5,860 research outputs found

    Near Real-Time Data Labeling Using a Depth Sensor for EMG Based Prosthetic Arms

    Full text link
    Recognizing sEMG (Surface Electromyography) signals belonging to a particular action (e.g., lateral arm raise) automatically is a challenging task as EMG signals themselves have a lot of variation even for the same action due to several factors. To overcome this issue, there should be a proper separation which indicates similar patterns repetitively for a particular action in raw signals. A repetitive pattern is not always matched because the same action can be carried out with different time duration. Thus, a depth sensor (Kinect) was used for pattern identification where three joint angles were recording continuously which is clearly separable for a particular action while recording sEMG signals. To Segment out a repetitive pattern in angle data, MDTW (Moving Dynamic Time Warping) approach is introduced. This technique is allowed to retrieve suspected motion of interest from raw signals. MDTW based on DTW algorithm, but it will be moving through the whole dataset in a pre-defined manner which is capable of picking up almost all the suspected segments inside a given dataset an optimal way. Elevated bicep curl and lateral arm raise movements are taken as motions of interest to show how the proposed technique can be employed to achieve auto identification and labelling. The full implementation is available at https://github.com/GPrathap/OpenBCIPytho

    Estimation of muscular forces from SSA smoothed sEMG signals calibrated by inverse dynamics-based physiological static optimization

    Get PDF
    The estimation of muscular forces is useful in several areas such as biomedical or rehabilitation engineering. As muscular forces cannot be measured in vivo non-invasively they must be estimated by using indirect measurements such as surface electromyography (sEMG) signals or by means of inverse dynamic (ID) analyses. This paper proposes an approach to estimate muscular forces based on both of them. The main idea is to tune a gain matrix so as to compute muscular forces from sEMG signals. To do so, a curve fitting process based on least-squares is carried out. The input is the sEMG signal filtered using singular spectrum analysis technique. The output corresponds to the muscular force estimated by the ID analysis of the recorded task, a dumbbell weightlifting. Once the model parameters are tuned, it is possible to obtain an estimation of muscular forces based on sEMG signal. This procedure might be used to predict muscular forces in vivo outside the space limitations of the gait analysis laboratory.Postprint (published version

    Gait parameter estimation from a miniaturized ear-worn sensor using singular spectrum analysis and longest common subsequence

    Get PDF
    This paper presents a new approach to gait analysis and parameter estimation from a single miniaturised earworn sensor embedded with a triaxial accelerometer. Singular spectrum analysis (SSA) combined with the longest common subsequence (LCSS) algorithm has been used as a basis for gait parameter estimation. It incorporates information from all axes of the accelerometer to estimate parameters including swing, stance and stride times. Rather than only using local features of the raw signals, the periodicity of the signals is also taken into account. The hypotheses tested by this study include: 1) how accurate is the ear-worn sensor in terms of gait parameter extraction compared to the use of an instrumented treadmill; 2) does the ear-worn sensor provide a feasible option for assessment and quantification of gait pattern changes. Key gait events for normal subjects such as heel contact and toe off are validated with a high-speed camera, as well as a force-plate instrumented treadmill. Ten healthy adults walked for 20 minutes on a treadmill with an increasing incline of 2% every 2 minutes. The upper and lower limits of the absolute errors using 95% confidence intervals for swing, stance and stride times were obtained as 35.5±3.99ms, 36.9 ± 3.84ms, and 17.9 ± 2.29ms, respectively

    Feature diversity for optimized human micro-doppler classification using multistatic radar

    Get PDF
    This paper investigates the selection of different combinations of features at different multistatic radar nodes, depending on scenario parameters, such as aspect angle to the target and signal-to-noise ratio, and radar parameters, such as dwell time, polarisation, and frequency band. Two sets of experimental data collected with the multistatic radar system NetRAD are analysed for two separate problems, namely the classification of unarmed vs potentially armed multiple personnel, and the personnel recognition of individuals based on walking gait. The results show that the overall classification accuracy can be significantly improved by taking into account feature diversity at each radar node depending on the environmental parameters and target behaviour, in comparison with the conventional approach of selecting the same features for all nodes

