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Abstract: Sit-to-stand and stand-to-sit transfers are fundamental daily motions that enable all other
types of ambulation and gait. However, the ability to perform these motions can be severely impaired
by different factors, such as the occurrence of a stroke, limiting the ability to engage in other daily
activities. This study presents the recording and analysis of a comprehensive database of full body
biomechanics and force data captured during sit-to-stand-to-sit movements in subjects who have and
have not experienced stroke. These data were then used in conjunction with simple machine learning
algorithms to predict vertical motion trajectories that could be further employed for the control of an
assistive robot. A total of 30 people (including 6 with stroke) each performed 20 sit-to-stand-to-sit
actions at two different seat heights, from which average trajectories were created. Weighted k-nearest
neighbours and linear regression models were then used on two different sets of key participant
parameters (height and weight, and BMI and age), to produce a predicted trajectory. Resulting
trajectories matched the true ones for non-stroke subjects with an average R2 score of 0.864± 0.134
using k = 3 and 100% seat height when using height and weight parameters. Even among a small
sample of stroke patients, balance and motion trends were noticed along with a large within-class
variation, showing that larger scale trials need to be run to obtain significant results. The full dataset
of sit-to-stand-to-sit actions for each user is made publicly available for further research.

Keywords: gait analysis; machine learning; stroke; rehabilitation; robotics; wearable sensors; dataset

1. Introduction

Stroke occurs when there is lack of blood supply to the brain and can cause a wide
variety of physical, psychological and cognitive problems, leading to long-term disabil-
ity [1]. According to the World Stroke Organisation, over 13 million people have a stroke
each year (https://www.world-stroke.org/, accessed on 26 May 2022). In the UK alone,
there are estimated to be around 1.3 million stroke survivors, with instances potentially
increasing 60% from 2015 to 2035 [2]. The financial burden of stroke rehabilitation on health-
care services is also rising rapidly, which, combined with the problem of staff short-
ages (https://nhsfunding.info/symptoms/10-effects-of-underfunding/staff-shortages,
accessed on 26 May 2022), increases the need to consider technological solutions for sup-
porting people with stroke.

Robotics has emerged as a promising beacon in physical assistance to address service
shortage and support healthcare workers in the care and rehabilitation of people with stroke.
Mobility assistive robotic devices include (but are not restricted to) smart walkers [3] and
sit-to-stand (STS) aids [4], which help people who need physical assistance to perform
activities of daily living (ADLs). ADLs are defined as self-care tasks, such as bathing,
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dressing, toileting, transferring, and feeding [5]. Transfers such as getting in and out of bed,
chair or toilet involve STS.

STS activities are thus key for independent living, and are performed around
60 times per day in healthy adults [6], enabling functional independence for activities
such as walking and toileting. However, transfers (including STS) are the most common
cause of falls in people with stroke [7], with STS activities presenting a higher risk of falls
for those with impaired strength, balance or posture [8]. Falls are a major hazard for people
with stroke, causing injury, lengthening hospitalisations and impacting rehabilitation [9].
Therefore, minimising the risk of falls during these actions is crucial in the creation of assis-
tive devices for stroke rehabilitation.

The ultimate goal of this research is to provide the basis for the development of per-
sonalized home assistance for people with stroke during STS transfers, promoting their
independence and rehabilitation. Existing manual handling assistive equipment, such
as slings and hoists, require constant physical support from the carer to the patient using
the device, resulting in increasing work-related musculoskeletal disorders, a major safety
concern in today’s healthcare environment [10]. Moreover, the use of a non-perfect fitting
device can be uncomfortable or even dangerous, e.g., if it is too large, the patient might
slip through.

More advanced robotic solutions have been studied to assist with STS transfer, such
as the ballbot [4], a single-wheeled mobile robot that can help a user stand with the aid
of two arms that can be held onto during the STS motion. Although the ballbot can apply
varying levels of assistance, its maximum pulling force is quite low, and it does not have
any functionality for preventing falls, limiting its use with more vulnerable users. Moreover,
this robot creates the same profile for all users and is less adaptable to individual needs.
Another example is ROBEAR (https://www.riken.jp/en/news_pubs/research_news/pr/
2015/20150223_2/, accessed on 26 May 2022), a bear-shaped robot aiding with both STS
transfers and rising from bed. ROBEAR, only a prototype, does not have any adaptive
capabilities for users of varied ability levels and requires supervision from healthcare
workers, limiting its use for maintaining independence. Exoskeletons have also been
explored for STS assistance, with some small-scale studies showing that such devices can
reduce load on a users’ muscles during STS movements [11,12]. Because these devices
are only affixed to the lower body, they benefit from not requiring a user to grip onto
handles during STS, but conversely, this creates added risk from the upper body not being
supported. Moreover, being “permanently” attached to the participant, exoskeletons may
not prove comfortable for everyday use.

One of the main issues with the implementation of these devices into practice is
the lack of adaptability. Adaptability in assistive robots is a key enabler, as behaviours
can vary between patients who may also progress or regress in their rehabilitation [13].
The assistance provided by the robot should therefore adapt to these individual needs.
Failure to do so can result in weakness of the user when too much assistance is provided,
or reduced motivation when too little support is given and the person is unable to complete
the task. Moreover, an adaptive strategy enhances intuitiveness and natural use of the
device, endowing the robot with partial autonomy and unloading the user and/or carer
from the burden of regulating the device. To tackle robot adaptability, this project focuses
on two main objectives: (i) using biomechanical analysis to understand different motor
patterns of sit-to-stand and stand-to-sit movements in individuals with and without stroke,
and (ii) trajectory prediction for STS focusing on informing a user-centric adaptive control
approach for assistive robots.

