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In this paper, we investigate two-period subproblems for big-bucket lot-sizing problems,
which have shown a great potential for obtaining strong bounds. In particular, we inves-
tigate the special case of zero setup times and identify two important mixed integer sets
representing relaxations of these subproblems. We analyze the polyhedral structure of these
sets, deriving several families of valid inequalities and presenting their facet-defining condi-
tions. We then extend these inequalities in a novel fashion to the original space of two-period
subproblems, and also propose a new family of valid inequalities in the original space. In
order to investigate the true strength of the proposed inequalities, we propose and imple-
ment exact separation algorithms, which are computationally tested over a broad range of
test problems. In addition, we develop a heuristic framework for separation, in order to
extend computational tests to larger instances. These computational experiments indicate
the proposed inequalities can be indeed very effective improving lower bounds substantially.

Key words: Production; Lot-Sizing; Integer Programming; Polyhedral Analysis; Valid
Inequalities.

Mathematics Subject Classification (2000): 90B06; 90C10; 90C59.

1. Introduction

The lot-sizing problem aims to determine an optimal production plan detailing how much to
produce and stock in each time period of the planning horizon, given manufacturing system
limitations such as machine capacities and customer orders/forecasted demand. Due to its
strong impact on manufacturing companies’ performance in terms of customer service quality
and operating costs, lot-sizing has been a very active research area for many decades with
significant attention from researchers as well as practitioners. Due to its practical importance
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and limited knowledge in the literature, we focus in this paper on the multi-item lot-sizing
problem with big-bucket capacities, where each resource is shared by multiple items and
more than one type of item can be produced in any time period. We study this problem
from a theoretical perspective, where we analyze a two-period relaxation of this problem
and characterize its important properties. Our main contributions are (i) several families
of new valid inequalities and their facet-defining properties for the relaxations of the two-
period subproblem, (ii) novel extensions of these inequalities into the original space of the
two-period relaxation, as well as new valid inequalities for the original space, and (iii) exact
separation algorithms designed to test the practical strength of the proposed inequalities.
We also develop a simple but effective heuristic approach in order to extend computational
experiments. Our computational results show that the proposed inequalities have great
potential to strengthen the lower bounds significantly.

1.1 Literature Review

Most lot-sizing problems are inherently difficult problems: from the theoretical complexity
perspective, even the multi-item problem with a single joint capacity and without setup
times is strongly NP-hard (Chen and Thizy, 1990). From a computational perspective,
problems with multiple items and capacities, in particular of industrial scale, remain noto-
riously difficult to solve to optimality, often resulting in high duality gaps (Buschkühl et al.,
2010). Therefore, there is a wide spectrum of research on lot-sizing problems, ranging from
practically efficient heuristics (e.g., Federgruen et al. (2007)) and meta-heuristics (e.g., Jans
and Degraeve (2007)) to mathematical programming techniques, which we discuss next in
more detail due to their relevance to our study.

Because of their complexity, most researchers in the mathematical programming commu-
nity studied special cases of lot-sizing problems, which still provide valuable insights on some
inherent structures of more general problems and hence support the solution methodologies
proposed. The exact approaches most often employed either defining valid inequalities (e.g.,
Barany et al. (1984); Pochet and Wolsey (1994); Küçükyavuz and Pochet (2009)) or ex-
tended reformulations (e.g., Krarup and Bilde (1977); Eppen and Martin (1987); Pochet
and Wolsey (2010)) for variants of single-item problem, some of which were also extended
to multi-item problems (e.g., Belvaux and Wolsey (2000)). There are also few studies using
other techniques such as Lagrangian relaxation (e.g., Billington et al. (1986)) and Dantzig-
Wolfe decomposition (e.g., Degraeve and Jans (2007)). Pochet and Wolsey (2006) provide a
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thorough review of different variants of lot-sizing problems, their complexities and solution
methods used. Most recently, there have been insightful polyhedral results on multi-level
problems, such as the valid inequalities of Zhang et al. (2012), and the compact formulations
of Van Vyve et al. (2014) for small-bucket capacities, i.e., items do not share resources.

Despite this extensive literature, the research explicitly investigating complications aris-
ing from multiple items competing for the limited capacities inherent in big-bucket problems
is rather limited, and only few exceptions exist to the best of our knowledge. The polyhedral
analysis of a single-period relaxation by Miller et al. (2000, 2003) provided us some insight-
ful properties of this polyhedron including new valid inequalities. The study of Jans and
Degraeve (2004) presented various decompositions and indicated that period decompositions
provide stronger bounds, which is recently investigated further by the branch-and-cut frame-
work of de Araujo et al. (2015) resulting in promising computational results with regards to
gaps. The work of Van Vyve and Wolsey (2005) obtained strong lower bounds, most often
stronger than any previous results, by applying approximate extended reformulations only
for a small number of periods. The extensive computational study of Akartunalı and Miller
(2012) noted the bottleneck in big-bucket problems as the lack of a good understanding of
the convex hull of single-machine, multi-period problems. This motivated the novel frame-
work of Akartunalı et al. (2016), where the smallest such problem, a two-period relaxation, is
used to separate all violated inequalities by generating the extreme points of its convex hull,
without pre-defining families of inequalities. The computational results of this study have
shown great promise to significantly close duality gaps for big-bucket problems in general,
which motivated us to study such a two-period relaxation from a polyhedral perspective.

In this paper, we present our work investigating the special case of zero setup times.
This does not only enable us to analytically study inherent structures and hence provide
useful insights that can be potentially extended to more complicated problems, but also
improve our understanding about this multi-item problem with zero setup times that has
been actively studied for many years in the lot-sizing literature, e.g., the earlier work of
Dixon and Silver (1981) proposed heuristic approaches for this problem, and essentially
the motivation for the seminal work of Padberg et al. (1985) stemmed from this problem.
From a practical perspective, it is worth noting that setup times are not necessarily zero,
however, using zero setup times has been a very effective modelling approach in case of
“negligible setup times”, i.e., very low setup times compared to processing times, in order
to reduce the problem complexity, see, e.g., Kuik et al. (1994) for a discussion. Negligible
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setup times can be observed in various manufacturing settings, e.g., assembly operations in
automobile industry and packing operations in food industry. Moreover, as noted by Olaitan
and Geraghty (2013) technological advances such as agile tooling and material handling make
it possible to produce different products on the same set of machines and therefore enable
production line designers reduce setup costs significantly. We finally refer the interested
reader to the review of Jans and Degraeve (2008) for a thorough discussion about this
special case, achievements and open challenges.

In the next section, we present the problem formulation and the two-period relaxation
X2PL, originally proposed by Akartunalı et al. (2016), and study some of its polyhedral
properties, including the special case with no setup times. In Section 3, we present two
relaxations of X2PL, propose a number of valid inequalities for these relaxations and discuss
their facet-defining properties. Section 4 presents novel extensions of these inequalities into
the original space of X2PL, as well as a new family of valid inequalities. We present exact
separation algorithms in Section 5, and computationally test the strength of the inequalities
in Section 6, which show promising results for their effectiveness. We also develop a simple
but effective heuristic separation approach in Section 7 enabling experimentation with larger
instances, where further encouraging results are obtained. We conclude the paper with a
discussion of possible extensions and generalizations. We note that all essential proofs are
provided in the Online Supplement due to their lengthy and involved nature.