    Split-belt walking:An experience that is hard to forget

    Get PDF
    BACKGROUND. The common paradigm to study the adaptability of human gait is split-belt walking. Short-term savings (minutes to days) of split-belt adaptation have been widely studied to gain knowledge in locomotor learning but reports on long-term savings are limited. Here, we studied whether after a prolonged inter-exposure interval (three weeks), the newly acquired locomotor pattern is subject to forgetting or that the pattern is saved in long-term locomotor memory. RESEARCH QUESTION. Can savings of adaptation to split-belt walking remain after a prolonged interexposure interval of three weeks? METHODS. Fourteen healthy adults participated in a single tenminute adaptation session to split-belt walking and five-minute washout to tied-belt walking. They received no training after the first exposure and returned to the laboratory exactly three weeks later for the second exposure. To identify the adaptation trends and quantify saving parameters we used Singular Spectrum Analysis, a non-parametric, data-driven approach. We identified trends in step length asymmetry and double support asymmetry, and calculated the adaptation volume (reduction in asymmetry over the course of adaptation), and the plateau time (time required for the trend to level off). RESULTS. At the second exposure after three weeks, we found substantial savings in adaptation for step length asymmetry volume (61.6% – 67.6% decrease) and plateau time (76.3% decrease). No differences were found during washout or in double support asymmetry. SIGNIFICANCE. This study shows that able-bodied individuals retain savings of split-belt adaptation over a three-week period, which indicates that only naïve split-belt walkers should be included in split-belt adaptation studies, as previous experience to split-belt walking will not be washed out, even after a prolonged period. In future research, these results can be compared with long-term savings in patient groups, to gain insight into factors underlying (un)successful gait training in rehabilitation

    Micro-doppler-based in-home aided and unaided walking recognition with multiple radar and sonar systems

    Get PDF
    Published in IET Radar, Sonar and Navigation. Online first 21/06/2016.The potential for using micro-Doppler signatures as a basis for distinguishing between aided and unaided gaits is considered in this study for the purpose of characterising normal elderly gait and assessment of patient recovery. In particular, five different classes of mobility are considered: normal unaided walking, walking with a limp, walking using a cane or tripod, walking with a walker, and using a wheelchair. This presents a challenging classification problem as the differences in micro-Doppler for these activities can be quite slight. Within this context, the performance of four different radar and sonar systems – a 40 kHz sonar, a 5.8 GHz wireless pulsed Doppler radar mote, a 10 GHz X-band continuous wave (CW) radar, and a 24 GHz CW radar – is evaluated using a broad range of features. Performance improvements using feature selection is addressed as well as the impact on performance of sensor placement and potential occlusion due to household objects. Results show that nearly 80% correct classification can be achieved with 10 s observations from the 24 GHz CW radar, whereas 86% performance can be achieved with 5 s observations of sonar

    In silico case studies of compliant robots: AMARSI deliverable 3.3

    Get PDF
    In the deliverable 3.2 we presented how the morphological computing ap- proach can significantly facilitate the control strategy in several scenarios, e.g. quadruped locomotion, bipedal locomotion and reaching. In particular, the Kitty experimental platform is an example of the use of morphological computation to allow quadruped locomotion. In this deliverable we continue with the simulation studies on the application of the different morphological computation strategies to control a robotic system

    Home detection of freezing of gait using Support Vector Machines through a single waist-worn triaxial accelerometer

    Get PDF
    Among Parkinson’s disease (PD) symptoms, freezing of gait (FoG) is one of the most debilitating. To assess FoG, current clinical practice mostly employs repeated evaluations over weeks and months based on questionnaires, which may not accurately map the severity of this symptom. The use of a non-invasive system to monitor the activities of daily living (ADL) and the PD symptoms experienced by patients throughout the day could provide a more accurate and objective evaluation of FoG in order to better understand the evolution of the disease and allow for a more informed decision-making process in making adjustments to the patient’s treatment plan. This paper presents a new algorithm to detect FoG with a machine learning approach based on Support Vector Machines (SVM) and a single tri-axial accelerometer worn at the waist. The method is evaluated through the acceleration signals in an outpatient setting gathered from 21 PD patients at their home and evaluated under two different conditions: first, a generic model is tested by using a leave-one-out approach and, second, a personalised model that also uses part of the dataset from each patient. Results show a significant improvement in the accuracy of the personalised model compared to the generic model, showing enhancement in the specificity and sensitivity geometric mean (GM) of 7.2%. Furthermore, the SVM approach adopted has been compared to the most comprehensive FoG detection method currently in use (referred to as MBFA in this paper). Results of our novel generic method provide an enhancement of 11.2% in the GM compared to the MBFA generic model and, in the case of the personalised model, a 10% of improvement with respect to the MBFA personalised model. Thus, our results show that a machine learning approach can be used to monitor FoG during the daily life of PD patients and, furthermore, personalised models for FoG detection can be used to improve monitoring accuracy.Peer ReviewedPostprint (published version
    • …
    corecore