To capture full-body biomechanical data, it is possible to use vision-based motion
capture systems, such as Microsoft’s Kinect (https://azure.microsoft.com/en-us/services/
kinect-dk/, accessed on 26 May 2022). Previous work has used these systems to great effect,
particularly when motion is constrained to a single plane [14]. It also shows high reliability
for gait analysis [15]. However, vision-based systems present several issues, such as the
underestimation of joint angles [16] and larger errors when estimating unconventional
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positions [17]. Thus, although such systems are lower in cost than IMU-based systems,
their potential inaccuracy as well as their often lower capture rate reduces their ability
for use in clinical trials. Taking into account these factors, we decided to use more precise
IMU-based recordings for the creation of the dataset, while we considered that due to cost-
effectiveness and usability issues (people with disabilities might have issues using wearable
devices), the developed assistive device would use a machine-vision-based system.

Biomechanical analysis of STS movements has been carried out for many years,
with studies focusing on a wide variety of factors often combining adjustments to ex-
perimental parameters, such as seat heights [18,19] or allowing arm use for momen-
tum [20]; with measuring biomechanical factors, such as angles and moments of individual
joints [18,21] or body weight distribution at points of contact [22]. However, these studies
often only capture or provide partial data of the body mechanics. For example, in [21],
pressure data were recorded for participants’ feet but not from under the seat, giving an
incomplete picture of how weight is distributed and transferred during STS movements.
Authors in [19] simplified the human model by negating the participants’ arms for ease
of calculation, which then loses balancing and momentum gaining forces generated by the
upper limbs. In works such as [19,21,22] among others, the authors enforced strict rules
about how the participants should sit and perform the STS movements, which does aid the
consistency of findings but fundamentally fails to recreate how people perform STS actions
in their everyday lives. Moreover, the data from these studies are usually difficult to retrieve
and proprietary, and to the authors’ knowledge, no open-source database containing full
biomechanical data for sit-to-stand-to-sit (STSTS) is currently available. Some datasets do
exist but are quite limited, such as only using one accelerometer to measure trajectories [23],
solely measuring force data from a balance board [24], or using unnatural or ’perturbed’
motions [25]. Also uncommon are datasets containing data from users with pathological
conditions [26]. Another limitation of many existing studies is the focus on sit-to-stand
without including stand-to-sit, an equally important transfer. Stand-to-sit may introduce
extra risks or complications to the movement trajectory of an impaired person due to the
fact that gravity is acting with the participant, requiring additional muscle control from
the subject to sit down safely [27]. By capturing the full biomechanical data alongside
pressure data on both the seat and floor, for all multiple seat heights, sit-to-stand as well
as stand-to-sit movements, and for both stroke and non-stroke participants, this study aims
to create a comprehensive open-source dataset available for future research in this field.

Based on these recorded data, a trajectory prediction algorithm can be applied to
retrieve the estimated motion of a user. However, though trajectory prediction has been
widely documented for walking [26], it is very scarce for STSTS movements. Previous
works such as [28], have used cost functions to generate trajectories for different groups
of individuals and even applied them to an assistive device achieving high success rates [29].
In [28], full-body motion capture in addition to force data from sensors under the feet and
seat were used to calculate trajectories. However, the participants had to stand up from
a bicycle seat which would be sat on and stood up from in a different way to a traditional
chair; therefore, the trajectories recorded might not necessarily reflect how a participant
may move in their everyday life. Similarly to the current study, in [29] an Xsens MVN
motion capture suit was used to monitor healthy participants with high accuracy and
frame rate for their unimpaired subjects. For the older subjects, however, an optical marker
system was used to capture biomechanical data, and this inconsistency may have created
extra variations in the data from the two participant groups. Due to the task at hand,
where the sample space for participant heights and weights was fairly small, the small
distances between datapoints allows algorithms, such as weighted k-nearest neighbours
(k− NN) [30], to generate accurate results.

The aim of the proposed study in this manuscript is thus to evaluate whether simple
machine learning algorithms such as k− NN can be used to predict STSTS trajectories to
inform adaptive robotic control strategies for people with stroke.
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2. Materials and Methods

The methodology for this work is split into two sections. First, the data collection
method and the experimental setup for capturing the STSTS data is presented. Second,
the processing of the recorded biomechanical data for the prediction of movement trajectory
is described.

2.1. Data Collection

Participants were recruited from two populations: non-stroke participants recruited
from staff and students working within the Bristol Robotics Laboratory, who all reported
no physical health problems affecting gait, musculature strength or balance; and those
who had experienced stroke. Stroke patients were recruited from Bristol After Stroke,
a voluntary organisation in the South West of England. Eligibility criteria were as follows:
people with stroke aged over 18 years resulting in unilateral weakness, shoulder muscle
strength 3 on Medical Research Council (MRC) scale, medically stable, able to sit to stand
independently and able to provide informed written consent. Table 1 shows the distribution
of recruited participants from both non-stroke and stroke-affected populations. These crite-
ria were chosen to select participants with mild stroke, or who had significantly recovered
from a more serious stroke, and whose STSTS trajectories might not be too dissimilar to
those of people without stroke. Analysing mild conditions will (i) reduce the risk of fall
and fatigue during the STSTS recordings, and (ii) help validate the proposed methodology
in people with mild impairments, after which further research can progress to adapting to
users with more severe impairments. We took ’able to sit to stand independently’ to mean
without assistance from mechanical aids or people, as research suggests that later stages
of stroke rehabilitation benefit from exercises focusing on lower body strength without
external support [31,32].

