Velocity 

(Mediolateral axis) 
* 

66 StdGyr_AP 
Standard Deviation of Angular Velocity 

(Anteroposterior axis) 
* 

67 StdSVMAcc Standard Deviation of Acceleration SVM * 

68 StdSVMGyr Standard Deviation of Angular Velocity SVM * 

69 CorrelationAcc_V_ML 
Correlation Between Acceleration Vertical and 

Mediolateral axis 
[119] 

70 CorrelationAcc_V_AP 
Correlation Between Acceleration Vertical and 

Anteroposterior axis 
[119] 

71 CorrelationAcc_ML_AP 
Correlation Between Acceleration Medial 

Lateral and Anteroposterior axis 
[119] 

72 CorrelationGyr_V_ML 
Correlation Between Angular Velocity Vertical 

and Mediolateral axis 
[119] 

73 CorrelationGyr_V_AP 
Correlation Between Angular Velocity Vertical 

and Anteroposterior axis 
[119] 

74 CorrelationGyr_ML_AP 
Correlation Between Angular Velocity Medial 

Lateral and Anteroposterior axis 
[119] 

75 HP_Filter_AP 
Anteroposterior acceleration with high pass 

filter 
* 

76 HP_Filter_ML Mediolateral acceleration with high pass filter * 

77 HP_Filter_V Vertical acceleration with high pass filter * 

78 SVMRAW  * 

79 Dynamic_Sum_Vector Dynamic Sum Vector [120] 

80 Vertical_Acceleration Vertical Acceleration [120] 

81 Total_angular_Change Total angular change [116] 

82 
Resultant_Angular_Accel

eration 
Resultant angular acceleration [116] 
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Table 35 - Continued 

Feature 

Number 
Feature Label Description Article 

83 asma Activity Signal Magnitude Area [121] 

84 SMA Signal Magnitude Area [122] 

85 PPV_Acc_V 
Peak-to-peak values of Acceleration (Vertical 

axis) 
[123] 

86 PPV_Acc_ML 
Peak-to-peak values of Acceleration 

(Mediolateral axis) 
[123] 

87 PPV_Acc_AP 
Peak-to-peak values of Acceleration 

(Anteroposterior axis) 
[123] 

88 PPV_Gyr_V 
Peak-to-peak values of Angular Velocity (Vertical 

axis) 
[123] 

89 PPV_Gyr_ML 
Peak-to-peak values of Angular Velocity 

(Mediolateral axis) 
[123] 

90 PPV_Gyr_AP 
Peak-to-peak values of Angular Velocity 

(Anteroposterior axis) 
[123] 

91 PPV_SVMAcc Peak-to-peak values of SVM of Acceleration [123] 

92 PPV_SVMGyr Peak-to-peak values of SVM of Angular Velocity [123] 

93 RMS_Acc_V Root Mean Square of Acceleration (Vertical axis) [123] 

94 RMS_Acc_ML 
Root Mean Square of Acceleration (Mediolateral 

axis) 
[123] 

95 RMS_Acc_AP 
Root Mean Square of Acceleration 

(Anteroposterior axis) 
[123] 

96 RMS_SVMAcc 
Root Mean Square of Angular Velocity (Vertical 

axis) 
[123] 

97 RMS_Gyr_V 
Root Mean Square of Angular Velocity 

(Mediolateral axis) 
[123] 

98 RMS_Gyr_ML 
Root Mean Square of Angular Velocity 

(Anteroposterior axis) 
[123] 
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Table 35 - Continued 

Feature 

Number 
Feature Label Description Article 

99 RMS_Gyr_AP Root Mean Square of SVM of Acceleration [123] 

100 RMS_SVMGyr Root Mean Square of SVM of Angular Velocity [123] 

101 RI_Acc_V Ratio Index of Acceleration (Vertical axis) [123] 

102 RI_Acc_ML Ratio Index of Acceleration (Mediolateral axis) [123] 

103 RI_Acc_AP Ratio Index of Acceleration (Anteroposterior axis) [123] 

104 RI_AccSVM Ratio Index of SVM of Acceleration [123] 

105 RI_Gyr_V Ratio index of Angular Velocity (Vertical axis) [123] 

106 RI_Gyr_ML Ratio index of Angular Velocity (Mediolateral axis) [123] 

107 RI_Gyr_AP 
Ratio index of Angular Velocity (Anteroposterior 

axis) 
[123] 