2. A Two-Period Relaxation for Big-Bucket Lot-Sizing
Problem

Before we define and study the two-period relaxation of interest, we first provide the math-
ematical formulation of the multi-item lot-sizing problem with big-bucket capacities. We let
T , I and R denote the sets of time periods, items, and machine (resource) types, respectively.
We represent the production, setup, and inventory variables for item i in period t by xit, yit,
and sit, respectively.
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min
∑
t∈T

∑
i∈I

f ity
i
t +

∑
t∈T

∑
i∈I

hits
i
t (1)

s.t. xit + sit−1 − sit = dit t ∈ T, i ∈ I (2)∑
i∈I

(airxit + ST iry
i
t) ≤ Cr

t t ∈ T, r ∈ R (3)

xit ≤M i
ty
i
t t ∈ T, i ∈ I (4)

y ∈ {0, 1}|T |x|I|;x, s ≥ 0 (5)

The objective function (1) minimizes total cost, where f it and hit indicate the setup and
inventory cost coefficients, respectively. The flow balance constraints (2) ensure that the
demand for each item i in period t, denoted by dit, is satisfied. We note that the model can
be generalized to involve multiple levels (see, e.g., Akartunalı and Miller (2012)), however,
we omit this for the sake of simplicity. The big-bucket capacity constraints (3) ensure that
the capacity Cr

t of machine r is not exceeded in time period t, where air and ST ir represent
the per unit production time and setup time for item i, respectively. The constraints (4)
guarantee that the setup variable is equal to 1 if production occurs, where M i

t represents
the maximum number of item i that can be produced in period t, which is the minimum of
either the remaining cumulative demand or the capacity available. Finally, the integrality
and non-negativity constraints are given by (5).

2.1 A Two-Period Relaxation: X2PL

Next, we present the feasible region of a two-period, single-machine relaxation, as originally
proposed by Akartunalı et al. (2016), of the multi-item production planning problem with
big-bucket capacities, denoted by X2PL.

xit′ ≤ M̃ i
t′y

i
t′ i ∈ I, t′ = 1, 2

xit′ ≤ d̃it′y
i
t′ + si i ∈ I, t′ = 1, 2

xi1 + xi2 ≤ d̃i1y
i
1 + d̃i2y

i
2 + si i ∈ I

xi1 + xi2 ≤ d̃i1 + si i ∈ I∑
i∈I

(aixit′ + ST iyit′) ≤ C̃t′ t′ = 1, 2

x, s ≥ 0, y ∈ {0, 1}2×|I|
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As we consider a single machine r ∈ R in this relaxation, we dropped the index r. We note
that, for a given time period t, the choice for the “horizon” of this two-period subproblem
will be t + α with α = 1, . . . , NT − t. An obvious choice for α would be 1, i.e., t′ = 1, 2
relate to the periods of t, t+ 1. The parameters can be associated with the original problem
parameters using the relations M̃ i

t′ = M i
t+(t′−1)α, C̃t′ = Cr

t+(t′−1)α, and d̃it′ = dit+(t′−1)α,t+α for
all i and t′ = 1, 2. We refer the interested reader to Akartunalı et al. (2016) for a detailed
discussion of structuring two-period subproblems. Next, we note some polyhedral properties
of X2PL.

Proposition 2.1 (Akartunalı et al. (2016)) W.l.o.g., we assume 0 < M̃ i
t′ and ST i < C̃t′

hold ∀i ∈ I, t′ = 1, 2. Then, conv(X2PL) is full-dimensional.

Proposition 2.2 The trivial facet-defining inequalities for conv(X2PL) and their facet-defining
conditions (if any) are:

1. xit′ ≥ 0, i ∈ I, t′ = 1, 2.

2. yit′ ≤ 1, i ∈ I, t′ = 1, 2.

3. si ≥ 0, i ∈ I.

4. xit′ ≤ M̃ i
t′y

i
t′ , i ∈ I, t′ = 1, 2.

5. xit′ ≤ d̃it′y
i
t′ + si, i ∈ I, t′ = 1, 2 (if d̃it′ < M̃ i

t′).

6. xi1 + xi2 ≤ d̃i1y
i
1 + d̃i2y

i
2 + si, i ∈ I (if d̃it′ < M̃ i

t′ , ∀t′ ∈ {1, 2}).

7. ∑i∈I(aixit′ + ST iyit′) ≤ C̃t′ , t
′ = 1, 2 (if for t′ ∈ {1, 2}, ∑i∈I(aiM̃ i

t′ + ST i) ≥ C̃t′ +
(akM̃k

t′ + ST k),∀k ∈ I).

We omit the proof for the sake of simplicity of the presentation. Next, we present some
non-trivial facets of conv(X2PL). W.l.o.g., we assume ai = 1, ∀i ∈ I in the remainder of the
paper since variables can be scaled as needed.

Proposition 2.3 For i ∈ I,

1. The following inequality is valid for X2PL:

xi1 + xi2 ≤ d̃i1y
i
1 + di2 + si

If d̃it′ + ST i ≤ C̃t′ ,∀t′ ∈ {1, 2}, it defines a facet of conv(X2PL).
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2. If ST i ≤ C̃2, then the following inequality is valid for X2PL:

xi1 + xi2 ≤
(
d̃i1 − (C̃2 − ST i)

)
yi1 + (C̃2 − ST i) + si

If d̃i1 + ST i ≤ C̃1 and d̃i2 + ST i > C̃2, it is facet-defining for conv(X2PL).

3. If di1 + ST i ≤ C̃1, then the following inequality is valid for X2PL:

xi1 + xi2 ≤ di1y
i
1 +

(
d̃i1 − (C̃1 − ST i)

)
yi2 +

(
(C̃1 − ST i)− di1

)
+ si

If d̃i1 + ST i > C̃1 and d̃i2 + ST i ≤ C̃2, it defines a facet of conv(X2PL).

4. If d̃i1 + 2ST i ≤ C̃1 + C̃2, then the following inequality is valid for X2PL:

xi1 + xi2 ≤
(
d̃i1 − (C̃2 − ST i)

)
yi1 +

(
d̃i1 − (C̃1 − ST i)

)
yi2

+
(

(C̃1 − ST i) + (C̃2 − ST i)− d̃i1
)

+ si

If d̃i1 + ST i > C̃1 and d̃i2 + ST i > C̃2, it defines a facet of conv(X2PL).

The proof is omitted for the sake of brevity. In this paper, we investigate the special case
of zero setups, i.e., ST i = 0, ∀i ∈ I. We note that a companion paper (Akartunalı et al.,
2017) studies the polyhedral properties of the general case of non-zero setups as well as
structuring an effective computational framework. In the next section, we establish two
relaxations of X2PL and study their polyhedral structures. We first present the known facet-
defining inequalities, and then derive several classes of valid inequalities and establish their
facet-defining conditions.

