8 research outputs found

    Single item lot-sizing with non-decreasing capacities

    Get PDF
    We consider the single item lot-sizing problem with capacities that are non-decreasing over time. When the cost function is i) non-speculative or Wagner-Whitin (for instance, constant unit production costs and non-negative unit holding costs), and ii) the production set-up costs are non-increasing over time, it is known that the minimum cost lot-sizing problem is polynomially solvable using dynamic programming. When the capacities are non-decreasing, we derive a compact mixed integer programming reformulation whose linear programming relaxation solves the lot-sizing problem to optimality when the objective function satisfies i) and ii). The formulation is based on mixing set relaxations and reduces to the (known) convex hull of solutions when the capacities are constant over time. We illustrate the use and effectiveness of this improved LP formulation on a new test instances, including instances with and without Wagner-Whitin costs, and with both non-decreasing and arbitrary capacities over time.lot-sizing, mixing set relaxation, compact reformulation, production planning, mixed integer programming

    Valid Inequalities for Two-Period Relaxations of Big-Bucket Lot-Sizing Problems: Zero Setup Case

    Get PDF
    In this paper, we investigate two-period subproblems for big-bucket lot-sizing problems, which have shown a great potential for obtaining strong bounds. In particular, we investigate the special case of zero setup times and identify two important mixed integer sets representing relaxations of these subproblems. We analyze the polyhedral structure of these sets, deriving several families of valid inequalities and presenting their facet-defining conditions. We then extend these inequalities in a novel fashion to the original space of two-period subproblems, and also propose a new family of valid inequalities in the original space. In order to investigate the true strength of the proposed inequalities, we propose and implement exact separation algorithms, which are computationally tested over a broad range of test problems. In addition, we develop a heuristic framework for separation, in order to extend computational tests to larger instances. These computational experiments indicate the proposed inequalities can be indeed very effective improving lower bounds substantially

    A review of discrete-time optimization models for tactical production planning

    Full text link
    This is an Accepted Manuscript of an article published in International Journal of Production Research on 27 Mar 2014, available online: http://doi.org/10.1080/00207543.2014.899721[EN] This study presents a review of optimization models for tactical production planning. The objective of this research is to identify streams and future research directions in this field based on the different classification criteria proposed. The major findings indicate that: (1) the most popular production-planning area is master production scheduling with a big-bucket time-type period; (2) most of the considered limited resources correspond to productive resources and, to a lesser extent, to inventory capacities; (3) the consideration of backlogs, set-up times, parallel machines, overtime capacities and network-type multisite configuration stand out in terms of extensions; (4) the most widely used modelling approach is linear/integer/mixed integer linear programming solved with exact algorithms, such as branch-and-bound, in commercial MIP solvers; (5) CPLEX, C and its variants and Lindo/Lingo are the most popular development tools among solvers, programming languages and modelling languages, respectively; (6) most works perform numerical experiments with random created instances, while a small number of works were validated by real-world data from industrial firms, of which the most popular are sawmills, wood and furniture, automobile and semiconductors and electronic devices.This study has been funded by the Universitat Politècnica de València projects: ‘Material Requirement Planning Fourth Generation (MRPIV)’ (Ref. PAID-05-12) and ‘Quantitative Models for the Design of Socially Responsible Supply Chains under Uncertainty Conditions. Application of Solution Strategies based on Hybrid Metaheuristics’ (PAID-06-12).Díaz-Madroñero Boluda, FM.; Mula, J.; Peidro Payá, D. (2014). A review of discrete-time optimization models for tactical production planning. International Journal of Production Research. 52(17):5171-5205. doi:10.1080/00207543.2014.899721S51715205521

    Single item lot-sizing with non-decreasing capacities

    No full text
    We consider the single item lot-sizing problem with capacities that are non-decreasing over time. When the cost function is (i) non-speculative or Wagner-Whitin (for instance, constant unit production costs and non-negative unit holding costs) and (ii) the production set-up costs are non-increasing over time, it is known that the minimum cost lot-sizing problem is polynomially solvable using dynamic programming. When the capacities are non-decreasing, we derive a compact mixed integer programming reformulation whose linear programming relaxation solves the lot-sizing problem to optimality when the objective function satisfies (i) and (ii). The formulation is based on mixing set relations and reduces to the (known) convex hull of solutions when the capacities are constant over time. We illustrate the use and potential effectiveness of this improved LP formulation on a few test instances, including instances with and without Wagner-Whitin costs, and with both non-decreasing and arbitrary capacities over time

    Single Item Lot-Sizing with Non-Decreasing Capacities

    Get PDF
    We consider the single item lot-sizing problem with capacities that are non-decreasing over time. When the cost function is i) non-speculative or Wagner-Whitin (for instance, constant unit production costs and non-negative unit holding costs), and ii) the production set-up costs are non-increasing over time, it is known that the minimum cost lotsizing problem is polynomially solvable using dynamic programming. When the capacities are non-decreasing, we derive a compact mixed integer programming reformulation whose linear programming relaxation solves the lot-sizing problem to optimality when the objective function satisfies i) and ii). The formulation is based on mixing set relaxations and reduces to the (known) convex hull of solutions when the capacities are constant over time. We illustrate the use and effectiveness of this improved LP formulation on a few test instances, including instances with and without Wagner-Whitin costs, and with both non-decreasing and arbitrary capacities over time

    Single item lot-sizing with non-decreasing capacities

    No full text
    We consider the single item lot-sizing problem with capacities that are non-decreasing over time. When the cost function is i) non-speculative or Wagner-Whitin (for instance, constant unit production costs and non-negative unit holding costs), and ii) the production set-up costs are non-increasing over time, it is known that the minimum cost lotsizing problem is polynomially solvable using dynamic programming. When the capacities are non-decreasing, we derive a compact mixed integer programming reformulation whose linear programming relaxation solves the lot-sizing problem to optimality when the objective function satisfies i) and ii). The formulation is based on mixing set relaxations and reduces to the (known) convex hull of solutions when the capacities are constant over time. We illustrate the use and effectiveness of this improved LP formulation on a few test instances, including instances with and without Wagner-Whitin costs, and with both non-decreasing and arbitrary capacities over time
    corecore