108 RI_GyrSVM Ratio Index of SVM of Angular Velocity [123] 

109 RI_PPV_Acc_V 
Ratio Index of Peak-to-peak of Acceleration 

(Vertical axis) 
[123] 

110 RI_PPV_Acc_ML 
Ratio Index of Peak-to-peak of Acceleration 

(Mediolateral axis) 
[123] 

111 RI_PPV_Acc_AP 
Ratio Index of Peak-to-peak of Acceleration 

(Anteroposterior axis) 
[123] 

112 RI_PPV_Gyr_V 
Ratio Index of Peak-to-peak of Angular Velocity 

(Vertical axis) 
[123] 

113 RI_PPV_Gyr_ML 
Ratio Index of Peak-to-peak of Angular Velocity 

(Mediolateral axis) 
[123] 

114 RI_PPV_Gyr_AP 
Ratio Index of Peak-to-peak of Angular Velocity 

(Vertical axis) 
[123] 

115 RI_PPV_SVM_Acc 
Ratio Index of Peak-to-peak of SVM of 

Acceleration 
* 

116 RI_PPV_SVM_Gyr 
Ratio Index of Peak-to-peak of SVM of Angular 

Velocity 
* 
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Table 35 - Continued 

Feature 

Number 
Feature Label Description Article 

117 Quaternion_1 First element of quaternion vector [124] 

118 Quaternion_2 Second element of quaternion vector [124] 

119 Quaternion_3 Third element of quaternion vector [124] 

120 Quaternion_4 Fourth element of quaternion vector [124] 

121 Roll Roll (MahonyAHRS) [124] 

122 Pitch Pitch (MahonyAHRS) [124] 

123 Yaw Yaw (MahonyAHRS) [124] 

124 AbsVerticalAcc Absolute vertical acceleration [125] 

125 RAC SVM of Resultant angle change [126] 

126 RAC_AP Resultant angle change (Anteroposterior axis) [126] 

127 RAC_ML Resultant angle change (Mediolateral axis) [126] 

128 RAC_V Resultant angle change (Vertical axis) [126] 

129 MRAA Maximum resultant angular acceleration [126] 

130 FF_D Sum of Fluctuation Frequency of all axis [126] 

131 FF_D_AP Fluctuation Frequency (Anteroposterior axis) [126] 

132 FF_D_ML Fluctuation Frequency (Mediolateral axis) [126] 

133 FF_D_V Fluctuation Frequency (Vertical axis) [126] 

134 RAAcc SVM of Resultant of Average Acceleration [127] 

135 RAAcc_AP 
Resultant of Average Acceleration 

(Anteroposterior axis) 
[127] 

136 RAAcc_ML 
Resultant of Average Acceleration 

(Mediolateral axis) 
[127] 

137 RAAcc_V 
Resultant of Average Acceleration (Vertical 

axis) 
[127] 

138 RSTD SVM of Resultant of Standard Deviation [127] 

139 RSTD_AP 
Resultant of Standard Deviation 

(Anteroposterior axis) 
[127] 
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Table 35 - Continued 

Feature 

Number 
Feature Label Description Article 

140 RSTD_ML 
Resultant of Standard Deviation (Mediolateral 

axis) 
[127] 

141 RSTD_V Resultant of Standard Deviation (Vertical axis) [127] 

142 Slope Slope [128] 

143 Fast_Change_Vector Fast Change Vector [129] 

144 
SVMAcc_Horizontal_Pla

ne 
SVM of Acceleration in the horizontal Plane [128] 

145 EMA Exponential moving average [130] 

146 RA Rotational Angle of Acceleration SVM [128] 

147 Z_score Z-Score [127] 

148 MAD Magnitude of Angular Displacement [124] 

149 RDCAcc Acceleration Resultant of Delta Changes [127] 

150 RDCGyr Angular Velocity Resultant of Delta Changes [127] 

151 GravityComponentAcc_V 
Gravity component of Acceleration (Vertical 

Axis) 
* 

152 
GravityComponentAcc_

ML 

Gravity component of Acceleration 

(Mediolateral Axis) 
* 

153 
GravityComponentAcc_A

P 

Gravity component of Acceleration 

(Anteroposterior Axis) 
* 

154 Vel_V Vertical Velocity [131] 

155 Vel_ML Mediolateral Velocity [131] 

156 Vel_AP Anteroposterior Velocity [131] 

157 d_V Vertical Displacement [131] 

