7 research outputs found

    Приборы и методы измерений запылённости окружающей воздушной среды. Краткий обзор

    Get PDF
    The main characteristics of airborne micro/nanoparticles, their impact on human health and air quality standards are presented. International standards classify microparticles by size (PM10, PM2.5, PM1, UFP), establish maximum allowable concentrations and control methods. Particular attention is paid to carbonand virus-containing microparticles control. To monitor the air environment in enclosed spaces and in transport, the portable sensors of micro-, nanoparticles are required with the ability to classify them by size and electrophysical characteristics.Detection of microparticles includes the sorting of particles entering the sensor by size and material type, subsequent actual detection of particles of the same kind, with subsequent classification by size, electrical and morphological characteristics. Separation of nanoand microparticles by size before detection improves the sensitivity and selectivity of the detector both in size and material. The virtual impactor and dielectrophoresis method are considered for integration in a Lab-on-Chip type sensor. Detection of microparticles is performed by separating the dispersed phase from the aerosol followed by the analysis, or directly in the air flow. The classification of detection methods according to speed and functionality is given. Among the methods allowing detection of micrometer and submicrometer size particles, the most suitable for miniaturization and serial production of Lab-on-Chip sensors are the multi-wavelength photoelectric, MEMS, and capacitor elements.The microelectromechanics, microfluidics and microoptics technologies make it possible to create portable sensor systems of the Lab-on-Chip type to detect particulates matter of micrometer and submicrometer size. A micro-, nanoparticles detector prototype based on alumina technology using MEMS elements for a compact Lab-on-Chip type sensor is presented. The proposed design for multifunctional portable detector of airborne micro/nanoparticles is prospective for industry, transport, medicine, public and residential buildings applications.Представлены основные характеристики переносимых воздухом микро/наночастиц, их влияние на здоровье человека и нормативы качества воздушной среды. Международные стандарты классифицируют микрочастицы по размеру (PM10, PM2,5, PM1, UFP), определяют предельно допустимые концентрации и методики их контроля. Особое внимание уделяется контролю углероди вируссодержащих микрочастиц. Для мониторинга воздушной среды в закрытых помещениях, в транспорте требуются портативные датчики микро-, наночастиц с возможностями их классификации по размеру и электрофизическим характеристикам.Детектирование микрочастиц включает сортировку попадающих в детектор микро/наночастиц по размеру и типу материала и собственно детектирование однотипных частиц с последующей классификацией по размеру, электрофизическим и морфологическим характеристикам. Разделение нано и микрочастиц по размеру перед детектированием повышает чувствительность и селективность детектора как по размерам, так и по материалу. Для интеграции в сенсоре Lab-on-Chip типа рассмотрены методы виртуального импактора и диэлектрофореза. Детектирование микрочастиц осуществляется с выделением дисперсной фазы из аэрозоля с последующим анализом либо непосредственно в воздушном потоке. Приведена классификация методов детектирования по быстродействию и функциональным возможностям. Среди методов детектирования частиц микронных и субмикронных размеров наиболее пригодны для миниатюризации и серийного изготовления Lab-on-Chip сенсоров мультиволновые фотоэлектрические, МЭМС, конденсаторные элементы.Технологии микроэлектромеханики, микрофлюидики и микрооптики позволяют создавать портативные сенсорные системы типа Lab-on-Chip для детектирования твёрдых частиц микронного и субмикронного размера. Представлен прототип детектора микро-, наночастиц на основе алюмооксидной технологии с использованием МЭМС элементов для компактного сенсора Lab-on-Сhip типа. Предлагаемая конструкция многофункционального портативного детектора микро/наночастиц воздушной (газовой) среды перспективна для применения в промышленности, транспорте, медицине, общественных и жилых помещениях