Table 1. Parameters with means and standard deviations of participants.

Non-Stroke, n = 24 Stroke, n = 6

Gender Split (M/F) 14/10 3/3
Age (years) 37.2 (±12.0) 66.5 (±10.7)
Height (cm) 175 (±8) 170 (±5.3)
Weight (kg) 74.7 (±14.9) 87.0 (±18.0)

2.1.1. Experimental Setup

This study combined three synchronised sensors to capture each participant’s STSTS
data. Figure 1 shows the setup of these sensors during experiments with a non-stroke
subject, and Figure 2 outlines the experimental procedure.

A full-body motion capture suit (MVN Link, Xsens Technologies, Enschede, The Nether-
lands) (https://www.xsens.com/, accessed on 26 May 2022), with 17 Inertial Measurement
Units (IMU) held tightly to the body with rubberised straps. These were positioned on each
shoulder, upper arm, wrist, hand, thigh, shin and foot, as well as the pelvis, sternum and head.
Each sensor transmitted position and orientation at 100 Hz. Sensors on the feet were attached
using tape to better maintain a fixed position. The XSens sensors are wired together in a chain
to a power pack and transmitter device located on the participant’s back, with enough slack
to allow freedom of movement. The data are streamed from the transmitter to a PC wirelessly.

https://www.xsens.com/
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Figure 1. Participant wearing XSens suit, seated on the sensor mat attached to a rigid board on an
adjustable plinth, with feet placed on the balance board. This setup shows the seat at 115% knee
height. Reference frames are shown for guidance on the following methods and results. Yellow and
black tape in the middle of the balance board was to help the participants stand near the centre,
although they were allowed to move their feet at will to keep themselves balanced and comfortable.

Figure 2. Flow chart depicting data capture procedure for each participant.

A pressure sensing mat (Seating Mat Dev Kit, SensingTex, Barcelona, Spain)
(http://sensingtex.com/sensing-mats/seating-mat/, accessed on 26 May 2022). The seat-
ing mat comprised 16 × 16 pressure sensors in a 30 × 30 cm square fabric, placed with
the participant sitting in the centre. Each sensor output an integer value from 0 to 1024, at
4± 1 Hz. This enabled analysis of a participant’s weight distribution when seated and
preparing to stand and when returning to the seated position.

Finally, a bespoke balance board, which consisted of a square plywood sheet with
force sensors (Model YZC-161B) in the four corners in a 0.855 × 0.86 m grid to measure
a participant’s centre of force in the X-Y plane, transmitted at 85± 5 Hz.

Each of these sensory systems had its own calibration procedure. The XSens suit
calibration was built into the XSens MVN analyze software (https://www.xsens.com/
products/mvn-analyze, accessed on 26 May 2022), and consisted of a routine where the
participant had to sequentially stand statically with feet hip width apart, arms straight and
head forward for 5 s; walk forwards at a comfortable pace for 5 s; and turn 180 degrees and
walk back to their starting position. For the SensingTex Seating Mat, an attached microcon-
troller unit contains firmware that translates the pressure signals from each sensor into 8-bit
values. This was then calibrated by adding known weights to the seating mat and convert-

http://sensingtex.com/sensing-mats/seating-mat/
https://www.xsens.com/products/mvn-analyze,
https://www.xsens.com/products/mvn-analyze,
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ing the total reading from all sensors under pressure into a weight value. The bespoke bal-
ance board contains a an Arduino Nano (https://store.arduino.cc/products/arduino-nano,
accessed on 26 May 2022) microcontroller which converts the force sensor signals into
weight values. This was calibrated by adding known weights to the individual sensors and
adjusting internal variables to obtain accurate readings.

2.1.2. Experimental Protocol

Previous research has suggested standard methods for measuring STS biomechanics.
Often, the sit-to-stand motion is repeated 3–5 times per trial, with breaks in between trials
to avoid patient fatigue. Seats can be set to a range of fixed heights [19,21], or increased
as a percentage of knee height for each participant [33–35]. Participants are often asked to
keep their arms crossed in from of their chest [21,34]. Instead, in this study, we allowed
the motion of the arms to (i) record natural movements, and (ii) reduce the risk of falls
introduced by monitoring people with stroke who may suffer from impaired balance.
Participants were asked to keep their hands in a comfortable position, but to avoid con-
tacting external surfaces to provide extra leverage during the STSTS trials. Research has
shown that a proportion of elderly and impaired users prefer to use external surfaces, such
as chair arms or their own knees, as compensatory behaviours [36], but in contrast, some
stroke rehabilitation trials have chosen to prohibit the use of these techniques, resulting
in improved strength and function of the lower limbs [31,32], helping to support the reason
for using these limitations in the current study.

In this study, each participant performed four sets of 5 STSTS actions, completing
a total of 20 repetitions. Based also on the literature regarding STS experiments with people
with stroke [8], we decided to perform the first two sets using a seat height of 100% of the
participant’s knee height (measured from the floor to the base of the patella), and the latter
two using 115% knee height. In some previous studies, lower seat heights, such as 60%
or 85% knee height, were also tested, which were found to increase forces required on the
knee and hip joints in order to stand. These lowered seat heights were not examined in this
study to avoid extra strain on participants during sit-to-stand, and less velocity during
stand-to-sit actions. Participants were asked to complete the 5 STSTS at their own pace,
raising a hand above the shoulder as a marker of completion of the action. Participants
were allowed to take as much time as required between sets to allow for full recovery.

