655 research outputs found

    Path Loss Model for 2.4GHZ Indoor Wireless Networks with Application to Drones

    Get PDF
    Indoor wireless communication using Wireless Fidelity (Wi-Fi) is becoming a major need for the success of Unmanned Aerial Vehicles (UAVs), Internet of Things (IoT) and cloud robotics in both developed and developing countries. With different operating conditions, interference, obstacles and type of building materials used, it is difficult to predict the path loss components in an indoor environment, which are crucial for the network design. It has been observed that the proposed indoor path loss models cannot be used for UAV operations due to variations in building materials utilized, floor plans, scattering on both ends, etc. In this work, we propose a non-deterministic statistical indoor path loss model, namely, the UAV Low Altitude Air to Ground (U-LAAG) model, adapted from ITU-R model, which can be used for the 2.4 - 2.5 GHz, Industrial Scientific and Medical (ISM) band. To test and validate the proposed model, we conduct several experiments with different conditions such as University premise with obstacles, typical dwelling and basement locations. We have also compared U-LAAG with popular path loss models such as ITU-R, Two-ray and Log-distance; U-LAAG matches closely with the drive test results as compared to other models. We believe that the proposed ULAAG model can be used as basis to design accurate indoor communication networks required for regular Wi-Fi communications and deployment and operations of UAV, IoT and cloud robotics

    State-of-the-art assessment of 5G mmWave communications

    Get PDF
    Deliverable D2.1 del proyecto 5GWirelessMain objective of the European 5Gwireless project, which is part of the H2020 Marie Slodowska- Curie ITN (Innovative Training Networks) program resides in the training and involvement of young researchers in the elaboration of future mobile communication networks, focusing on innovative wireless technologies, heterogeneous network architectures, new topologies (including ultra-dense deployments), and appropriate tools. The present Document D2.1 is the first deliverable of Work- Package 2 (WP2) that is specifically devoted to the modeling of the millimeter-wave (mmWave) propagation channels, and development of appropriate mmWave beamforming and signal processing techniques. Deliver D2.1 gives a state-of-the-art on the mmWave channel measurement, characterization and modeling; existing antenna array technologies, channel estimation and precoding algorithms; proposed deployment and networking techniques; some performance studies; as well as a review on the evaluation and analysis toolsPostprint (published version

    Using Commercial Ray Tracing Software to Drive an Attenuator-Based Mobile WIreless Testbed

    Get PDF
    We propose and build a prototype architecture for a laboratory-based mobile wireless testbed that uses highly detailed, site-specific channel models to dynamically configure a many-to-many analog channel emulator. Unlike similar systems that have used abstract channel models with few details from the physical environment, we take advantage of commercial ray tracing software and high-performance hardware to make realistic signal power and characteristics predictions in a highly detailed environment. The ray tracing results are used to program a many-to-many analog channel emulator. Using this system, we can conveniently, repeatedly, and realistically subject real wireless nodes to the effects of mobility. We use our prototype system and a detailed CAD model of the University of Maryland campus to compare field test measurements to measurements made from the same devices in the same physical scenario in the testbed. This thesis presents the design, implementation, and validation phases of the proposed mobile wireless testbed

    Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications

    Get PDF
    This paper compares three candidate large-scale propagation path loss models for use over the entire microwave and millimeter-wave (mmWave) radio spectrum: the alpha-beta-gamma (ABG) model, the close-in (CI) free space reference distance model, and the CI model with a frequency-weighted path loss exponent (CIF). Each of these models have been recently studied for use in standards bodies such as 3GPP, and for use in the design of fifth generation (5G) wireless systems in urban macrocell, urban microcell, and indoor office and shopping mall scenarios. Here we compare the accuracy and sensitivity of these models using measured data from 30 propagation measurement datasets from 2 GHz to 73 GHz over distances ranging from 4 m to 1238 m. A series of sensitivity analyses of the three models show that the physically-based two-parameter CI model and three-parameter CIF model offer computational simplicity, have very similar goodness of fit (i.e., the shadow fading standard deviation), exhibit more stable model parameter behavior across frequencies and distances, and yield smaller prediction error in sensitivity testing across distances and frequencies, when compared to the four-parameter ABG model. Results show the CI model with a 1 m close-in reference distance is suitable for outdoor environments, while the CIF model is more appropriate for indoor modeling. The CI and CIF models are easily implemented in existing 3GPP models by making a very subtle modification -- by replacing a floating non-physically based constant with a frequency-dependent constant that represents free space path loss in the first meter of propagation.Comment: Open access available at: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=743465

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications

    A Site-Specific Indoor Wireless Propagation Model

    Get PDF
    In this thesis, we explore the fundamental concepts behind the emerging field of site-specific propagation modeling for wireless communication systems. The first three chapters of background material discuss, respectively, the motivation for this study, the context of the study, and signal behavior and modeling in the predominant wireless propagation environments. A brief survey of existing ray-tracing based site-specific propagation models follows this discussion, leading naturally to the work of new model development undertaken in our thesis project. Following the detailed description of our generalized wireless channel modeling, various interference cases incorporating with this model are thoroughly discussed and results presented at the end of this thesis

    Real-time signal detection and classification algorithms for body-centered systems

    Full text link
    El principal motivo por el cual los sistemas de comunicación en el entrono corporal se desean con el objetivo de poder obtener y procesar señales biométricas para monitorizar e incluso tratar una condición médica sea ésta causada por una enfermedad o el rendimiento de un atleta. Dado que la base de estos sistemas está en la sensorización y el procesado, los algoritmos de procesado de señal son una parte fundamental de los mismos. Esta tesis se centra en los algoritmos de tratamiento de señales en tiempo real que se utilizan tanto para monitorizar los parámetros como para obtener la información que resulta relevante de las señales obtenidas. En la primera parte se introduce los tipos de señales y sensores en los sistemas en el entrono corporal. A continuación se desarrollan dos aplicaciones concretas de los sistemas en el entorno corporal así como los algoritmos que en las mismas se utilizan. La primera aplicación es el control de glucosa en sangre en pacientes con diabetes. En esta parte se desarrolla un método de detección mediante clasificación de patronones de medidas erróneas obtenidas con el monitor contínuo comercial "Minimed CGMS". La segunda aplicacióin consiste en la monitorizacióni de señales neuronales. Descubrimientos recientes en este campo han demostrado enormes posibilidades terapéuticas (por ejemplo, pacientes con parálisis total que son capaces de comunicarse con el entrono gracias a la monitorizacióin e interpretación de señales provenientes de sus neuronas) y también de entretenimiento. En este trabajo, se han desarrollado algoritmos de detección, clasificación y compresión de impulsos neuronales y dichos algoritmos han sido evaluados junto con técnicas de transmisión inalámbricas que posibiliten una monitorización sin cables. Por último, se dedica un capítulo a la transmisión inalámbrica de señales en los sistemas en el entorno corporal. En esta parte se estudia las condiciones del canal que presenta el entorno corporal para la transmisión de sTraver Sebastiá, L. (2012). Real-time signal detection and classification algorithms for body-centered systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16188Palanci
    • …
    corecore