3. Polyhedral Analysis of the Relaxations of X2PL

First, we make necessary definitions for the remainder of the paper.

Definition 3.1 For a given t:

• A cover of I for period t is a set St such that λt = ∑
i∈St

d̃it − C̃t > 0.

• For given non-empty sets St ⊆ I and T ′t ⊆ I\St, we define the partition slack as
ξt = ∑

i∈T ′
t
M̃ i

t +∑
i∈St

d̃it − C̃t.
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• We define the set S+
t of strictly positive cover/partition elements as follows:

S+
t =

{
{i ∈ St|d̃it > λt} if St is a cover.
{i ∈ St|d̃it > ξt} if St is part of a partition.

• The positive maximum function as (b)+ = max{b, 0}.

First, for a given t, we define the following relaxation, denoted by PIR0, for X2PL, since
it is studied in the literature by various researchers.

xi ≤M iyi, ∀i ∈ I∑
i∈I

xi ≤ C

x ≥ 0, y ∈ {0, 1}|I|

We dropped here all the t indices as well as ˜ for the sake of simplicity. We note
that Definition 3.1 remains valid in the same fashion that we use same definitions for this
relaxation with all the t indices as well as ˜ dropped.

Next, we present known facet-defining inequalities for PIR0.

Proposition 3.1 (Flow cover inequalities Padberg et al. (1985)) Let S be a cover,
and ∑SM

i = C + λ. Assume that M = maxi∈SM i > λ. Then,∑
i∈S

xi −
∑
i∈S

(M i − λ)+yi ≤ C −
∑
i∈S

(M i − λ)+ (6)

is valid and defines a facet of conv(PIR0). Moreover, for L ⊆ I\S and M i = max(M i,M),
the inequality ∑

i∈S∪L
xi −

∑
i∈S

(M i − λ)+yi −
∑
i∈L

(M i − λ)yi ≤ C −
∑
i∈S

(M i − λ)+ (7)

is valid and defines a facet of conv(PIR0) if 0 < M − λ < M i ≤M , ∀i ∈ L.

In addition to this known relaxation and its facet-defining inequalities, we present a
second relaxation of X2PL for a given t. We call this as PIR1 and study important properties
of it in the remainder of this section:

xi ≤M iyi, ∀i ∈ I

xi ≤ diyi + si, ∀i ∈ I∑
i∈I

xi ≤ C

x, s ≥ 0, y ∈ {0, 1}|I|

8



Similar to the previous relaxation, we dropped here all the t indices as well as ˜ , and
Definition 3.1 remains valid in the same fashion. Since the structure of the set X2PL is quite
complex from a polyhedral perspective, this relaxation of X2PL with a simpler polyhedral
structure enables us to potentially derive valuable insights on the inherent structure of X2PL.
Next, we note some obvious properties of this polyhedron, including the full dimensionality
and trivial facets of conv(PIR1). These propositions can be easily proven and therefore, we
omit detailed proofs here for the sake of brevity.

Proposition 3.2 dim(conv(PIR1)) = 3|I|.

Proposition 3.3 The following inequalities are the trivial facets of PIR1:

1. xi ≥ 0, ∀i ∈ I.

2. yi ≤ 1, ∀i ∈ I.

3. si ≥ 0, ∀i ∈ I.

4. xi ≤M iyi, ∀i ∈ I.

5. xi ≤ diyi + si if di < M i, ∀i ∈ I

6. ∑i∈I x
i ≤ C if ∑i∈IM

i ≥ C +Mk,∀k ∈ I.

Next, we discuss families of valid inequalities and establish their facet-defining conditions
for PIR1.

Proposition 3.4 Let S be a cover of I. Then the following inequality (called cover in-
equality) is valid for PIR1:

∑
i∈S

xi −
∑
i∈S

(di − λ)+yi ≤
∑
i∈S

si + C −
∑
i∈S

(di − λ)+ (8)

Moreover, if K ⊆ I\S such that M i ≤ d̄i holds ∀i ∈ K, where d̄ = maxi∈Sd
i ≥ λ and d̄i =

max(di, d̄), i ∈ K, then the following inequality (called item-extended cover inequality)
is valid for PIR1:

∑
i∈S∪K

xi −
∑
i∈S

(di − λ)+yi −
∑
i∈K

(d̄i − λ)yi ≤
∑
i∈S

si + C −
∑
i∈S

(di − λ)+ (9)
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The validity of (8) and (9) can be shown by considering the mixed-integer set {∑i∈I(xi−
si) ≤ C, (xi − si) ≤ diyi, y ∈ {0, 1}|I|}, which is a single-node flow set without the non-
negativity constraints as well as a special relaxation of PIR1, and then deriving flow covers
and extended flow covers from it. Intuitively speaking, since the items in the cover have a
total demand that is strictly exceeding the capacity by λ, the cover inequality considers only
items from this set that have an individual demand strictly higher than this excess of λ, as
it is not possible to produce at least one such item to its full demand.

Proposition 3.5 If di < M i ∀i ∈ S and |S+| ≥ 2 hold, (8) defines a facet of conv(PIR1).
If, in addition, 0 < d̄− λ < di ≤ d̄ holds ∀i ∈ K, then (9) defines a facet of conv(PIR1).

We provide a detailed proof in the Online Supplement.

Proposition 3.6 Let S 6= ∅ be a subset of I, T = I\S, and (T ′, T ′′) be a partition of T such
that T ′ 6= ∅ and ξ ≥ 0. Then the following inequality (called partition inequality) is valid
for PIR1:

∑
i∈S∪T ′

xi +
∑
i∈S

(di − ξ)+(1− yi) +
∑
i∈T ′

(M i − ξ)+(1− yi) ≤
∑
i∈S

si + C (10)

We note that if either S = ∅ or T ′ = ∅, then this reduces to either flow cover inequalities
of Proposition 3.1 or cover inequalities of Proposition 3.4, respectively. The validity can
be shown by considering the mixed-integer set {∑i∈S(xi − si) + ∑

i∈I\S x
i ≤ C, (xi − si) ≤

diyi, xi ≤ M iyi, y ∈ {0, 1}|I|}, which is a single-node flow set without the non-negativity
constraints as well as a special relaxation of PIR1, and then deriving flow covers from it.

Proposition 3.7 Let ξ > 0, and assume that for T ′+ = {i ∈ T ′|M i > ξ}, |T ′+| ≥ 1 holds.
Moreover, assume that di < M i holds ∀i ∈ S. Then, (10) defines a facet of conv(PIR1).

For the proof, we refer the reader to the Online Supplement.

