15,031 research outputs found

    A Linear First-Order Functional Intermediate Language for Verified Compilers

    Full text link
    We present the linear first-order intermediate language IL for verified compilers. IL is a functional language with calls to a nondeterministic environment. We give IL terms a second, imperative semantic interpretation and obtain a register transfer language. For the imperative interpretation we establish a notion of live variables. Based on live variables, we formulate a decidable property called coherence ensuring that the functional and the imperative interpretation of a term coincide. We formulate a register assignment algorithm for IL and prove its correctness. The algorithm translates a functional IL program into an equivalent imperative IL program. Correctness follows from the fact that the algorithm reaches a coherent program after consistently renaming local variables. We prove that the maximal number of live variables in the initial program bounds the number of different variables in the final coherent program. The entire development is formalized in Coq.Comment: Addressed comments from reviewers (ITP 2015): (1) Added discussion of a paper in related work (2) Added definition of renamed-apart in appendix (3) Formulation changes in a coupe of place

    Symbolic Exact Inference for Discrete Probabilistic Programs

    Full text link
    The computational burden of probabilistic inference remains a hurdle for applying probabilistic programming languages to practical problems of interest. In this work, we provide a semantic and algorithmic foundation for efficient exact inference on discrete-valued finite-domain imperative probabilistic programs. We leverage and generalize efficient inference procedures for Bayesian networks, which exploit the structure of the network to decompose the inference task, thereby avoiding full path enumeration. To do this, we first compile probabilistic programs to a symbolic representation. Then we adapt techniques from the probabilistic logic programming and artificial intelligence communities in order to perform inference on the symbolic representation. We formalize our approach, prove it sound, and experimentally validate it against existing exact and approximate inference techniques. We show that our inference approach is competitive with inference procedures specialized for Bayesian networks, thereby expanding the class of probabilistic programs that can be practically analyzed

    A Graph Model for Imperative Computation

    Get PDF
    Scott's graph model is a lambda-algebra based on the observation that continuous endofunctions on the lattice of sets of natural numbers can be represented via their graphs. A graph is a relation mapping finite sets of input values to output values. We consider a similar model based on relations whose input values are finite sequences rather than sets. This alteration means that we are taking into account the order in which observations are made. This new notion of graph gives rise to a model of affine lambda-calculus that admits an interpretation of imperative constructs including variable assignment, dereferencing and allocation. Extending this untyped model, we construct a category that provides a model of typed higher-order imperative computation with an affine type system. An appropriate language of this kind is Reynolds's Syntactic Control of Interference. Our model turns out to be fully abstract for this language. At a concrete level, it is the same as Reddy's object spaces model, which was the first "state-free" model of a higher-order imperative programming language and an important precursor of games models. The graph model can therefore be seen as a universal domain for Reddy's model

    Interacting via the Heap in the Presence of Recursion

    Full text link
    Almost all modern imperative programming languages include operations for dynamically manipulating the heap, for example by allocating and deallocating objects, and by updating reference fields. In the presence of recursive procedures and local variables the interactions of a program with the heap can become rather complex, as an unbounded number of objects can be allocated either on the call stack using local variables, or, anonymously, on the heap using reference fields. As such a static analysis is, in general, undecidable. In this paper we study the verification of recursive programs with unbounded allocation of objects, in a simple imperative language for heap manipulation. We present an improved semantics for this language, using an abstraction that is precise. For any program with a bounded visible heap, meaning that the number of objects reachable from variables at any point of execution is bounded, this abstraction is a finitary representation of its behaviour, even though an unbounded number of objects can appear in the state. As a consequence, for such programs model checking is decidable. Finally we introduce a specification language for temporal properties of the heap, and discuss model checking these properties against heap-manipulating programs.Comment: In Proceedings ICE 2012, arXiv:1212.345

    A Symbolic Execution Algorithm for Constraint-Based Testing of Database Programs

    Full text link
    In so-called constraint-based testing, symbolic execution is a common technique used as a part of the process to generate test data for imperative programs. Databases are ubiquitous in software and testing of programs manipulating databases is thus essential to enhance the reliability of software. This work proposes and evaluates experimentally a symbolic ex- ecution algorithm for constraint-based testing of database programs. First, we describe SimpleDB, a formal language which offers a minimal and well-defined syntax and seman- tics, to model common interaction scenarios between pro- grams and databases. Secondly, we detail the proposed al- gorithm for symbolic execution of SimpleDB models. This algorithm considers a SimpleDB program as a sequence of operations over a set of relational variables, modeling both the database tables and the program variables. By inte- grating this relational model of the program with classical static symbolic execution, the algorithm can generate a set of path constraints for any finite path to test in the control- flow graph of the program. Solutions of these constraints are test inputs for the program, including an initial content for the database. When the program is executed with respect to these inputs, it is guaranteed to follow the path with re- spect to which the constraints were generated. Finally, the algorithm is evaluated experimentally using representative SimpleDB models.Comment: 12 pages - preliminary wor
    • …
    corecore