158 d_ML Mediolateral Displacement [131] 

159 d_AP Anteroposterior Displacement [131] 

160 DCOM Cumulative horizontal displacement [131] 

161 SL_V Vertical Cumulative horizontal sway length [131] 
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Table 35 - Continued 

Feature 

Number 
Feature Label Description Article 

162 SL_ML 
Mediolateral Cumulative horizontal sway 

length 
[131] 

163 SL_AP 
Anteroposterior Cumulative horizontal sway 

length 
[131] 

164 SV_V Vertical Mean sway velocity [131] 

165 SV_ML Mediolateral Mean sway velocity [131] 

166 SV_AP Anteroposterior Mean sway velocity [131] 

167 DR_V Vertical Displacement Range [131] 

168 DR_ML Mediolateral Displacement Range [131] 

169 DR_AP Anteroposterior Displacement Range [131] 

Appendix 2 

This appendix presents the cross-validation results concerning chapter 5. 

Case 1  

Table 36 – The sixty most relevant features ranked by MRMR, Relieff and PCA methods to detect a NF. Each number corresponds to the 
respective feature of Table 35 

Rank MRMR Relieff PCA 

1 47 7 72 

2 29 9 71 

3 157 8 69 

4 139 10 74 

5 32 141 73 

6 156 120 70 

7 30 118 132 

8 164 164 133 

9 145 167 131 

10 7 161 7 

11 3 138 10 
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Table 36 - Continued 

Rank MRMR Relieff PCA 

12 154 145 9 

13 2 157 8 

14 5 122 119 

15 135 119 122 

16 159 139 130 

17 39 154 17 

18 161 140 19 

19 46 123 18 

20 31 121 117 

21 167 36 141 

22 126 117 148 

23 136 153 145 

24 41 97 138 

25 49 81 139 

26 33 52 121 

27 45 99 140 

28 127 136 14 

29 124 134 161 

30 140 137 164 

31 99 158 167 

32 34 44 134 

33 36 32 35 

34 128 148 51 

35 134 135 123 

36 165 42 118 

37 35 48 135 

38 97 12 96 

39 162 156 100 

40 52 40 84 
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Table 36 - Continued 

Rank MRMR Relieff PCA 

41 168 159 125 

42 77 50 99 

43 81 4 52 

44 95 34 81 

45 138 6 44 

46 75 155 95 

47 163 98 36 

48 169 29 93 

49 147 41 43 

50 51 165 160 

51 44 49 144 

52 166 147 12 

53 151 168 97 

54 76 162 15 

55 153 35 83 

56 80 169 94 

57 38 163 11 

58 84 166 90 

59 152 93 98 

60 98 39 31 

 
Table 37 – Cross-validation evaluation performance results of different machine learning models trained with the features ranked by the 
MRMR method to detect a NF 

Classifier ACC SENS SPEC PREC F1 - Score MCC 
Number of 

Features 

LDA 88.23 52.31 94.77 64.52 57.78 51.41 10 

QDA 90.96 63.31 95.99 74.18 68.31 63.35 3 

DT 98.70 95.36 99.31 96.17 95.76 95.00 45 

Ensemble 99.37 96.25 99.94 99.67 97.93 97.58 51 

KNN Equal 99.89 99.63 99.94 99.68 99.66 99.59 60 
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Table 37- Continued 

 
Table 38 – Cross-validation evaluation performance results of different machine learning models trained with the features ranked by the 
Relieff method to detect a NF 

 Table 39 - Cross-validation evaluation performance results of different machine learning models trained with the features ranked by the 
PCA method to detect a NF 