Proposition 3.8 Let S be a non-empty subset of I, T = I\S, (T ′, T ′′) be a partition of T ,
K ⊆ T ′′ and ξ ≥ 0. We define

pi =
{
di : i ∈ S
M i : i ∈ T ′

10



and p̄ = maxi∈S∪T ′ pi ≥ ξ. We also define p̄i = max(M i, p̄), i ∈ K. Then the following
inequality (called item-extended partition inequality) is valid for PIR1:∑

i∈S∪T ′∪K
xi −

∑
i∈S

(di − ξ)+yi −
∑
i∈T ′

(M i − ξ)+yi −
∑
i∈K

(p̄i − ξ)yi ≤
∑
i∈S

si + C −
∑
i∈S

(di − ξ)+ −
∑
i∈T ′

(M i − ξ)+ (11)

The validity follows by deriving generalized flow covers for the mixed-integer set {∑i∈S(xi−
si) +∑

i∈I\S x
i ≤ C, (xi − si) ≤ diyi, xi ≤M iyi, y ∈ {0, 1}|I|}, which is a single-node flow set

without the non-negativity constraints as well as a special relaxation of PIR1.

Proposition 3.9 Assume that the conditions presented in Proposition 3.7 hold. Moreover,
let 0 < p̄− ξ < M i ≤ p̄ hold ∀i ∈ K. Then, (11) defines a facet of conv(PIR1).

For the proof, we refer the reader to the Online Supplement.
Example. Let I = {1, 2, 3}, and PIR1 defined by:

x1 ≤ 14y1, x2 ≤ 10y2, x3 ≤ 11y3

x1 ≤ 10y1 + s1, x2 ≤ 6y2 + s2, x3 ≤ 8y3 + s3

x1 + x2 + x3 ≤ 14

Consider S = {1} and T ′ = {3}. Hence ξ = 10 + 11 − 14 = 7. Then, we can generate a
facet-defining partition inequality as follows:

x1 + x3 − (10− 7)y1 − (11− 7)y3 ≤ s1 + 14− 3− 4

=⇒ x1 + x3 − 3y1 − 4y3 ≤ s1 + 7

With S = {1} and T ′ = {3}, we note p1 = 10, p3 = 11. Hence, p̄ = maxi∈S∪T ′ pi = 11 > ξ =
7. Let K = {2} (and hence p̄2 = max(11, 10) = 11). Then, we can derive the facet-defining
item-extended partition inequality:

x1+x2 + x3 − 3y1−(11− 7)y2 − 4y3 ≤ s1 + 7

where bold elements indicate all terms that are additional compared to the previous inequal-
ity. Using PORTA (Christof and Lobel, 2009), we can identify 6 facet-defining partition
inequalities and 3 facet-defining item-extended partition inequalities for this set. 2

In Section 5, we describe separation algorithms for these inequalities. Next, we discuss
how we can extend the results of this section to the space of the two-period relaxation of
X2PL.
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4. Valid Inequalities in the Original Space of X2PL

We recall the “original” space defined earlier asX2PL. We first map the inequalities developed
for PIR1 in the previous section to the original space of X2PL, and also define new valid
inequalities for X2PL. Note that all the t indices as well as ˜ are introduced here again,
which were dropped in the previous section, since they will be part of the discussion here.

Corollary 4.1 Let t ∈ {1, 2}, and St be a cover of I in period t. Then the inequality (mapped
from the cover inequality in PIR1) is valid for X2PL:

∑
i∈St

xit +
∑
i∈St

(d̃it − λt)+(1− yit) ≤
∑
i∈St

si + C̃t (12)

We can also extend this inequality as follows.

Proposition 4.1 Let t, t′ ∈ {1, 2}, t 6= t′, and St be a cover of I for period t. In addition,
assume Lt′ ⊆ St. Then the following inequality (called period-extended cover inequality)
is valid for X2PL:

∑
i∈St

xit +
∑
i∈Lt′

xit′ +
∑
i∈St

(d̃it − λt)+(1− yit)−
∑
i∈Lt′

d̃it′y
i
t′ ≤

∑
i∈St

si + C̃t (13)

We omit the proof here, as Proposition 4.2 covers a more general case and this is the
special case when Kt = ∅. Next, we discuss item-extended cover inequalities and how they
can be represented in the original space.

Corollary 4.2 Let t ∈ {1, 2} and St be a cover of I for period t. Let Kt ⊆ I\St such that
M̃ i

t ≤ d̄it holds ∀i ∈ Kt, where d̄t = maxi∈St d̃
i
t ≥ λt and d̄it = max(d̄t, d̃it). Then the following

inequality (mapped from the item-extended cover inequality in PIR1) is valid for X2PL:

∑
i∈St∪Kt

xit +
∑
i∈St

(d̃it − λt)+(1− yit)−
∑
i∈Kt

(d̄it − λt)yit ≤
∑
i∈St

si + C̃t (14)

The proof is straightforward as it follows the same logic as Proposition 3.4. We can also
extend this inequality as follows.
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Proposition 4.2 In addition to the assumptions and definitions of Corollary 4.2, let t, t′ ∈
{1, 2}, t 6= t′, and Lt′ ⊆ St. Then the following inequality (called item-and-period-
extended cover inequality) is valid for X2PL:

∑
i∈St∪Kt

xit +
∑
i∈Lt′

xit′ +
∑
i∈St

(d̃it − λt)+(1− yit)−
∑
i∈Kt

(d̄it − λt)yit −
∑
i∈Lt′

d̃it′y
i
t′ ≤∑

i∈St

si + C̃t (15)

For the proof, we refer the reader to the Online Supplement. Next, we discuss the
extension of partition inequalities to original space.

Corollary 4.3 Let t ∈ {1, 2} and St be a non-empty subset of I in period t. Let T t = I\St,
and (T ′t , T ′′t ) be a partition of T t such that ξt ≥ 0. Then the following inequality (mapped
from the partition inequality in PIR1) is valid for X2PL:

∑
i∈St∪T ′

t

xit +
∑
i∈St

(d̃it − ξt)+(1− yit) +
∑
i∈T ′

t

(M̃ i
t − ξt)+(1− yit) ≤

∑
i∈St

si + C̃t (16)

The proof is straightforward as it follows a similar logic to the proof of Proposition 3.6.
We can also extend this inequality as follows.

Proposition 4.3 In addition to the assumptions and definitions of Corollary 4.3, let Lt′ ⊆
St, where t, t′ ∈ {1, 2} and t 6= t′. Then the following inequality (called period-extended
partition inequality) is valid for X2PL:

∑
i∈St∪T ′

t

xit +
∑
i∈Lt′

xit′ +
∑
i∈St

(d̃it − ξt)+(1− yit) +
∑
i∈T ′

t

(M̃ i
t − ξt)+(1− yit)−

∑
i∈Lt′

d̃it′y
i
t′

≤
∑
i∈St

si + C̃t (17)

We omit the proof as it follows a similar logic to the proof of Proposition 3.6 and Propo-
sition 4.2. Next, we discuss item-extended partition inequalities.
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Corollary 4.4 Let t ∈ {1, 2}, St 6= ∅ be a subset of I for period t, T t = I\St and (T ′t , T ′′t )
be a partition of T t such that ξt ≥ 0 and Kt ⊆ T ′′t . Let

pit =
{
d̃it : i ∈ St
M̃ i

t : i ∈ T ′t

p̄t = maxi∈St∪T ′
t
pit ≥ ξt, and p̄it = max(M̃ i

t , p̄t), i ∈ Kt. Then the inequality (mapped from the
item-extended partition inequality in PIR1) is valid for X2PL:

∑
i∈St∪T ′

t∪Kt

xit +
∑
i∈St

(d̃it − ξt)+(1− yit) +
∑
i∈T ′

t

(M̃ i
t − ξt)+(1− yit)−

∑
i∈Kt

(p̄it − ξt)yit

≤
∑
i∈St

si + C̃t (18)

The proof is omitted as it follows a similar logic to the proof of Proposition 3.8. We can
also extend this inequality further as follows.