2.2. STSTS Trajectory Prediction

Figure 3 outlines the data processing used to obtain final movement trajectories. Tra-
jectories were predicted using only data from the non-stroke participants, so that generated
trajectories would be based on ’ideal’ data and not influenced by impaired movements.

Data from the seating mat and balance board were synchronised using interpolation to
match the 100 Hz of the XSens suit and create identical timestamps. To do so, the Python’s
SciPy library [37] was used with the linear interpolation function. Recordings of each set
of 5 STSTS actions were split into individual sit-to-stand and stand-to-sit trials using the
participant’s hand raise as a marker. The data from each action were manually trimmed
to remove excess data from the onset of the actual movement to the end. This was done
to ensure that trial averages were only calculated on data from the participants actual
movement, and was based on the neck position on the assumption that the upper body is
first to move during STS movements to gain momentum.

To obtain average trajectories for each participant, following previous research [11,29],
the 10 trials for each seat height were first stretched to equal length (n = 1000 frames) by
interpolation, after which the mean and standard deviation for the trials could be calculated.
After each user’s average trial had been calculated, the next stage was to begin creating
a model to match these average trials based on users of similar height and weight, or age
and Body Mass Index (BMI).

https://store.arduino.cc/products/arduino-nano
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Figure 3. Flow chart depicting data processing and trajectory prediction for each participant.

The literature often highlights how displacements of the centre of mass (CoM) are
a predictor and cause of falls [7,22]. Calculating CoM dynamically is computationally
expensive, and many studies opt for using simplified human models [38], which has been
show to affect the accuracy of resultant predictions [39]. This study focuses on the potential
use of robotic assistance to prevent users arriving at an unstable body position that could
lead to a fall. Taking into account that shoulders are a commonly included key points
for motion tracking using computer vision systems [40], this study opted for using an
easy-to-estimate virtual point in between the shoulders of each participant as the origin
for the created trajectory. These virtual data were created using the midpoint of the Left
(Zsl) and Right (Zsr) shoulder positions recorded from the Xsens data, calculated using
Equation (1).

Zm =
Zsr + Zsl

2
(1)

Afterwards, we focused on obtaining a simplified prediction algorithm that needs
as few variables as possible to retrieve the user’s trajectory and can be seamlessly im-
plemented in a robotic solution. We focused on the sagittal plane of movement (x axis
in Figure 1), assuming that robotic support will be predominantly in the vertical direction
providing assistance for weight bearing, and the robot would behave as a follower in the
longitudinal direction. Nevertheless, the movement and behaviour in all three axes were
captured and are published to enable further research in this area (see Section 3).

To predict the trajectory, the weighted k-nearest neighbours (k− NN) algorithm [30]
was implemented using the coordinates of participant height against participant weight,
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as well as for age against BMI using Equation (2). Each participant was removed from
the dataset in turn, with their height and weight or age and BMI values reserved as a co-
ordinate for test data. The nearest neighbours to this test coordinate were then weighted
according to their distance to the test coordinate, then combined to create a single trajectory
at each time stamp i, Zi. Additionally, we assumed the possibility of the user manually
adjusting an assistive device to a comfortable height before performing a sit-to-stand action.
Thus, the true starting measured position Zm,0 for the removed user was saved, and the pre-
dicted mid-shoulder trajectory at each time instant i shifted to a new estimate Z′i , matching
this true starting point.

BMI =
Weight(kg)
Height(m)2 (2)

Z′i = Zi − Z0 + Zm,0 (3)

The height and trajectory end points for all users (except the removed test user) were
then plotted against each other, producing a weak positive correlation (0.28 using python’s
SciKit Learn library [41]). A linear regression model was then built off these data [42],
which, when fed the test user’s height as an input, could predict their end point Z′r,n, where
n is the length of the trajectory vector. The predicted trajectory was then scaled to finish
on this predicted end point.

Z′′ i = Z′i +
i
n
(Z′r,n − Z′n) (4)

The true trajectory for the removed participant was compared with this generated
trajectory, and the coefficient of determination R2 [43] for these two curves was found using
Equation (5). This was repeated for each user, and then for different values of k (k = 2,
k = 3, k = 4, k = 5). The average and standard deviation of the R2 value over all users for each
value of k were calculated. Terms are as described previously, and Z̄i represents the mean
value of Z at time step i.

R2 = 1− ∑n
i=0(Zi − Z′′ i)2

∑n
i=0(Zi − Z̄i)2 (5)

Pressure data from the four balance board sensors were analysed by observing the
difference in pressure on each side of the board to determine how participants weighted
each of their legs during the STSTS movements:

PL = PFL + PRL

PR = PFR + PRR,
(6)

with PFL and PFR representing the pressure on the front left and right sensors respectively,
PRL and PRR representing the pressure on the rear left and right sensors, respectively.

The centre of pressure (CoP) was also retrieved from balance board data (7):

CoPx =
PFL FLx + PFR FRx + PRL RLx + PRR RRx

PFL + PFR + PRL + PRR

CoPy =
PFL FLy + PFR FRy + PRL RLy + PRR RRy

PFL + PFR + PRL + PRR

(7)

FLx, FLy, FRx, FRy represent the x and y distance of the front left and right sensors
from the centre of the balance board, and RLx, RLy, RRx, RRy represent the x and y
distance of the rear left and right sensors from the centre of the balance board, with the
exact measurements shown in Equation (8) (values in m).
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(FLx, FLy) = (0, 0.855)

(FRx, FRy) = (0.86, 0.055)

(RLx, RLy) = (0, 0)

(RRx, RRy) = (0.86, 0)

(8)

We hypothesise that people with stroke, who may have impaired balance, would find
it harder to regulate their centre of pressure during STSTS movements, which would be
shown by a larger range of CoP values for these participants.

