796 research outputs found

    Steady-State movement related potentials for brain–computer interfacing

    Get PDF
    An approach for brain-computer interfacing (BCI) by analysis of steady-state movement related potentials (ssMRPs) produced during rhythmic finger movements is proposed in this paper. The neurological background of ssMRPs is briefly reviewed. Averaged ssMRPs represent the development of a lateralized rhythmic potential, and the energy of the EEG signals at the finger tapping frequency can be used for single-trial ssMRP classification. The proposed ssMRP-based BCI approach is tested using the classic Fisher's linear discriminant classifier. Moreover, the influence of the current source density transform on the performance of BCI system is investigated. The averaged correct classification rates (CCRs) as well as averaged information transfer rates (ITRs) for different sliding time windows are reported. Reliable single-trial classification rates of 88%-100% accuracy are achievable at relatively high ITRs. Furthermore, we have been able to achieve CCRs of up to 93% in classification of the ssMRPs recorded during imagined rhythmic finger movements. The merit of this approach is in the application of rhythmic cues for BCI, the relatively simple recording setup, and straightforward computations that make the real-time implementations plausible

    Visual evoked potential estimation by eigendecomposition

    Get PDF
    In this paper an eigendecomposition method is presented to estimate evoked potentials (EP). Taking into account of the characteristic of evoked potentials, the method uses two observations both of which contain desired EP signal and undesired EEG signal. If the desired and undesired signal are uncorrelated (i.e. they are orthgonal) and the signal-to-noise-ratios (SNR) of each observations are different, we can use the eigendecomposition method to separate EP signal from EEG. Visual evoked potentials (VEP) of humans have been estimated and good results obtained by this method.published_or_final_versio

    Enhancing brain-computer interfacing through advanced independent component analysis techniques

    No full text
    A Brain-computer interface (BCI) is a direct communication system between a brain and an external device in which messages or commands sent by an individual do not pass through the brain’s normal output pathways but is detected through brain signals. Some severe motor impairments, such as Amyothrophic Lateral Sclerosis, head trauma, spinal injuries and other diseases may cause the patients to lose their muscle control and become unable to communicate with the outside environment. Currently no effective cure or treatment has yet been found for these diseases. Therefore using a BCI system to rebuild the communication pathway becomes a possible alternative solution. Among different types of BCIs, an electroencephalogram (EEG) based BCI is becoming a popular system due to EEG’s fine temporal resolution, ease of use, portability and low set-up cost. However EEG’s susceptibility to noise is a major issue to develop a robust BCI. Signal processing techniques such as coherent averaging, filtering, FFT and AR modelling, etc. are used to reduce the noise and extract components of interest. However these methods process the data on the observed mixture domain which mixes components of interest and noise. Such a limitation means that extracted EEG signals possibly still contain the noise residue or coarsely that the removed noise also contains part of EEG signals embedded. Independent Component Analysis (ICA), a Blind Source Separation (BSS) technique, is able to extract relevant information within noisy signals and separate the fundamental sources into the independent components (ICs). The most common assumption of ICA method is that the source signals are unknown and statistically independent. Through this assumption, ICA is able to recover the source signals. Since the ICA concepts appeared in the fields of neural networks and signal processing in the 1980s, many ICA applications in telecommunications, biomedical data analysis, feature extraction, speech separation, time-series analysis and data mining have been reported in the literature. In this thesis several ICA techniques are proposed to optimize two major issues for BCI applications: reducing the recording time needed in order to speed up the signal processing and reducing the number of recording channels whilst improving the final classification performance or at least with it remaining the same as the current performance. These will make BCI a more practical prospect for everyday use. This thesis first defines BCI and the diverse BCI models based on different control patterns. After the general idea of ICA is introduced along with some modifications to ICA, several new ICA approaches are proposed. The practical work in this thesis starts with the preliminary analyses on the Southampton BCI pilot datasets starting with basic and then advanced signal processing techniques. The proposed ICA techniques are then presented using a multi-channel event related potential (ERP) based BCI. Next, the ICA algorithm is applied to a multi-channel spontaneous activity based BCI. The final ICA approach aims to examine the possibility of using ICA based on just one or a few channel recordings on an ERP based BCI. The novel ICA approaches for BCI systems presented in this thesis show that ICA is able to accurately and repeatedly extract the relevant information buried within noisy signals and the signal quality is enhanced so that even a simple classifier can achieve good classification accuracy. In the ERP based BCI application, after multichannel ICA the data just applied to eight averages/epochs can achieve 83.9% classification accuracy whilst the data by coherent averaging can reach only 32.3% accuracy. In the spontaneous activity based BCI, the use of the multi-channel ICA algorithm can effectively extract discriminatory information from two types of singletrial EEG data. The classification accuracy is improved by about 25%, on average, compared to the performance on the unpreprocessed data. The single channel ICA technique on the ERP based BCI produces much better results than results using the lowpass filter. Whereas the appropriate number of averages improves the signal to noise rate of P300 activities which helps to achieve a better classification. These advantages will lead to a reliable and practical BCI for use outside of the clinical laboratory

    A supervised machine-learning method for detecting steady-state visually evoked potentials for use in brain computer interfaces: A comparative assessment

