6 research outputs found

    Whole-Body MPC for a Dynamically Stable Mobile Manipulator

    Full text link
    Autonomous mobile manipulation offers a dual advantage of mobility provided by a mobile platform and dexterity afforded by the manipulator. In this paper, we present a whole-body optimal control framework to jointly solve the problems of manipulation, balancing and interaction as one optimization problem for an inherently unstable robot. The optimization is performed using a Model Predictive Control (MPC) approach; the optimal control problem is transcribed at the end-effector space, treating the position and orientation tasks in the MPC planner, and skillfully planning for end-effector contact forces. The proposed formulation evaluates how the control decisions aimed at end-effector tracking and environment interaction will affect the balance of the system in the future. We showcase the advantages of the proposed MPC approach on the example of a ball-balancing robot with a robotic manipulator and validate our controller in hardware experiments for tasks such as end-effector pose tracking and door opening

    A quantitative analysis of dressing dynamics for robotic dressing assistance

    Get PDF
    © 2017 Chance, Jevtić, Caleb-Solly and Dogramadzi. Assistive robots have a great potential to address issues related to an aging population and an increased demand for caregiving. Successful deployment of robots working in close proximity with people requires consideration of both safety and human-robot interaction (HRI). One of the established activities of daily living where robots could play an assistive role is dressing. Using the correct force profile for robot control will be essential in this application of HRI requiring careful exploration of factors related to the user's pose and the type of garments involved. In this paper, a Baxter robot was used to dress a jacket onto a mannequin and human participants considering several combinations of user pose and clothing type (base layers), while recording dynamic data from the robot, a load cell, and an IMU. We also report on suitability of these sensors for identifying dressing errors, e.g., fabric snagging. Data were analyzed by comparing the overlap of confidence intervals to determine sensitivity to dressing. We expand the analysis to include classification techniques such as decision tree and support vector machines using k-fold cross-validation. The 6-axis load cell successfully discriminated between clothing types with predictive model accuracies between 72 and 97%. Used independently, the IMU and Baxter sensors were insufficient to discriminate garment types with the IMU showing 40-72% accuracy, but when used in combination this pair of sensors achieved an accuracy similar to the more expensive load cell (98%). When observing dressing errors (snagging), Baxter's sensors and the IMU data demonstrated poor sensitivity but applying machine learning methods resulted in model with high predicative accuracy and low false negative rates (≤5%). The results show that the load cell could be used independently for this application with good accuracy but a combination of the lower cost sensors could also be used without a significant loss in precision, which will be a key element in the robot control architecture for safe HRI

    A machine learning model for predicting sit-to-stand trajectories of people with and without stroke: towards adaptive robotic assistance

    Get PDF
    Sit-to-stand and stand-to-sit transfers are fundamental daily motions that enable all other types of ambulation and gait. However, the ability to perform these motions can be severely impaired by different factors, such as the occurrence of a stroke, limiting the ability to engage in other daily activities. This study presents the recording and analysis of a comprehensive database of full body biomechanics and force data captured during sit-to-stand-to-sit movements in subjects who have and have not experienced stroke. These data were then used in conjunction with simple machine learning algorithms to predict vertical motion trajectories that could be further employed for the control of an assistive robot. A total of 30 people (including 6 with stroke) each performed 20 sit-to-stand-to-sit actions at two different seat heights, from which average trajectories were created. Weighted k-nearest neighbours and linear regression models were then used on two different sets of key participant parameters (height and weight, and BMI and age), to produce a predicted trajectory. Resulting trajectories matched the true ones for non-stroke subjects with an average R2 score of 0.864±0.134 using k = 3 and 100% seat height when using height and weight parameters. Even among a small sample of stroke patients, balance and motion trends were noticed along with a large within-class variation, showing that larger scale trials need to be run to obtain significant results. The full dataset of sit-to-stand-to-sit actions for each user is made publicly available for further researc

    Human-robot interaction for assistive robotics

    Get PDF
    This dissertation presents an in-depth study of human-robot interaction (HRI) withapplication to assistive robotics. In various studies, dexterous in-hand manipulation is included, assistive robots for Sit-To-stand (STS) assistance along with the human intention estimation. In Chapter 1, the background and issues of HRI are explicitly discussed. In Chapter 2, the literature review introduces the recent state-of-the-art research on HRI, such as physical Human-Robot Interaction (HRI), robot STS assistance, dexterous in hand manipulation and human intention estimation. In Chapter 3, various models and control algorithms are described in detail. Chapter 4 introduces the research equipment. Chapter 5 presents innovative theories and implementations of HRI in assistive robotics, including a general methodology of robotic assistance from the human perspective, novel hardware design, robotic sit-to-stand (STS) assistance, human intention estimation, and control
    corecore