Proposition 4.4 In addition to the assumptions and definitions of Corollary 4.4, let Lt′ ⊆
St, t, t′ ∈ {1, 2} and t 6= t′. Then, the following inequality (called item-and-period-
extended partition inequality) is valid for X2PL:

∑
i∈St∪T ′

t∪Kt

xit +
∑
i∈Lt′

xit′ +
∑
i∈St

(d̃it − ξt)+(1− yit) +
∑
i∈T ′

t

(M̃ i
t − ξt)+(1− yit)

−
∑
i∈Kt

(p̄it − ξt)yit −
∑
i∈Lt′

d̃it′y
i
t′ ≤

∑
i∈St

si + C̃t (19)

We omit the proof here since it is very similar to the proof of Proposition 4.3. Finally,
we introduce in the next proposition a new family of valid inequalities that is not derived
from any of the inequalities based on the single-period relaxation.

Proposition 4.5 For t, t′ ∈ {1, 2} and t 6= t′, let

• St ⊂ I and T ′t ⊆ I\St such that θt = ∑
i∈St

d̃it +∑
i∈T ′

t
M̃ i

t − C̃t ≥ 0, and

• St′ ⊂ I and T ′t′ ⊆ I\St′ such that θt′ = ∑
i∈St′ d̃

i
t′ +∑

i∈T ′
t′
M̃ i

t′ − C̃t′ ≥ 0.
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Then, the following inequality (called two-period partition inequality) is valid for
X2PL:

∑
i∈St∪T ′

t

xit +
∑

i∈St′∪T ′
t′

xit′ +
∑
i∈St

(d̃it − θt)+(1− yit) +
∑
i∈T ′

t

(M̃ i
t − θt)+(1− yit)

+
∑
i∈St′

(d̃it′ − θt′)+(1− yit′) +
∑
i∈T ′

t′

(M̃ i
t′ − θt′)+(1− yit′) ≤ C̃t + C̃t′ +

∑
i∈St∪St′

si (20)

We provide a detailed proof in Online Supplement. We note that this inequality is non-
dominated if St ∩ St′ 6= ∅.

5. Separation Algorithms for Relaxations and Original
Space

The purpose of this section is to describe in detail the separation problems associated with
all the families of inequalities defined in the previous sections. Since the main purpose of
this paper is to investigate the true strength of the cuts generated, we focus on defining
exact separation algorithms rather than their computational efficiency. Here, we follow the
same structure and order of the previous two sections: we firstly define separation problems
associated with families of inequalities defined for the relaxations of the problems, and then
for those associated with the original space. In the remainder of this section, we let (x̄, ȳ, s̄)
to represent a fractional solution vector in the associated space that is to be cut off. W.l.o.g.,
we assume all problem parameters to be integer valued.

5.1 Separation in the Relaxation Space

We start first with the family of cover inequalities as defined by (8). First, we note that we
can rewrite these inequalities as follows:

∑
i∈S

(
xi + (di − λ)+(1− yi)− si

)
≤ C

Since S must be a cover, for a given value of λ > 0, we can find the most violated inequality
(if any) by solving the following knapsack problem:

fλ = max

∑
j∈I

τj(λ)wj|
∑
i∈I

diwi = C + λ,w ∈ {0, 1}|I|

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where τj(λ) = x̄j + (dj − λ)+(1 − ȳj) − s̄j. If fλ > C, then a violated cover inequality is
identified for the specified λ. We note that since λ ∈ Z+, one can solve this separation
problem for any value of λ ∈ [1,∑i∈I d

i − C].
Next, we discuss the separation procedure for the family of item-extended cover inequal-

ities (9). We first rewrite these inequalities as follows:∑
i∈S

(
xi + (di − λ)+(1− yi)− si

)
+
∑
i∈K

(
xi − (d̄i − λ)yi

)
≤ C

For a given cover S, if d̄ ≥ λ, then we can define the set K as follows:

K = {i ∈ I\S|x̄i − (d̄i − λ)ȳi > 0,M i ≤ d̄i}

Therefore, one can generate covers using the procedure defined for the cover inequalities,
and then heuristically generate the set K. We note that this is a similar approach to the
one proposed by Padberg et al. (1985) (p.854) for flow cover inequalities. Finally, we note
that such a procedure is applied for the separation of the known inequalities (6) and (7).

Next, we discuss the separation procedure for the family of partition inequalities (10).
First note that we can rewrite these inequalities as follows:∑

i∈S

(
xi + (di − ξ)+(1− yi)− si

)
+
∑
i∈T ′

(
xi + (M i − ξ)+(1− yi)

)
≤ C

For a given value of ξ, we define the following IP for the separation:

fξ = max
∑
i∈I

(
x̄i + (di − ξ)+(1− ȳi)− s̄i

)
ui +

∑
i∈I

(
x̄i + (M i − ξ)+(1− ȳi)

)
vi

s.t.
∑
i∈I

diui +
∑
i∈I

M ivi = C + ξ

C >
∑
i∈I

diui

ui + vi ≤ 1, ∀i ∈ I

ui, vi ∈ {0, 1}, ∀i ∈ I

Here, ui and vi variables indicate whether an item i belongs to set S or T ′ respectively.
The first two constraints ensure that ∑i∈I vi ≥ 1, i.e., T ′ 6= ∅. A violated inequality is found
if fξ > C. Similar to the process for cover inequalities, since ξ ∈ Z+, one can solve this
separation problem for any value of ξ ∈ [1,∑i∈I max{di,M i} − C].

The separation procedure for item-extended partition inequalities (11) is similar to the
procedure described for item-extended cover inequalities (9).
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5.2 Separation in the Original Space

We start this section with the separation of the period-extended cover inequalities in the
original space as defined by (13). First, we rewrite these inequalities as follows, where
St ⊆ I and Lt′ ⊆ St, t 6= t′:∑

i∈St

(
xit + (d̃it − λt)+(1− yit)− si

)
+
∑
i∈Lt′

(
xit′ − d̃it′yit′

)
≤ C̃t

For a given t and fixed λt > 0, we can solve the separation problem:

max
∑
i∈I

(
x̄it + (d̃it − λt)+(1− ȳit)− s̄i

)
ui +

∑
i∈I

(
x̄it′ − d̃it′ ȳit′

)
vi

s.t.
∑
i∈I

d̃itui = C̃t + λt; vi ≤ ui ∀i ∈ I; ui, vi ∈ {0, 1} ∀i ∈ I

If the optimal value of the problem is strictly greater than C̃t, then a violated inequality
is identified.