    Get PDF
    It is hypothesised that supervised machine learning on the estimated parameters output by a model for visually evoked potentials (VEPs), created by KremlĂĄcek et al. (2002), could be used to classify steady-state visually evoked potentials (SSVEP) by frequency of stimulation. Classification of SSVEPs by stimulus frequency has application in SSVEP-based brain computer interfaces (BCI), where users are presented with flashing stimuli and user intent is decoded by identifying which stimulus the subject is attending to. We investigate the ability of the model of VEPs to fit the initial portions of SSVEPs, which are not yet in a steady state and contain characteristic features of VEPs superimposed with those of a steady state response. In this process the estimated parameters, as a function of the model for a given SSVEP response, were found. These estimated parameters were used to train several support vector machines (SVM) to classify the SSVEPs. Three initialisation conditions for the model are examined for their contribution to the goodness of fit and the subsequent classification accuracy, of the SVMs. It was found that the model was able to fit SSVEPs with a normalised root mean square error (NRMSE) of 27%, this performance did not match the expected NRMSE values of 13% reported by KremlĂĄcek et al. (2002) for fits on VEPs. The fit data was assessed by the machine learning scheme and generated parameters which were classifiable by SVM above a random chance of 14% (Reang 9% to 28%). It was also shown that the selection of initial parameters had no distinct effect on the classification accuracy. Traditional classification approaches using spectral techniques such as Power Spectral Density Analysis (PSDA) and canonical correlation analysis (CCA) require a window period of data above 1 s to perform accurately enough for use in BCIs. The larger the window period of SSVEP data used the more the Information transfer rate (ITR) decreases. Undertaking a successful classification on only the initial 250 ms portions of SSVEP data would lead to an improved ITR and a BCI which is faster to use. Classification of each method was assessed at three SSVEP window periods (0.25, 0.5 and 1 s). Comparison of the three methods revealed that, on a whole CCA outperformed both the PSDA and SVM methods. While PSDA performance was in-line with that of the SVM method. All methods performed poorly at the window period of 0.25 s with an average accuracy converging on random chance - 14%. At the window period of 0.5 s the CCA only marginally outperformed the SVM method and at a time of 1 s the CCA method significantly (p<0.05) outperformed the SVM method. While the SVMs tended to improve with window period the results were not generally significant. It was found that certain SVMs (Representing a unique combination of subject, initial conditions and window period) achieved an accuracy as high as 30%. For a few instances the accuracy was comparable to the CCA method with a significance of 5%. While we were unable to predict which SVM would perform well for a given subject, it was demonstrated that with further refinement this novel method may produce results similar to or better than that of CCA

    Relationship between motion VEP and perceived velocity of gratings: effects of stimulus speed and motion adaptation

    Get PDF
    The N200 amplitude of the motion-onset VEP evoked by a parafoveal grating of variable speed (0.25–13.5°/s), constant spatial frequency (2 cpd), contrast (4%), and direction (horizontally rightward) was studied before and after adaptation to a stationary or drifting grating (1 or 4°/s). Psychophysical measurements were made simultaneously of the perceived speed. In the unadapted condition the slope of the N200 amplitude versus speed function is positive, but lower for high compared to low speeds. The N200 amplitude increases slightly after stationary adaptation. An increase in perceived speed is also evident after stationary adaptation. This increase is more pronounced for low compared to high speeds. Motion adaptation reduces N200 amplitudes over the entire speed range, whereas perceived speeds change from under-estimation to over-estimation when the speed exceeds 1.8°/s after 1°/s adaptation and 4.5°/s after 4°/s adaptation. The simultaneous evaluation of motion VEP and psychophysical results supports the view that the neurons generating the N200 component are also involved in speed perception. The data suggest the existence of a limited number (three or more) speed channels

    EEG in the classroom: Synchronised neural recordings during video presentation

    Get PDF
    We performed simultaneous recordings of electroencephalography (EEG) from multiple students in a classroom, and measured the inter-subject correlation (ISC) of activity evoked by a common video stimulus. The neural reliability, as quantified by ISC, has been linked to engagement and attentional modulation in earlier studies that used high-grade equipment in laboratory settings. Here we reproduce many of the results from these studies using portable low-cost equipment, focusing on the robustness of using ISC for subjects experiencing naturalistic stimuli. The present data shows that stimulus-evoked neural responses, known to be modulated by attention, can be tracked in for groups of students with synchronized EEG acquisition. This is a step towards real-time inference of engagement in the classroom.Comment: 14 pages, 5 figures, 3 tables. Preprint version. Revision of original preprint. Supplementary materials added as ancillary fil

    Multimodal imaging of human brain activity: rational, biophysical aspects and modes of integration

    Get PDF
    Until relatively recently the vast majority of imaging and electrophysiological studies of human brain activity have relied on single-modality measurements usually correlated with readily observable or experimentally modified behavioural or brain state patterns. Multi-modal imaging is the concept of bringing together observations or measurements from different instruments. We discuss the aims of multi-modal imaging and the ways in which it can be accomplished using representative applications. Given the importance of haemodynamic and electrophysiological signals in current multi-modal imaging applications, we also review some of the basic physiology relevant to understanding their relationship
    • …
    corecore