3. Results

The results from this study are split into two sections. First, we present the analysis
of the data captured from the seating mat and balance board sensors. These are not used
later for trajectory generation, but provide a valuable qualitative comparison of the non-
stroke participants against those with stroke. Second, we validate the k− NN and linear
regression algorithms on predicting STSTS trajectories using the data from non-stroke
participants using the XSens motion capture suit.

All the presented and used data in this section are publicly available in both raw and
processed forms at [44].

3.1. STSTS Dataset Analysis
3.1.1. Balance Board

Figure 4a shows the average force applied to the balance board’s left sensors (front
and rear) compared with the force on right sensors for selected non-stroke and stroke
participants over 10 repetitions with seat set at 100% knee height. For the non-stroke
participants, a similar amount of force was applied on each side of the body during the
sit-to-stand motions, whereas for the stroke-affected participants, a lot more of the weight
was taken up by the unimpaired side, in this case, the left leg. This is particularly noticeable
around the middle of the STS motion, as weight is being transferred from the seat and
onto the feet but before the participant has become fully stable. Also noticeable for the
stroke participants is a reduction in force on the balance board just after the beginning
of the motion.

(a) (b)

Figure 4. (a) Average weight placed on each side of the balance board for stroke (top) and non-stroke
(bottom) users, 10 sit-to-stand movements, at 100% seat height. (b) Weight placed on each side
of the balance board for stroke (top) and non-stroke (bottom) users, stand-to-sit movement, at 100%
seat height.

Figure 4b shows similar features for the stand-to-sit movement, with the stroke sub-
ject greatly favouring the unimpaired leg over the impaired, and the non-stroke subject
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showing much more even weighting of the legs. The mean difference in weight applied
to each leg over the whole action was calculated for each participant using Equation (9),
where PFL,i represents pressure on the front left force cell at time step i. The average
difference for non-stroke subjects was 2.08 ± 1.75 kg, and for stroke subjects, this was
4.53 ± 4.05 kg. For stand-to-sit, these values were 2.52 ± 1.88 kg for non-stroke and
5.13 ± 4.07 kg for stroke participants.

Weight Di f f erence =
∑i=n

i=0 |(PFL,i + PRL,i)− (PFR,i + PRR,i)|
n

(9)

Figure 5 shows the differences between centre of pressure trajectories for stroke and
non-stroke participants. Some of the stroke-affected participants show much larger dis-
placements in both the x and y directions, demonstrating that these participants struggled
with balance, and may be at greater risk of falls. Non-stroke participants generally showed
little displacement in the x-direction.

Figure 5. Centre of pressure trajectories for stroke and non-stroke participants, with the start position
of each line normalised to (0,0). Each colour represents a participant. Single examples highlighted
solely for clarity of comparison.

3.1.2. Seating Mat

Though the full quantitative analysis of the seating mat data is out of the scope
of this paper, here we present some brief qualitative analysis highlighting the differences
between non-stroke and stroke participants. Figure 6a shows the average progression
of pressure applied to the seating mat over the course of 10 sit-to-stand movements for two
representative participants, one non-stroke, and one with stroke. Each coloured pixel
represents the weight in kilograms applied to each sensor on the mat. It must be noted
that this image does not show the full STS trajectory, as when the participant is preparing
to stand, and when their weight is fully off the mat, the pressure on the seating mat
remains quasi-static.

It can be observed that for the non-stroke subject, the seat-off movement was more
gradual and smooth, taking around 40% (55% − 15%) of the total movement time to
reach seat off. Instead, the stroke participant created more instant velocity to generate the
necessary impulse for seat-off, thus shortening the time of this event (around 25% of the
total movement). Also notable is that, as can be observed in Figure 6a, the stroke participant
was seated further forward on the seating mat, having less contact surface with the chair.
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(a)

(b)

Figure 6. Average weight distribution on seat mat during (a) sit-to-stand action, and (b) stand-to-sit
actions. Each sensor reading weight is in kg. Percentage progress through movement is highlighted
in white.

Figure 6b shows the average weight distribution on the seating mat for the same stroke
and non-stroke subjects, this time during the stand-to-sit action. In this graph, matching
timestamps are shown for each subject, and it is clear again that the participant with stroke
greatly favours one leg (in this case their right) for weighting first, and only reduces weight
on that leg at the very end of the action when they have achieved a stable position. Again,
the stroke subject sits further forward on the seating mat. The non-stroke participant
shows a slight favouritism of one limb over the other, but much less pronounced than the
non-stroke user, and weights both limbs at a similar rate.

3.2. STSTS Trajectory Prediction

Figure 7 shows a visualisation of the marker data captured by the XSens suit, overlaid
onto images of a non-stroke participant performing the sit-to-stand motion. This image
shows the progression of the participant over key moments of the sit-to-stand movement,
including seated stationary, preparing to stand, seat off, obtaining standing balance, and fi-
nally standing stationary.