Classifier ACC SENS SPEC PREC F1 - Score MCC 
Number of 

Features 

LDA 87.78 49.86 94.68 63.02 55.68 49.15 23 

QDA 88.18 52.28 94.71 64.23 57.64 51.22 23 

DT 99.09 96.72 99.52 97.37 97.04 96.51 37 

Ensemble 99.85 99.23 99.9 99.80 99.51 99.43 30 

KNN Equal 94.30 76.11 97.61 85.25 80.42 77.27 60 

KNN Inverse 94.30 76.11 97.61 85.25 80.42 77.27 60 

KNN Squared 

Inverse 
94.30 76.11 97.61 85.25 80.42 77.27 60 

Classifier ACC SENS SPEC PREC F1 - Score MCC 
Number of 

Features 

KNN Inverse 99.89 99.63 99.94 99.68 99.66 99.59 60 

KNN Squared 

Inverse 
99.89 99.63 99.94 99.68 99.66 99.59 60 

Classifier ACC SENS SPEC PREC F1 - Score MCC 
Number of 

Features 

LDA 87.66 61.40 92.44 59.62 60.50 53.20 23 

QDA 89.79 72.27 92.98 65.18 68.54 62.58 23 

DT 99.21 97.15 99.59 97.71 97.43 96.96 20 

Ensemble 99.87 99.39 99.96 99.79 99.59 99.52 41 

KNN Equal 99.93 99.71 99.97 99.81 99.76 99.71 59 

KNN Inverse 99.93 99.71 99.97 99.81 99.76 99.71 59 

KNN Squared 

Inverse 
99.93 99.71 99.97 99.81 99.76 99.71 59 
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Table 40 – Cross-validation evaluation performance result of the DT model with the hyperparameters optimized to detect a NF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number 

of 

Features 

MRMR DT 98.70 95.28 99.32 96.21 95.74 94.97 45 

 
 
Table 41 – Cross-validation evaluation performance results of the KNN Equal with the 60 most relevant features ranked by the MRMR 
method for different values of k to detect a NF  

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC F1- score MCC k 

MRMR KNN Equal 

99.65 99.88 99.61 97.82 98.84 98.64 4 

99.19 94.93 99.97 99.80 97.30 96.87 8 

99.23 95.36 99.94 99.64 97.45 97.03 9 

98.98 93.73 99.93 99.60 96.57 96.03 11 

98.72 92.09 99.93 99.58 95.69 95.04 13 

98.44 90.31 99.92 99.53 94.70 93.94 15 

97.65 85.02 99.95 99.68 91.76 90.79 20 

 

Table 42 – Cross-validation evaluation performance result of the Ensemble model with the hyperparameters optimized to detect a NF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC F1- score MCC 
Number of 

Features 

MRMR Ensemble 99.33 95.99 99.94 99.64 95.74 94.97 51 

 
 
Table 43 – Cross-validation evaluation performance result of the Ensemble model with data oversampling to detect a NF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number of 

Features 

MRMR Ensemble 99.83 99.63 99.90 99.73 99.68 99.56 51 
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Table 44 – Cross-validation evaluation performance results of the Ensemble model with the 51 most relevant features ranked by the 
MRMR method for different misclassification cost to detect a NF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC F1- score MCC Cost 

MRMR Ensemble 

99.53 98.04 99.80 98.90 98.47 98.19 5 

99.55 97.73 99.88 99.30 98.51 98.25 3 

99.45 98.50 99.63 97.97 98.23 97.91 10 

 
Table 45 – Cross-validation evaluation performance result of the Ensemble model with the 15 most relevant features ranked by the MRMR 
method to detect a NF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC  F1- score MCC 

MRMR Ensemble 99.18 94.89 99.96 99.75  97.26 96.82 

Case 2 

Table 46 - The sixty most relevant features ranked by MRMR, Relieff and PCA methods to detect the NF direction. Each number 
corresponds to the respective feature of Table 35 

Rank MRMR Relieff PCA 

1 120 118 72 

2 119 122 74 

3 134 119 71 

4 165 120 69 

5 10 117 73 

6 123 8 70 

7 145 7 8 

8 74 9 7 

9 136 148 10 

10 71 121 9 

11 155 10 132 

12 73 141 131 

13 98 123 133 

 



 

126 

 

Table 46 - Continued 

Rank  MRMR Relieff PCA 

14 137 139 121 

15 32 140 118 

16 162 138 119 

17 144 136 122 

18 147 157 148 

19 135 137 117 

20 49 135 130 

21 67 134 139 

22 2 145 17 

23 114 158 19 

24 72 153 123 

25 166 99 18 

26 107 159 138 

27 140 154 140 

28 113 42 141 

29 96 155 164 

30 57 156 167 

31 111 164 161 

32 25 167 134 

33 168 161 135 

34 59 32 145 

35 104 34 52 

36 122 50 81 

37 153 97 44 

38 23 6 51 

39 157 48 35 

40 99 36 84 

41 106 40 147 

42 105 165 96 
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Table 46 - Continued 

