5 research outputs found

    Singular perturbations in stochastic optimal control with unbounded data

    Full text link
    We study singular perturbations of a class of two-scale stochastic control systems with unbounded data. The assumptions are designed to cover some relaxation problems for deep neural networks. We construct effective Hamiltonian and initial data and prove the convergence of the value function to the solution of a limit (effective) Cauchy problem for a parabolic equation of HJB type. We use methods of probability, viscosity solutions and homogenization.Comment: 26 page

    On average control generating families for singularly perturbed optimal control problems with long run average optimality criteria

    Full text link
    The paper aims at the development of tools for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems with long run average optimality criteria. The idea that we exploit is to first asymptotically approximate a given problem of optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional (ID) linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with a numerical example.Comment: 36 pages, 4 figures. arXiv admin note: substantial text overlap with arXiv:1309.373

    Deep Relaxation of Controlled Stochastic Gradient Descent via Singular Perturbations

    Full text link
    We consider a singularly perturbed system of stochastic differential equations proposed by Chaudhari et al. (Res. Math. Sci. 2018) to approximate the Entropic Gradient Descent in the optimization of deep neural networks, via homogenisation. We embed it in a much larger class of two-scale stochastic control problems and rely on convergence results for Hamilton-Jacobi-Bellman equations with unbounded data proved recently by ourselves (ESAIM Control Optim. Calc. Var. 2023). We show that the limit of the value functions is itself the value function of an effective control problem with extended controls, and that the trajectories of the perturbed system converge in a suitable sense to the trajectories of the limiting effective control system. These rigorous results improve the understanding of the convergence of the algorithms used by Chaudhari et al., as well as of their possible extensions where some tuning parameters are modelled as dynamic controls

    Averaging and linear programming in some singularly perturbed problems of optimal control

    Full text link
    The paper aims at the development of an apparatus for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems (that is, problems of optimal control of SP systems) considered on the infinite time horizon. We mostly focus on problems with time discounting criteria but a possibility of the extension of results to periodic optimization problems is discussed as well. Our consideration is based on earlier results on averaging of SP control systems and on linear programming formulations of optimal control problems. The idea that we exploit is to first asymptotically approximate a given problem of optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional (ID) linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with two numerical examples.Comment: 53 pages, 10 figure
    corecore