Next, we note that the separation procedures in the original space for the item-and-
period-extended cover inequalities (15), for the period-extended partition inequalities (17),
and for the item-and-period-extended partition inequalities (19) follow a very similar logic
to the separation procedures of the period-extended cover inequalities in the original space
(13). Therefore, we omit a detailed description here for the sake of brevity.

Finally, we introduce the separation procedure for two-period partition inequalities de-
fined by (20). First, we rewrite it as follows:∑

i∈St

(
xit + (d̃it − ξt)+(1− yit)− si

)
+
∑
i∈T ′

t

(
xit + (M̃ i

t − ξt)+(1− yit)
)

+
∑
i∈St′

(
xit′ + (d̃it′ − ξt′)+(1− yit′)− si

)
+
∑
i∈T ′

t′

(
xit′ + (M̃ i

t′ − ξt′)+(1− yit′)
)

+
∑

i∈St∩St′

si ≤ C̃t + C̃t′

For a given pair of t, t′ as well as fixed ξt > 0 and ξt′ > 0 values, we can define the
following separation problem 2PPI:

(2PPI) fξt,ξt′ = max
∑
i∈I

(
x̄it + (d̃it − ξt)+(1− ȳit)− s̄i

)
uit

+
∑
i∈I

(
x̄it + (M̃ i

t − ξt)+(1− ȳit)
)
vit +

∑
i∈I

(
x̄it′ + (d̃it′ − ξt′)+(1− ȳit′)− s̄i

)
uit′

+
∑
i∈I

(
x̄it′ + (M̃ i

t′ − ξt′)+(1− ȳit′)
)
vit′ +

∑
i∈I

s̄izi
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s.t.
∑
i∈I

d̃itu
i
t +

∑
i∈I

M̃ i
tv
i
t = C̃t + ξt∑

i∈I
d̃it′u

i
t′ +

∑
i∈I

M̃ i
t′v

i
t′ = C̃t′ + ξt′

uit + vit ≤ 1, ∀i ∈ I

uit′ + vit′ ≤ 1, ∀i ∈ I

zi ≤ uit, ∀i ∈ I

zi ≤ uit′ , ∀i ∈ I

uit, v
i
t, z

i, uit′ , v
i
t′ ∈ {0, 1}, ∀i ∈ I

If fξt,ξt′ > C̃t + C̃t′ holds, then the inequality is violated and hence the cutting plane is
added to the formulation.

6. Computational Results

In this section, we present numerical results indicating the strength of the various cuts pro-
posed earlier. We note that our primary aim here is not necessarily to build a practically
efficient computational framework, which is addressed in a companion paper (Akartunalı
et al., 2017), but instead to exhaustively generate all violated inequalities by exact separa-
tion to measure their practical strength and effectiveness. All the separation algorithms and
mathematical models are implemented and executed using the Mosel language of FICOr

Xpress Optimization Suite (Mosel version 3.6.0, Xpress-MP v7.7) on a PC with Intelr Core
i5 3.10GHz processor and 4GB RAM, where all possible two-period relaxations, both con-
secutive and non-consecutive, were considered.

In order to test the effectiveness of the cuts proposed, we have generated 240 random
test instances in total, which we describe in detail next. First of all, we note that exact sep-
aration is computationally expensive, causing issues with available memory or prohibitively
long times when the problem size became bigger than |T | = 12 and |I| = 10, so that we
set the maximum size to these values. We also note that even with this maximum size,
computational times can be extensive. On the other hand, we have set the minimum size to
|T | = 2 and |I| = 3, in order to capture the simplest problem with the two-period, multi-item
structure. We have varied |T | and |I| values with intervals growing exponentially, in order
to capture the variety created by the fact that the problem complexity grows exponentially
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(rather than using equal length intervals), resulting in 16 different |T |, |I| combinations. On
the other hand, we have considered low, medium and high demand variability for a good
mix of problems, randomly generating dit parameters in the intervals of [10, 20], [10, 40] and
[10, 60], respectively. This results in 48 combinations, where for each combination, we have
generated 5 test instances. The capacities in each period are generated as a random variable
from the interval [0.8×|I|×midt, 1.2×|I|×midt], where midt indicates the median demand
in that interval. Finally, we note that the holding costs hit are randomly generated from the
interval [0.1, 1] and the setup costs f it takes a value of {1, 10, 50}, each with probability of
1
3 , in order to generate a good mix of low and high setup cost items (and in between).

Next, we present the computational results for low, medium and high demand variability,
in Tables 1, 2 and 3, respectively. Since the exact separation procedures are significantly
time-consuming for our proposed inequalities, we generated only one round of violated cuts
and added to the formulation. In each table, the first column indicates the combination
|T |, |I|, followed by the columns indicating average Initial Gap, Gap Closed by Flow Cover
inequalities only (i.e., only (extended) flow cover inequalities are generated), and the per-
centageGap Closed for 5 instances with all the violated cuts generated. Note that the initial
gap is based on the strengthened LP relaxation with all violated (`, S) inequalities added a
priori, which are known to be very effective in practice for multi-item problems, see, e.g.,
Akartunalı and Miller (2012). In the remainder of the tables, the columns indicate the total
number of cuts generated of each type for 5 instances, in the following order: Cover (8),
Item-extended Cover (9), Period-extended Cover (13), Item-and-Period-extended Cover
(15), Partition (10), Item-extended Partition (11), Period-extended Partition (17), Item-
and-Period-extended Partition (19), Two-Period Partition (20), and Flow Cover (7). We
note that for biggest instances of dit ∈ [10, 40], [10, 60], the separation procedure for two-
period partition inequalities took prohibitive times and therefore they were removed from
the framework, which are indicated by ? in the tables.

As the results in Tables 1-3 indicate, the cuts can close on average more than 25% of the
initial gap. As one could naturally expect, the average gap closed by the cuts deteriorates
when either the number of items or the number of periods is increased, where this deteriora-
tion seems more sensitive to the increase in the numbers of items than to the increase in the
numbers of periods. When the number of items increases, the problem resembles more the
structure of an uncapacitated problem, the convex hull of which can be effectively described
by the (`, S) inequalities and hence there is little room for improvement by other cuts. This
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Table 1: Average closed gaps and number of cuts generated of each type for test problems
with dit ∈ [10, 20].