    Distributed, Low-Cost, Non-Expert Fine Dust Sensing with Smartphones

    Get PDF
    Diese Dissertation behandelt die Frage, wie mit kostengünstiger Sensorik Feinstäube in hoher zeitlicher und räumlicher Auflösung gemessen werden können. Dazu wird ein neues Sensorsystem auf Basis kostengünstiger off-the-shelf-Sensoren und Smartphones vorgestellt, entsprechende robuste Algorithmen zur Signalverarbeitung entwickelt und Erkenntnisse zur Interaktions-Gestaltung für die Messung durch Laien präsentiert. Atmosphärische Aerosolpartikel stellen im globalen Maßstab ein gravierendes Problem für die menschliche Gesundheit dar, welches sich in Atemwegs- und Herz-Kreislauf-Erkrankungen äußert und eine Verkürzung der Lebenserwartung verursacht. Bisher wird Luftqualität ausschließlich anhand von Daten relativ weniger fester Messstellen beurteilt und mittels Modellen auf eine hohe räumliche Auflösung gebracht, so dass deren Repräsentativität für die flächendeckende Exposition der Bevölkerung ungeklärt bleibt. Es ist unmöglich, derartige räumliche Abbildungen mit den derzeitigen statischen Messnetzen zu bestimmen. Bei der gesundheitsbezogenen Bewertung von Schadstoffen geht der Trend daher stark zu räumlich differenzierenden Messungen. Ein vielversprechender Ansatz um eine hohe räumliche und zeitliche Abdeckung zu erreichen ist dabei Participatory Sensing, also die verteilte Messung durch Endanwender unter Zuhilfenahme ihrer persönlichen Endgeräte. Insbesondere für Luftqualitätsmessungen ergeben sich dabei eine Reihe von Herausforderungen - von neuer Sensorik, die kostengünstig und tragbar ist, über robuste Algorithmen zur Signalauswertung und Kalibrierung bis hin zu Anwendungen, die Laien bei der korrekten Ausführung von Messungen unterstützen und ihre Privatsphäre schützen. Diese Arbeit konzentriert sich auf das Anwendungsszenario Partizipatorischer Umweltmessungen, bei denen Smartphone-basierte Sensorik zum Messen der Umwelt eingesetzt wird und üblicherweise Laien die Messungen in relativ unkontrollierter Art und Weise ausführen. Die Hauptbeiträge hierzu sind: 1. Systeme zum Erfassen von Feinstaub mit Smartphones (Low-cost Sensorik und neue Hardware): Ausgehend von früher Forschung zur Feinstaubmessung mit kostengünstiger off-the-shelf-Sensorik wurde ein Sensorkonzept entwickelt, bei dem die Feinstaub-Messung mit Hilfe eines passiven Aufsatzes auf einer Smartphone-Kamera durchgeführt wird. Zur Beurteilung der Sensorperformance wurden teilweise Labor-Messungen mit künstlich erzeugtem Staub und teilweise Feldevaluationen in Ko-Lokation mit offiziellen Messstationen des Landes durchgeführt. 2. Algorithmen zur Signalverarbeitung und Auswertung: Im Zuge neuer Sensordesigns werden Kombinationen bekannter OpenCV-Bildverarbeitungsalgorithmen (Background-Subtraction, Contour Detection etc.) zur Bildanalyse eingesetzt. Der resultierende Algorithmus erlaubt im Gegensatz zur Auswertung von Lichtstreuungs-Summensignalen die direkte Zählung von Partikeln anhand individueller Lichtspuren. Ein zweiter neuartiger Algorithmus nutzt aus, dass es bei solchen Prozessen ein signalabhängiges Rauschen gibt, dessen Verhältnis zum Mittelwert des Signals bekannt ist. Dadurch wird es möglich, Signale die von systematischen unbekannten Fehlern betroffen sind auf Basis ihres Rauschens zu analysieren und das "echte" Signal zu rekonstruieren. 3. Algorithmen zur verteilten Kalibrierung bei gleichzeitigem Schutz der Privatsphäre: Eine Herausforderung partizipatorischer Umweltmessungen ist die wiederkehrende Notwendigkeit der Sensorkalibrierung. Dies beruht zum einen auf der Instabilität insbesondere kostengünstiger Luftqualitätssensorik und zum anderen auf der Problematik, dass Endbenutzern die Mittel für eine Kalibrierung üblicherweise fehlen. Bestehende Ansätze zur sogenannten Cross-Kalibrierung von Sensoren, die sich in Ko-Lokation mit einer Referenzstation oder anderen Sensoren befinden, wurden auf Daten günstiger Feinstaubsensorik angewendet sowie um Mechanismen erweitert, die eine Kalibrierung von Sensoren untereinander ohne Preisgabe privater Informationen (Identität, Ort) ermöglicht. 4. Mensch-Maschine-Interaktions-Gestaltungsrichtlinien für Participatory Sensing: Auf Basis mehrerer kleiner explorativer Nutzerstudien wurde empirisch eine Taxonomie der Fehler erstellt, die Laien beim Messen von Umweltinformationen mit Smartphones machen. Davon ausgehend wurden mögliche Gegenmaßnahmen gesammelt und klassifiziert. In einer großen summativen Studie mit einer hohen Teilnehmerzahl wurde der Effekt verschiedener dieser Maßnahmen durch den Vergleich vier unterschiedlicher Varianten einer App zur partizipatorischen Messung von Umgebungslautstärke evaluiert. Die dabei gefundenen Erkenntnisse bilden die Basis für Richtlinien zur Gestaltung effizienter Nutzerschnittstellen für Participatory Sensing auf Mobilgeräten. 5. Design Patterns für Participatory Sensing Games auf Mobilgeräten (Gamification): Ein weiterer erforschter Ansatz beschäftigt sich mit der Gamifizierung des Messprozesses um Nutzerfehler durch den Einsatz geeigneter Spielmechanismen zu minimieren. Dabei wird der Messprozess z.B. in ein Smartphone-Spiel (sog. Minigame) eingebettet, das im Hintergrund bei geeignetem Kontext die Messung durchführt. Zur Entwicklung dieses "Sensified Gaming" getauften Konzepts wurden Kernaufgaben im Participatory Sensing identifiziert und mit aus der Literatur zu sammelnden Spielmechanismen (Game Design Patterns) gegenübergestellt