Tables 2 and 3 show the average R2 values for different k-nearest neighbours when
comparing each non-stroke participant’s true trajectory against that predicted by the al-
gorithm. Table 2 shows results when using height and weight as k − NN coordinates,
while Table 3 shows results when using age and BMI. The highest score is for k = 3
for height and weight coordinates, with the average R2 score over all participants of
0.864 ± 0.134 for sit-to-stand at 100% seat height.

For both types of k − NN coordinates, sit-to-stand gave higher average R2 results
than stand-to-sit, and also 100% seat height gave higher results than 115% seat height,
as well as larger standard deviations in both cases. Using height and weight gave very
similar results for sit-to-stand than age and BMI, with a maximum difference of 0.036
for k = 2 at 115% seat height. However, age and BMI coordinates did generate more
accurate trajectories for stand-to-sit, particularly for higher values of k. The maximum
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difference was 0.173 for k = 4 at 115% seat height, also showing a standard deviation
almost half the size of that for height and weight coordinates.

Figure 7. Example of full sit-to-stand action, showing points captured from individual markers.

Only 6 stroke-affected participants were measured, each with significantly varying
levels of impairment and movement patterns. Due to the small and diverse sample,
averaging stroke participants data would have neglected the differences that arise from
having suffered from impairments on different sides of their bodies. Thus, we made
the decision to display and analyse each participant with stroke separately rather than
focusing solely on average values.

Table 2. Average R2 with standard deviation values for different values of k when using height and
weight as k− NN coordinates.

100% Seat Height 115% Seat Height

k Sit-to-Stand Stand-to-Sit Sit-to-Stand Stand-to-Sit

2 0.854 ± 0.138 0.666 ± 0.448 0.719 ± 0.357 0.639 ± 0.397
3 0.864 ± 0.134 0.653 ± 0.376 0.762 ± 0.323 0.579 ± 0.443
4 0.832 ± 0.186 0.516 ± 0.570 0.784 ± 0.281 0.441 ± 0.644
5 0.830 ± 0.215 0.617 ± 0.453 0.799 ± 0.247 0.552 ± 0.543

Table 3. Average R2 with standard deviation values for different values of k when using age and BMI
as k− NN coordinates.

100% Seat Height 115% Seat Height

k Sit-to-Stand Stand-to-Sit Sit-to-Stand Stand-to-Sit

2 0.861 ± 0.152 0.645 ± 0.316 0.755 ± 0.324 0.598 ± 0.356
3 0.854 ± 0.151 0.723 ± 0.261 0.754 ± 0.324 0.676 ± 0.314
4 0.833 ± 0.186 0.703 ± 0.294 0.759 ± 0.284 0.614 ± 0.358
5 0.852 ± 0.196 0.733 ± 0.266 0.787 ± 0.273 0.635 ± 0.332

Figure 8 shows each stroke participants’ sit-to-stand and stand-to-sit graphs, at 100%
seat height on the left and 115% seat height on the right. Red lines show the true trajectories
for each participant, averaged over their 10 trials, with standard deviation lines also shown.
Blue and green lines represent trajectories predicted for that user by the k − NN and
linear regression model, using k = 3. These graphs show a huge variation in how well
the predicted trajectory matches with the participants’ true movement, with a top R2 score
of over 0.99 for the third participant’s sit-to-stand action at 100% seat height, but only
0.11 for the same action for the first participant. The average R2 score for the sit-to-stand
action at 100% seat height for the stroke participants was 0.816± 0.267 when using age and
BMI as k− NN coordinates, which is a slightly lower average than that for the non-stroke
participants, and with a much higher standard deviation. Sit-to-stand movements at 115%
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seat height are closest in average score to those from the non-stroke participants, with even
a smaller standard deviation. Tables 4 and 5 show the full results for each participant
and action. Note that in this case, the predicted trajectory represents an ‘ideal’ behaviour
of the participant as a non-stroke subject. A larger error (smaller R2 value) corresponds to
a larger deviation between the stroke and ‘ideal’ trajectories.

Figure 8. Trajectories predicted by k− NN and linear regression model imposed over stroke partic-
ipants’ (labelled S1–S6) recorded trajectories. Two left columns show sit-to-stand and stand-to-sit
for 100% seat height. Two right columns show sit-to-stand and stand-to-sit for 115% seat height. Red
lines show participants average true trajectory with standard deviations. Blue lines are trajectories
predicted by the k− NN and linear regression model using height and weight as k− NN coordinates.
Green lines are for predicted trajectories using age and BMI as k − NN coordinates. The y axes
on each graph represent the Z position of the mid-shoulder point, and the x axes show percentage
completion of the STSTS movement.
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Table 4. R2 values for different stroke participants for sit-to-stand and stand-to-sit actions at different
seat heights, using k = 3 and height and weight as k− NN coordinates.

Participant Sit-to-Stand,
100%

Stand-to-Sit,
100%

Sit-to-Stand,
115%

Stand-to-Sit,
115%

S1 0.112 0.372 0.495 0.287
S2 0.929 0.474 0.894 −0.007
S3 0.989 0.966 0.991 0.967
S4 0.843 0.387 0.674 0.759
S5 0.708 −0.509 0.365 −1.82
S6 0.823 0.966 0.917 0.9

Average 0.734± 0.320 0.443± 0.541 0.723± 0.253 0.181± 1.051

Table 5. R2 values for different stroke participants for sit-to-stand and stand-to-sit actions at different
seat heights, using k = 3 and age and BMI as k− NN coordinates.