# Cuts generated

|T |, |I| IG GCFC GC C IC PC IPC P IP PP IPP TPP FC

2,3 18.01 52.88 52.88 5 0 0 0 0 0 0 0 0 5
2,4 18.03 45.11 50.52 5 0 0 0 0 0 0 0 0 5
2,6 9.85 48.30 48.30 7 0 0 0 0 0 0 0 0 7
2,10 6.01 34.52 34.52 2 0 0 0 0 0 0 0 0 2
3,3 17.40 10.34 38.79 5 0 0 0 10 0 0 0 0 4
3,4 14.24 0 28.99 1 0 0 0 9 0 0 0 0 0
3,6 12.65 10.27 27.68 5 2 0 0 12 1 0 0 0 5
3,10 10.06 0 15.60 0 0 0 0 20 4 0 0 0 2
6,3 19.39 8.53 25.90 8 3 4 0 31 8 3 0 22 7
6,4 15.35 0.82 20.37 6 0 1 0 26 4 1 1 16 2
6,6 8.93 1.63 16.62 6 4 0 0 16 13 0 0 14 7
6,10 8.40 4.41 7.87 4 2 0 0 22 11 0 0 8 6
12,3 16.47 3.05 18.25 13 6 14 0 51 13 23 7 99 11
12,4 13.81 0.73 17.21 8 4 6 2 64 23 12 7 98 6
12,6 15.22 0 18.28 10 0 1 0 46 13 0 0 108 0
12,10 7.46 0 5.88 5 1 0 0 144 20 0 0 204 2
Ave= 13.08 13.79 26.84 5.63 1.38 1.63 0.13 28.19 6.88 2.44 0.94 35.56 4.44

can be indeed consistently observed from the average initial gaps for all the problems with
10 items. On the other hand, as the number of periods increases, the problem becomes fur-
ther away from the “ideal” two-period problem, for which these cuts are originally derived.
However, we note that when all instances with 10 items are taken out, even the average gap
closed for the instances with 12 periods is 23.05%, which is a substantial improvement with
only one round of added cuts, and also only slightly lower than 24.48%, the average gap
closed for the instances with 6 periods and 3/4/6 items. As we will discuss in Section 7, the
experimentation with 24 period problems, albeit using a heuristic approach, indicate similar
gap improvements compared to instances with 12 periods.

The results also indicate which types of inequalities are more inherent for different sizes
of problems. A small number of cover inequalities seem to close substantial gaps for the 2-
period problems almost only on their own, and the number of these inequalities do not vary
much as the problem size gets bigger. On the other hand, the number of partition inequalities
and two-period partition inequalities generated increases significantly as the number of items
and periods increase, making both types of inequalities most often generated inequalities in
our framework, hence also pointing to where an computationally efficient framework can
focus on. We also note our observation from the computational tests that adding two-period
partition inequalities on top of cover and partition inequalities and their variants is not very
effective in closing the integrality gap, although this might also be the consequence of a
single round of separation. Another interesting aspect the results point at is the fact that
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Table 2: Average closed gaps and number of cuts generated of each type for test problems
with dit ∈ [10, 40].

# Cuts generated

|T |, |I| IG GCFC GC C IC PC IPC P IP PP IPP TPP FC

2,3 11.15 59.49 59.49 5 0 0 0 0 0 0 0 0 5
2,4 16.63 41.02 42.27 7 2 0 0 1 0 0 0 0 9
2,6 10.19 46.62 46.62 7 0 0 0 0 0 0 0 0 7
2,10 5.88 8.39 8.39 3 0 0 0 0 0 0 0 0 3
3,3 20.20 11.50 40.74 5 0 0 0 10 0 0 0 7 3
3,4 10.15 0 30.43 4 0 0 0 12 0 0 0 2 0
3,6 10.67 14.65 25.30 7 1 0 0 14 4 0 0 0 7
3,10 4.79 0 29.51 5 0 0 0 41 11 0 0 0 0
6,3 11.23 4.12 29.55 12 2 3 0 28 6 4 0 42 5
6,4 12.28 3.01 21.11 7 2 4 0 34 13 1 0 46 5
6,6 9.09 0 17.81 3 0 2 0 36 20 1 2 41 0
6,10 7.06 1.58 17.35 7 1 0 0 50 12 3 0 47 4
12,3 10.52 4.79 38.95 25 1 20 3 72 10 38 14 119 5
12,4 13.82 0.41 25.39 16 1 7 0 45 10 10 2 60 5
12,6 6.30 0.09 17.65 10 0 7 0 77 12 10 3 ? 2
12,10 5.21 0 2.32 4 0 0 1 366 22 2 1 ? 0
Ave= 10.32 12.23 28.31 7.94 0.63 2.69 0.25 49.13 7.5 4.31 1.38 22.75 3.25

the number of item- and period-extended versions of the cuts remain small compared to the
“simple” versions of these cuts.

Table 3: Average closed gaps and number of cuts generated of each type for test problems
with dit ∈ [10, 60].

# Cuts generated

|T |, |I| IG GCFC GC C IC PC IPC P IP PP IPP TPP FC

2,3 14.61 44.77 44.77 5 0 0 0 1 0 0 0 0 5
2,4 16.73 26.01 37.21 7 2 0 0 2 0 0 0 0 9
2,6 9.42 33.50 33.50 8 0 0 0 0 0 0 0 0 8
2,10 7.01 33.81 33.81 3 0 0 0 0 0 0 0 0 3
3,3 20.26 16.65 41.64 8 0 0 0 16 0 0 0 13 5
3,4 8.80 14.67 38.37 6 0 0 0 11 3 0 0 4 3
3,6 10.92 11.34 31.77 6 0 0 0 19 5 0 0 0 4
3,10 6.82 2.01 27.28 10 0 0 0 53 7 0 0 0 1
6,3 11.98 12.43 33.30 15 1 7 0 31 3 10 1 45 7
6,4 7.79 1.42 31.72 15 1 2 0 38 3 4 0 50 5
6,6 6.16 0 23.98 4 0 2 0 32 19 6 4 59 0
6,10 2.03 0 16.33 1 0 1 0 55 28 0 0 76 2
12,3 11.20 1.11 35.84 19 1 22 4 79 6 22 5 114 3
12,4 12.43 0.02 20.05 15 3 11 1 73 14 19 2 7 1
12,6 8.69 0.06 14.13 9 0 4 1 60 21 9 4 ? 1
12,10 5.99 0 7.18 9 0 1 0 614 16 2 0 ? 2
Ave= 10.03 12.36 29.43 8.75 0.5 3.13 0.38 67.75 7.81 4.5 1 27.44 3.69

Finally, we make a remark on the effect of the proposed cuts when the demand variability
changes. As the tables clearly indicate, the cuts (in particular partition inequalities and its
variants) are more often violated when the demand variability increases: these are also the
instances when our cuts make more of an impact for the amount of the gap closed. This
makes intuitive sense that partition inequalities are more flexible than covers and hence a
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higher demand variability will be able to generate more violated inequalities of this type.

7. A Heuristic Separation Approach

As the exact separation procedures discussed in Section 5 are significantly time-consuming
(and even prohibitive with respect to two-period partition inequalities for largest instances
tested in Section 6), we cannot expect to generate all cuts within acceptable computational
times, in particular for large instances. This motivated us to further analyze the nature of
the violated inequalities identified by the exact separation framework, in order to develop
a simple but effective heuristic approach for substantially reducing the computational times
required by the separation process.