Rank  MRMR Relieff PCA 

43 103 166 100 

44 7 169 136 

45 97 163 95 

46 65 4 36 

47 102 168 125 

48 101 162 99 

49 26 147 97 

50 156 41 93 

51 91 98 12 

52 110 49 168 

53 112 95 162 

54 108 44 165 

55 22 81 154 

56 60 52 14 

57 33 39 137 

58 13 31 120 

59 115 30 43 

60 160 47 24 

Table 47 - Cross-validation evaluation performance results of different machine learning models trained with the features ranked by the 
MRMR method to detect the NF direction 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number of 

Features 

LDA 53.47 53.26 76.73 53.17 53.14 29.98 4 

QDA 57.69 57.92 78.98 58.97 57.51 37.46 9 

DT 97.83 97.83 98.92 97.84 97.83 96.75 36 

Ensemble 99.98 99.98 99.99 99.98 99.98 99.98 57 

KNN Equal 99.26 99.26 99.63 99.26 99.26 98.89 7 

KNN Inverse 99.26 99.26 99.63 99.26 99.26 98.89 7 
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Table 47 - Continued 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number of 

Features 

KNN Squared Inverse 99.26 99.26 99.63 99.26 99.26 98.89 7 

SVM Gaussian 86.02 85.98 93.01 86.01 85.98 79.00 53 

SVM Linear 59.78 59.91 79.94 59.96 59.78 39.87 39 

SVM Polynomial 97.36 97.36 98.68 97.35 97.35 96.05 47 

 

Table 48 - Cross-validation evaluation performance results of different machine learning models trained with the features ranked by the 
Relieff method to detect the NF direction 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number of 

Features 

LDA 53.89 53.66 76.91 53.75 53.57 30.63 27 

QDA 57.74 57.57 78.79 57.85 57.61 36.52 29 

DT 99.17 99.16 99.58 99.17 99.16 98.75 21 

Ensemble 100 100 100 100 100 100 24 

KNN Equal 99.90 99.90 99.95 99.90 99.90 99.85 52 

KNN Inverse 99.90 99.90 99.95 99.90 99.90 99.85 52 

KNN Squared Inverse 99.90 99.90 99.95 99.90 99.90 99.85 52 

SVM Gaussian 99.18 99.17 99.59 99.18 99.18 98.76 60 

SVM Linear 64.80 64.84 82.40 64.80 64.80 47.23 56 

SVM Polynomial 99.91 99.91 99.96 99.91 99.91 99.87 36 

Table 49 - Cross-validation evaluation performance results of different machine learning models trained with the features ranked by the 
PCA method to detect the NF direction 

Classifier ACC SENS SPEC PREC 
F1 -

score 
MCC 

Number of 

Features 

LDA 51.86 52.03 76.02 52.30 51.84 28.17 58 

QDA  54.08 54.16 77.05 54.07 53.9 31.21 58 

DT 98.65 98.65 99.33 98.64 98.65 97.97 27 

Ensemble 100 100 100 100 100 100 39 
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Table 49 - Continued 

Classifier ACC SENS SPEC PREC 
F1 -

score 
MCC 

Number of 

Features 

KNN Equal 89.90 89.88 94.95 89.88 89.88 84.83 59 

KNN Inverse 89.90 89.88 94.95 89.88 89.88 84.83 59 

KNN Squared Inverse 89.90 89.88 94.95 89.88 89.88 84.83 59 

SVM Gaussian 92.77 92.74 96.35 92.77 92.70 89.13 59 

SVM Linear 63.05 63.03 81.49 63.12 63.05 44.56 59 

SVM Polynomial 97.05 97.04 98.52 97.05 97.05 95.57 58 

 

Table 50 – Cross-validation evaluation performance result of the SVM Gaussian Kernel model with the hyperparameters optimized to 
detect the NF direction 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number 

of 

Features 

Relieff SVM Gaussian  99.95 99.95 99.97 99.94 99.94 99.92 60 

Appendix 3 

This appendix presents the cross-validation results concerning chapter 6. 