    Single-chip CMOS capacitive sensor for ubiquitous dust detection and granulometry with sub-micrometric resolution

    No full text
    A monolithic CMOS chip able to count single airborne particles down to a diameter of 1 µm is presented. This mm-sized ASIC addresses the growing need for portable and miniaturized solid-state sensors monitoring air quality to be disseminated in the environment within pervasive wireless sensors networks. Particle counting and sizing are based on high-resolution capacitive detection. State-of-the-art performances (65 zF resolution with 40 Hz bandwidth) are enabled by the combination on the same chip of interdigitated microelectrodes (separated by 1 µm distance, matched with the particle size), and ultra-low-noise electronics connected to them achieving the lowest possible parasitic input capacitance. Chip design and characterization are illustrated

    Investigation of Volatile Organic Compounds (VOCs) released as a result of spoilage in whole broccoli, carrots, onions and potatoes with HS-SPME and GC-MS

    Get PDF
    Vegetable spoilage renders a product undesirable due to changes in sensory characteristics. The aim of this study was to investigate the change in the fingerprint of VOC composition that occur as a result of spoilage in broccoli, carrots, onions and potatoes. SPME and GC-MS techniques were used to identify and determine the relative abundance of VOC associated with both fresh and spoilt vegetables. Although a number of similar compounds were detected in varying quantities in the headspace of fresh and spoilt samples, certain compounds which were detected in the headspace of spoilt vegetables were however absent in fresh samples. Analysis of the headspace of fresh vegetables indicated the presence of a variety of alkanes, alkenes and terpenes. Among VOCs identified in the spoilt samples were dimethyl disulphide and dimethyl sulphide in broccoli; Ethyl propanoate and Butyl acetate in carrots; 1-Propanethioland 2-Hexyl-5-methyl-3(2H)-furanone in onions; and 2, 3-Butanediol in potatoes. The overall results of this study indicate the presence of VOCs that can serve as potential biomarkers for early detection of quality deterioration and in turn enhance operational and quality control decisions in the vegetable industry

    Online learning of physics during a pandemic: A report from an academic experience in Italy

    Get PDF
    The arrival of the Sars-Cov II has opened a new window on teaching physics in academia. Frontal lectures have left space for online teaching, teachers have been faced with a new way of spreading knowledge, adapting contents and modalities of their courses. Students have faced up with a new way of learning physics, which relies on free access to materials and their informatics knowledge. We decided to investigate how online didactics has influenced students’ assessments, motivation, and satisfaction in learning physics during the pandemic in 2020. The research has involved bachelor (n = 53) and master (n = 27) students of the Physics Department at the University of Cagliari (N = 80, 47 male; 33 female). The MANOVA supported significant mean differences about gender and university level with higher values for girls and master students in almost all variables investigated. The path analysis showed that student-student, student-teacher interaction, and the organization of the courses significantly influenced satisfaction and motivation in learning physics. The results of this study can be used to improve the standards of teaching in physics at the University of Cagliar

    Effect of curing conditions and harvesting stage of maturity on Ethiopian onion bulb drying properties

    Get PDF
    The study was conducted to investigate the impact of curing conditions and harvesting stageson the drying quality of onion bulbs. The onion bulbs (Bombay Red cultivar) were harvested at three harvesting stages (early, optimum, and late maturity) and cured at three different temperatures (30, 40 and 50 oC) and relative humidity (30, 50 and 70%). The results revealed that curing temperature, RH, and maturity stage had significant effects on all measuredattributesexcept total soluble solids
    corecore