First of all, we conducted an extensive computational experiment focusing primarily on
the cover inequalities (8) and partition inequalities (10), as their numbers and effectiveness
played a significant role in the gaps closed for the instances tested in the previous section. In
order to achieve unbiased results, we generated 80 new random instances with dit ∈ [10, 60]
and analyzed the violated inequalities identified. This analysis indicated that majority of the
violated inequalities of cover and partition inequalities are generated from the two-period
subproblems consisting of two consecutive periods rather than two non-consecutive periods.
This provides a significant potential for reduction in the number of separation problems
solved (e.g., in a 12 period problem, there are 66 possible combinations of two periods,
whereas the consecutive two periods are only limited to 11 combinations), and unsurpris-
ingly, for these 80 instances, we observed on average 70% improvement in computational
times by generating consecutive two-period subproblems compared to all two-period sub-
problems. Most importantly, using consecutive two-period subproblems, the closed gaps
obtained were on average 95% of the closed gaps obtained by generating cuts from all two-
period subproblems. These observations motivated us to generate the violated inequalities
from the consecutive two-period subproblems only.

In addition, we performed an analysis on the two-period partition inequalities identified
for a randomly selected set of 12 period instances from Section 6. As discussed earlier,
the exact separation of these inequalities requires substantially more computational time
compared to other types of inequalities due to the sheer number of possible combinations of
ξt and ξt′ values in the separation problem (and hence they were not generated for the largest
instances tested in Section 6), and in addition, their effectiveness for closing the duality gaps

22



were observed to be rather limited. Therefore, we limited our analysis here to previously
used instances rather than newly generated instances. First of all, similar to our observation
for other types of inequalities, we observed that most of the violated two-period partition
inequalities were generated from consecutive two-period subproblems. We also observed that
most of the violated two-period partition inequalities occurred in the centre of the planning
horizon, rather than earlier or later periods. Our preliminary analysis suggested to focus
on the two-period subproblems from the central 1/3 of the horizon, so, e.g., for a 12-period
problem, periods 5 to 8 to be used for the in the heuristic separation. Although we could not
observe any particular pattern for the potentially more effective value ranges of ξt′ , we made
the observation that ξt values often coincide with the ξ values of the partition inequalities
(10) from period t. This motivated us for the simple but significantly time saving approach
as presented in Algorithm 1.

It is noteworthy to remark that even though we are still solving the exact separation
problems of Section 5, this heuristic algorithm significantly reduces the number of problems
to be solved, and therefore, a substantial reduction in computational times required can
be achieved. Thanks to this advantage and based on our preliminary tests, we decided to
run 3 rounds of separation with this heuristic approach, as opposed to the single round we
performed with the exact separation approach.

Input : A fractional solution (x̄, ȳ, s̄); a two-period subproblem X2PL for t, t′ in the
centre of the planning horizon

Output: A violated two-period partition inequality
for ξt > 0 do

if ξt ∈ {ξ̄t | there exists violated partition inequality for ξ̄t} then
for ξt′ > 0 do

Solve the maximization problem 2PPI
if fξt,ξt′ > C̃t + C̃t′ and St ∩ St′ then

Add the violated cut (20)
end

end
end

end
Algorithm 1: Heuristic separation algorithm for two-period partition inequalities (20)

The results are presented in Table 4, which follows the same notation and similar struc-
ture used in Section 6, with the addition of specifying the gaps closed with the EXAct and
HEUristic approaches for the sake of comparison. First of all, when we compare the aver-
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age performance of the heuristic approach with the performance of the exact approach for
the instances with 12 periods, we note that it is very competitive, and even often supe-
rior, thanks to the advantage of 3 rounds of separation and therefore being able to identify
further inequalities which could not be identified by the single round of the exact separa-
tion approach. As expected, computational times are significantly improved, for example,
instances with (NT = 12, NI = 10) and dit ∈ [10, 60] took on average 7 days using the
exact approach whereas the heuristic approach took on average only 3.5 hours for the same
instances.

Table 4: Average closed gaps using the heuristic procedure (HEU) vs. using the exact
separation (EXA).

dit ∈ [10, 20] dit ∈ [10, 40] dit ∈ [10, 60]
GC GC GC

|T |, |I| IG EXA HEU IG EXA HEU IG EXA HEU
12,3 16.47 18.25 25.12 10.52 38.95 37.34 11.20 35.84 36.84
12,4 13.81 17.21 17.87 13.82 25.39 25.03 12.43 20.05 20.61
12,6 15.22 18.28 17.74 6.30 17.65 19.23 8.69 14.13 16.51
12,10 7.46 5.88 7.30 5.21 2.32 4.39 5.99 7.18 7.38
24,3 21.51 - 31.94 17.15 - 25.77 9.60 - 44.33
24,4 16.13 - 22.58 13.59 - 16.53 11.39 - 30.01
24,6 12.84 - 13.09 8.64 - 8.27 7.86 - 5.58
24,10 7.84 - 2.08 6.65 - 3.99 5.49 - 4.32
Ave= 13.91 - 17.22 10.24 - 17.56 9.08 - 20.69

In order to further test our heuristic approach on larger instances, we have also generated
instances with 24 periods, using the same random generation procedure described in Section
6. As computational times significantly increase even in case of our heuristic, we note that the
largest and most challenging instances in this set (i.e., instances with (NT = 24, NI = 10)
and dit ∈ [10, 60]) took on average 1.5 days, which is still superior to the times taken by the
exact separation for instances with 12 periods. We present our results in Table 4 indicate,
where, for a given number of items, the average gap closure of the heuristic for these instances
is not significantly different from its average performance on the instances with 12 periods.
It is also noteworthy to remark that on average over all these 120 instances with 12 and 24
periods, gaps are closed around 18%. We conclude that in addition to the substantial gains
in computational times and ability to experiment with larger instances, the simple heuristic
framework achieves successful closure of gaps.
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8. Conclusions

In this paper, we investigated a two-period subproblem of the big-bucket lot-sizing problem
from a theoretical perspective. In particular, we have identified various families of valid in-
equalities for a relaxation of this subproblem in the special case of zero setup times, described
their facet-defining properties, and we have also mapped and extended these inequalities to
the original space of the two-period subproblem. The computational results indicated signifi-
cant potential for improving lower bounds, and we are currently investigating this thoroughly
in a companion study in two immediate directions: i) understanding polyhedral characteris-
tics of the general case with non-zero setup times and identifying further valid inequalities,
and ii) designing a branch-and-cut framework with routines generating cutting planes of both
zero and non-zero setup time settings in realistic times for multi-item lot-sizing problems.

The theoretical results we presented in this paper can be extended to other MIP prob-
lems thanks to the commonality of the mixed integer sets inherent in different problems.
We have already noted various studies on the polyhedron of the PIR0, the single node fixed
charge set, which is a common mixed integer set in various MIP problems. On the other
hand, the structure of PIR1 poses different challenges and opportunities, and it is worth
investigating further its link to other mixed integer sets. Finally, there is also immediate
interest in investigating if and how our understanding of the two-period subproblems can be
further extended to more sophisticated subproblems, e.g., a k-period subproblem. As Van
Vyve and Wolsey (2005) observed in their framework, even limiting it to the values of k = 3
and k = 4, there is substantial potential to develop a thorough understanding of the complex
lot-sizing problems, which we plan to study in the future.
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