Participant Sit-to-Stand,
100%

Stand-to-Sit,
100%

Sit-to-Stand,
115%

Stand-to-Sit,
115%

S1 0.282 0.281 0.752 0.355
S2 0.952 0.482 0.920 0.488
S3 0.996 0.819 0.986 0.832
S4 0.929 0.584 0.862 0.825
S5 0.845 0.137 0.638 −1.065
S6 0.893 0.972 0.963 0.932

Average 0.816± 0.267 0.546± 0.316 0.854± 0.135 0.395± 0.749

4. Discussion

This study used a k− NN and linear regression model to produce trajectories for un-
seen participants during sit-to-stand and stand-to-sit movements, which in most cases
only deviated from the true path by a few centimetres (see Tables 2 and 3). This was most
accurate for subjects near to average heights and weights, as their nearest neighbours were
more likely to be a lot closer than for subjects on the fringes of the dataset. This model was
able to recreate the full mid-shoulder trajectories from non-stroke subjects with an average
R2 score of 0.864 ± 0.134 for sit-to-stand movements starting from 100% seat height and
using height and weight as k − NN coordinates, in most cases deviating from the true
trajectory by no more than 5 cm. For 115% seat height, though we still had achieved some
level of prediction, the R2 score decreased and error increased for both sit-to-stand and
stand-to-sit movements. This could be due to a raised seat height being less familiar to
participants, which as a result created more variation in how they distributed their weight
and generated momentum, changing their STS patterns. Additionally, balance could have
played a role in the repeatability of the motions, as at 115% height, the seating position was
less stable and the impulse to stand up could have been less predictable. A larger number
of participants would increase the accuracy of the model, and is an aim for the future
of this project.

Comparing the use of height and weight, and age and BMI as k− NN coordinates,
the former provided the highest single score, but only by a very narrow margin, whereas age
and BMI was shown to more successful for stand-to-sit trials, including having a generalized
smaller error. Age and BMI was also more successful at predicting trajectories for higher
values of k, which can avoid chances of overfitting [45]. For these reasons, our results
suggest that using age and BMI as k− NN parameters is more successful for predicting
STSTS movements.

After validating the prediction model, it was also used to estimate ‘ideal’ trajectories
for stroke subjects, which could be used for the control of an assistive devices. As it can be
observed in Figure 8 and Tables 4 and 5, the difference between ‘ideal’ and real trajecto-
ries varied depending on the subject. For example, subject S1 exhibited a deep lowering
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behaviour at around 40% of the movement, that reflected the impulse taken during the sit-
to-stand and that is not present in an ‘ideal’ trajectory. Thus, a control could be envisioned
in which the robot tries to follow such ‘ideal’ trajectory depending on the level of im-
pairment and assistance needed by the subject. Conversely, participant S3 was in a good
physical state and had little level of impairment, which was visible from the small differ-
ence between the the ‘ideal’ and measured trajectories. Thus, in this case, the robot would
provide little assistance to the person’s movement. Tables 4 and 5 shows that using age
and BMI as k− NN coordinates results in higher average R2 values across all movements,
and therefore is more appropriate for use in future work.

Moreover, in this work, we managed to create a comprehensive data-set of full-
body biomechanics and force data for 30 participants, including 6 who had experienced
stroke. These data allowed for a first comparison analysis of body motion for people with
and without stroke during STSTS movements, and opens the door for further research
on physiological studies and robotic assistance.

Based on the results shown in Figure 5, the range of displacement during sit-to-stand,
particularly in the x-direction of the CoP, could be used as an indicator of potential falls,
and utilized by an assistive robot to take preventive actions. Despite being able to see
large differences in body position and applied forces (Figure 8) for some stroke subjects,
the small sample size of stroke participants meant that quantitative analysis of these
differences could not be performed reliably. However, the large range of ability levels within
the stroke subjects group highlights the importance of future assistive devices to be adaptive
to the individual user, and thus to have personalized predictions of their movements.

It must be also pointed out the difference in ages between the two groups, with av-
erages of 37.2 ± 12 years for non-stroke and 66.5 ± 10.7 years for stroke participants.
Although some non-stroke participants tested were in their fifties and sixties, the majority
were much younger than participants in the stroke group. This could mean that some
of the biomechanical differences seen in the stroke group were influenced by age as well
as the effects of the stroke. Further research will expand the number of stroke participants
tested, including younger people with stroke, to reduce this age discrepancy.

Other trends noted in the stroke-affected participants included a ‘rocking back’ motion
when preparing to stand, seen both in the seating mat data with a higher weight applied
just before standing, Figure 6, and also mirrored in the balance board data, Figure 4,
where participants removed some weight from the feet just before acting. Additionally,
some stroke participants exhibited a large difference between weight applied to each foot
during STSTS motions, highlighting favouritism of their unimpaired limb and potential
increased risk of falls. A key observation is that these trends were not homogeneous among
the groups, with some stroke participants showing very little difference between weight
applied to each foot, with some non-stroke participants also showing some favouritism
of one leg. Larger sample sizes would help to determine more definitive trends within these
groups, and create segmentation within groups further than just ’stroke’ and ‘non-stroke’.

It is possible that some of the stroke-affected participants may use compensatory
behaviours, such as pushing off the arms of a chair when performing STS movements
in their everyday lives [36,46]. Prohibiting these behaviours in this study may have affected
how the participants performed STSTS movements, but care was taken to ensure that all
participants were able to safely perform STSTS movements independently.