Table 51 - The sixty most relevant features ranked by MRMR, Relieff and PCA methods to detect an INF. Each number corresponds to 
the respective feature of Table 35 

Rank  MRMR Relieff PCA 

1 117 122 72 

2 123 119 71 

3 152 118 74 

4 99 134 69 

5 24 120 73 

6 132 117 70 

7 105 136 132 

8 113 141 131 

9 137 139 133 
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Table 51 - Continued 

Rank MRMR Relieff PCA 

10 162 121 10 

11 56 138 8 

12 27 140 9 

13 57 135 7 

14 25 148 170 

15 82 165 119 

16 53 168 122 

17 98 137 166 

18 146 162 169 

19 58 157 163 

20 147 159 130 

21 71 153 17 

22 150 158 19 

23 14 166 156 

24 59 169 18 

25 60 163 165 

26 54 123 168 

27 16 9 162 

28 142 7 118 

29 65 167 121 

30 70 161 141 

31 148 164 153 

32 74 10 134 

33 55 8 138 

34 158 155 140 

35 157 156 31 

36 64 98 117 

37 166 41 47 

38 22 97 39 
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Table 51 - Continued 

Rank MRMR Relieff PCA 

39 90 145 126 

40 97 124 148 

41 69 49 3 

42 13 99 159 

43 124 44 135 

44 89 36 139 

45 72 33 145 

46 15 81 161 

47 129 52 167 

48 88 12 157 

49 23 152 164 

50 34 40 75 

51 95 34 14 

52 115 154 44 

53 149 5 81 

54 83 95 52 

55 136 32 12 

56 21 94 97 

57 85 4 84 

58 73 48 154 

59 41 42 36 

60 66 114 123 

 

Table 52 – Cross-validation evaluation performance results of different machine learning models trained with the features ranked by the 
MRMR method to detect an INF 

Classifiers ACC SENS SPEC PREC 
F1 -

score 
MCC 

Number of 

Features 

DT 94.23 81.48 96.73 82.99 82.23 78.79 57 

Ensemble 96.22 77.96 99.80 98.68 87.11 85.74 10 
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Table 52 - Continued 

Classifier ACC SENS SPEC PREC 
F1 -

score 
MCC 

Number of 

Features 

KNN Equal 88.95 65.59 93.53 66.48 66.03 59.44 3 

KNN Inverse 88.95 65.59 93.53 66.48 66.03 59.44 3 

KNN Squared 

Inverse 
88.95 65.59 93.53 66.48 66.03 59.44 3 

 
 
Table 53 - Cross-validation evaluation performance results of different machine learning models trained with the features ranked by the 
Relieff method to detect an INF  

Classifier ACC SENS SPEC PREC 
F1 -

score 
MCC 

Number of 

Features 

DT 99.65 98.80 99.82 99.06 98.93 98.72 11 

Ensemble 99.91 99.68 99.95 99.77 99.73 99.67 40 

KNN Equal 99.91 99.72 99.95 99.72 99.72 99.66 9 

KNN Inverse 99.91 99.72 99.95 99.72 99.72 99.66 9 

KNN Squared 

Inverse 
99.91 99.72 99.95 99.72 99.72 99.66 9 

 
 
Table 54 - Cross-validation evaluation performance results of different machine learning models trained with the features ranked by the 
PCA method to detect an INF 

Classifier ACC SENS SPEC PREC 
F1 -

score 
MCC 

Number of 

Features 

DT 99.46 98.18 99.71 98.54 98.36 98.04 44 

Ensemble 99.91 99.60 99.97 99.82 99.71 99.65 38 

KNN Equal 87.69 61.57 92.80 62.61 62.09 54.74 60 

KNN Inverse 87.69 61.57 92.80 62.61 62.09 54.74 60 

KNN Squared 

Inverse 
87.69 61.57 92.80 62.61 62.09 54.74 60 
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Table 55 – Cross-validation evaluation performance result of the Ensemble model with data oversampling to detect an INF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1 -

score 
MCC 

Number of 

Features 

Relieff Ensemble 99.95 99.97 99.94 99.84 99.90 99.86 47 

 
Table 56 – Cross-validation evaluation performance result of the Ensemble model with z-score normalization to detect an INF 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1 -

score 
MCC 

Number of 

Features 

Relieff Ensemble 99.91 99.71 99.94 99.71 99.71 99.65 20 

Appendix 4 

This appendix presents the cross-validation results concerning chapter 7. 