People with stroke demonstrate considerable asymmetry of weight distribution dur-
ing sit to stand, demonstrating significantly increased weight bearing on the unaffected
side [47,48]. Stroke survivors also commonly exhibit a reduced peak vertical reaction force,
an increased time to complete the movement of sit to stand and a larger medio-lateral
centre of pressure displacement compared with healthy adults [47]. This also can be seen
when looking at the data from the force sensors in Figure 4; the non-stroke participant
spreads the weight much more evenly over their two legs, and it is clear that they favour
weighting one leg throughout the whole movement, which is also shown in the higher
weight distribution imbalance for stroke participants using Equation (9). The non-stroke
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person sits much further back on the seating mat than the person with stroke in Figure 6,
and it has been shown that sitting or ’scooting’ forward on a chair can make performing
STS movements easier for elderly people [46,49], thus showing that the non-stroke user
is able to apply more torque to their legs. Comparing the first frame of the stroke patient
with the second and third frames, more weight is applied to the seating mat just before the
patient stands, representing the patient ’rocking’ backwards to build momentum for the
stand movement. This was also observed visually during the trials.

The data created in this research are a valuable starting point for further designs
of assistive robots. We demonstrated that simple machine learning algorithms are able to
predict STSTS movement trajectories with relative accuracy, which could be used as inputs
for a robot aiming to follow a user’s STSTS trajectory. We highlighted areas where true
trajectories differ from predictions, which a robot could use to adapt the level of assistance
it is providing to guide the user back to a safe path. We showed that impaired participants
tend to exhibit more unstable forces when standing, which could be used as indicators
of potential falls and trigger a robot to take preventative measures. Building upon previous
datasets found in literature [23–25], this dataset combines full-body biomechanics with force
data from multiple sensors, allowing for more thorough analysis and comparison between
sensors. Further exploration of this dataset could involve analysing participant velocities
and accelerations to determine the maximum forces that a STSTS assistive robot would
need to be able to apply to operate safely for a wide variety of users. Another avenue could
be to focus on a participants’ movement in the horizontal plane and their centre of pressure,
as a robot may attempt to prevent falls by reducing movement in these parameters.

A limitation of this study is that it focused on stroke participants who were able to
stand safely by themselves to minimize the risk of falls or injury. Stroke participants were
recruited from within the Bristol After Stroke charity, which is based in the community
rather than in hospital or other rehabilitation settings, and therefore supports more able
patients. This means the dataset does not include trajectories of persons severely physically
impaired by stroke and therefore does not show the likely larger variation in trajectories,
body positions and applied forces that these subjects might demonstrate.

However, a STSTS assistive robot is likely to target a wider range of impaired subjects,
possibly including those who might be unable to stand independently. Further research
should focus on testing and recording these user’s biomechanical data when given the
minimum assistance required to allow them to perform STSTS movements. These record-
ings would help to determine physical additional requirements of a STSTS robot, such
as workspace, force limits, and safety measures, as more severely impaired users are likely
to exhibit more extreme behaviours. Measuring this variety of movement patterns will be
useful for the safety testing and validation of such robots. In addition to a wider variety
of user ability levels, future work could investigate more variability in STSTS scenarios,
such as rising from lowered seats, which, although are not ideally suited for impaired users,
are still situations that may arise in a home environment.

5. Conclusions

This manuscript presents an algorithm to estimate sit-to-stand and stand-to-sit trajec-
tories from a minimal set of biomechanical parameters. The proposed model was able to
recreate full mid-shoulder trajectories from non-stroke subjects with an average R2 score
of 0.864 ± 0.134. The model was then used to predict ‘ideal’ trajectories for people who
have suffered a stroke. Moreover, pressure data from both seat and underfoot sensors
were presented alongside full biomechanical recordings to form an open-source database
(Section 3) that will serve to inform future studies in STSTS motion assistance. The pre-
dicted trajectories could be used by an assistive device to guide the motion of a person
who has experienced a stroke towards a pre-stroke pattern. The lack of previously existing
comprehensive datasets accentuates the significance of the presented open-source data,
which can enable further analysis to be carried out and combined with the findings in this
study. Additionally, the use of simple machine learning techniques to predict personalized
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trajectories with minimal biometrical inputs, shows that future assistive devices do not
necessarily need to rely on complicated systems to provide adaptable assistance to differ-
ent users. Future work will focus on applying the generated trajectories into an existing
assistive robot, to assess the safety and comfort of the generated control.
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The following abbreviations are used in this manuscript:

STS Sit to stand
STSTS Sit to stand to sit
CoP Centre of pressure
k− NN k-nearest neighbours
LR Linear regression
IMU Inertial measurement unit
BMI Body mass index
R2 Coefficient of determination
Zsr z position of the participant’s right shoulder
Zsl z position of the participant’s left shoulder
Zm Midshoulder z coordinate
Zm,0 True z position of the participant’s midshoulder at time 0
Zi Predicted z position of the participant’s midshoulder created from k− NN algorithm
Z0 Initial predicted trajectory created from k− NN algorithm
Z′i Predicted trajectory with start position adjusted by participant’s true start position
Z′′i Final predicted trajectory with end point adjusted through LR
Z′n Predicted end-point trajectory from k− NN algorithm
Z′r,n Predicted end-point of midshoulder trajectory from LR
FLx, FLy x, y position of the front left balance board sensor
FRx, FRy x, y position of the front right balance board sensor
RLx, RLy x, y position of the rear left balance board sensor
RRx, RRy x, y position of the rear right balance board sensor
PFL Pressure reading on the front left balance board sensor
PFR Pressure reading on the front right balance board sensor
PRL Pressure reading on the rear left balance board sensor
PRR Pressure reading on the rear right balance board sensor
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