Table 57 - The sixty most relevant features ranked by MRMR, Relieff and PCA methods to detect human gait events. Each number 
corresponds to the respective feature of Table 35 

Rank MRMR Relieff PCA 

1 48 158 74 

2 2 155 71 

3 154 159 72 

4 155 153 73 

5 40 120 69 

6 158 156 70 

7 46 40 132 

8 4 48 131 

9 76 32 133 

10 75 4 21 

11 32 157 24 

12 127 152 122 

13 159 118 118 

14 50 136 119 
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Table 57 - Continued 

Rank MRMR Relieff PCA 

15 39 166 166 

16 152 163 169 

17 29 169 163 

18 37 34 121 

19 69 50 168 

20 30 162 162 

21 136 165 165 

22 153 168 156 

23 45 42 130 

24 72 6 20 

25 3 122 19 

26 34 134 17 

27 41 38 18 

28 128 46 141 

29 80 119 117 

30 71 145 153 

31 6 30 148 

32 120 127 97 

33 101 117 138 

34 123 154 52 

35 38 2 81 

36 165 121 36 

37 73 140 140 

38 1 135 139 

39 107 41 31 

40 43 139 44 

41 87 49 47 

42 77 137 39 

43 104 148 134 
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Table 57 - Continued 

Rank MRMR Relieff PCA 

44 111 123 126 

45 49 99 40 

46 74 33 48 

47 99 161 12 

48 93 167 155 

49 106 5 16 

50 115 76 3 

51 78 39 4 

52 143 75 32 

53 63 31 158 

54 42 3 157 

55 102 47 159 

56 114 94 14 

57 166 164 161 

58 162 126 167 

59 61 97 145 

60 151 98 23 

Table 58 – Cross-validation evaluation performance results of different machine learning models trained with the features ranked by the 
MRMR method to detect human gait events 

Classifier ACC SENS SPEC PREC 
F1 -

score 
MCC 

Number of 

Features 

LDA 75.76 69.13 91.62 69.65 69.36 61.04 32 

QDA 74.24 63.83 90.75 67.53 64.96 56.57 16 

DT 91.27 89.33 97.00 89.16 89.24 86.23 36 

Ensemble 97.47 96.68 99.11 97.12 96.90 96.03 48 

KNN Equal 98.15 97.49 99.35 97.79 97.64 97.01 18 

KNN Inverse 98.15 97.49 99.35 97.79 97.64 97.01 18 

KNN Squared 

Inverse 
98.15 97.49 99.35 97.79 97.64 97.01 18 
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Table 59 – Cross-validation evaluation performance results of different machine learning models trained with the features ranked by the 
Relieff method to detect human gait events 

Classifier ACC SENS SPEC PREC 
F1 -

score 
MCC 

Number of 

Features 

LDA 74.82 69.12 91.52 68.26 68.64 60.11 54 

QDA 74.84 67.24 91.23 68.36 67.74 59.15 54 

DT 93.76 92.20 97.85 92.30 92.25 90.10 30 

Ensemble 98.10 97.41 99.33 97.82 97.61 96.96 52 

KNN Equal 98.18 97.40 99.35 97.94 97.67 97.05 50 

KNN Inverse 98.18 97.40 99.35 97.94 97.67 97.05 50 

KNN Squared 

Inverse 
98.18 97.40 99.35 97.94 97.67 97.05 50 

 

Table 60 – Cross-validation evaluation performance results of different machine learning models trained with the features ranked by the 
PCA method to detect human gait events 

Classifier ACC SENS SPEC PREC 
F1 -

score 
MCC 

Number of 

Features 

LDA 68.76 61.07 89.54 60.62 60.73 50.25 60 

QDA 69.03 62.26 89.73 61.45 61.65 51.37 60 

DT 92.98 91.21 97.58 91.32 91.26 88.85 59 

Ensemble 97.73 96.72 99.18 97.64 97.17 96.39 59 

KNN Equal 80.15 77.25 93.10 76.58 76.90 69.97 59 

KNN Inverse 80.15 77.25 93.10 76.58 76.90 69.97 59 

KNN Squared 

Inverse 
80.15 77.25 93.10 76.58 76.90 69.97 59 
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Table 61 – Cross-validation evaluation performance results of the Ensemble model with 18, 25 and 30 features to detect human gait 
events 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number 

of 

Features 

Relieff Ensemble 

97.44 96.50 99.09 97.09 96.79 95.91 18 

97.62 96.76 99.16 97.26 97.01 96.19 25 

97.68 96.84 99.18 97.35 97.09 96.29 30 

 

Table 62 – Cross-validation evaluation performance result of the Ensemble model with the hyperparameters optimized to detect human 
gait events 

Feature 

Selection 

Method 

Classifier ACC SENS SPEC PREC 
F1- 

score 
MCC 

Number 

of 

Features 

Relieff Ensemble 98.31 97.81 99.41 97.91 97.56 97.28 52 

 


