5 research outputs found

    Single image defocus estimation by modified gaussian function

    Get PDF
    © 2019 John Wiley & Sons, Ltd. This article presents an algorithm to estimate the defocus blur from a single image. Most of the existing methods estimate the defocus blur at edge locations, which further involves the reblurring process. For this purpose, existing methods use the traditional Gaussian function in the phase of reblurring but it is found that the traditional Gaussian kernel is sensitive to the edges and can cause loss of edges information. Hence, there are more chances of missing spatially varying blur at edge locations. We offer the repeated averaging filters as an alternative to the traditional Gaussian function, which is more effective, and estimate the spatially varying defocus blur at edge locations. By using repeated averaging filters, a blur sparse map is computed. The obtained sparse map is propagated by integration of superpixels segmentation and transductive inference to estimate full defocus blur map. Our adopted method of repeated averaging filters has less computational time of defocus blur map estimation and has better visual estimates of the final defocus recovered map. Moreover, it has surpassed many previous state-of-the-art proposed systems in terms of quantative analysis

    Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation

    Full text link
    The electrocardiogram (ECG) is one of the most extensively employed signals used in the diagnosis and prediction of cardiovascular diseases (CVDs). The ECG signals can capture the heart's rhythmic irregularities, commonly known as arrhythmias. A careful study of ECG signals is crucial for precise diagnoses of patients' acute and chronic heart conditions. In this study, we propose a two-dimensional (2-D) convolutional neural network (CNN) model for the classification of ECG signals into eight classes; namely, normal beat, premature ventricular contraction beat, paced beat, right bundle branch block beat, left bundle branch block beat, atrial premature contraction beat, ventricular flutter wave beat, and ventricular escape beat. The one-dimensional ECG time series signals are transformed into 2-D spectrograms through short-time Fourier transform. The 2-D CNN model consisting of four convolutional layers and four pooling layers is designed for extracting robust features from the input spectrograms. Our proposed methodology is evaluated on a publicly available MIT-BIH arrhythmia dataset. We achieved a state-of-the-art average classification accuracy of 99.11\%, which is better than those of recently reported results in classifying similar types of arrhythmias. The performance is significant in other indices as well, including sensitivity and specificity, which indicates the success of the proposed method.Comment: 14 pages, 5 figures, accepted for future publication in Remote Sensing MDPI Journa

    Classification SINGLE-LEAD ECG by using conventional neural network algorithm

    Get PDF
    Cardiac disease, including atrial fibrillation (AF), is one of the biggest causes of morbidity and mortality in the world, accounting for one third of all deaths. Cardiac modelling is now a well-established field. The Convolutional Neural Network (CNN) algorithm offer a valuable way of gaining insight into the dynamic behaviors of the heart, in normal and pathological conditions. Great efforts have been put into modelling the ventricles, whilst the atria have received less focus. This research therefore concentrates on developing models of the heart ECG atria using deep learning. The research developed an experimental result on MIT-BIH dataset for modelling myocyte electrophysiology and excitation waves in 1D & 2D tissues. It includes optimizations such as adaptive stimulus protocols. As examples of application, it is used to investigate effects of a novel anion bearing current on heart atrial excitation and the effect of remodeling on atrial myocyte electrical heterogeneity. A computationally efficient CNN anatomically based model of the heart atria is constructed. The 3D-CNN model includes heterogeneous, biophysically detailed electrophysiology and conduction anisotropy. The full model activates in 121 ms in heart rhythm, in close agreement with clinical ECG data. The model is used, with the toolkit, to investigate the function effects of S140G mutation in MIT-BIH dataset which is associated with familial. The 3D-CNN model forms the core of a boundary element model of the P-wave Body Surface Potential (BSP). The CNN model incorporates representations of the heart blood masses. Generated ECGs show qualitative agreement with clinical data. Their morphology is as expected for a healthy person, with a lead duration of 103 ms. The CNN model is used to verify an existing algorithm for focal atrial tachycardia location and in providing explanation for a novel clinical phenomenon, using CNN with 99.27% accuracy. Models of the human atria and body surface potential are constructed. The models are validated against both experimental and clinical data. These models are suitable to use as the platform for further research

    Analyzing fibrous tissue pattern in fibrous dysplasia bone images using deep R-CNN networks for segmentation

    Get PDF
    Predictive health monitoring systems help to detect human health threats in the early stage. Evolving deep learning techniques in medical image analysis results in efficient feedback in quick time. Fibrous dysplasia (FD) is a genetic disorder, triggered by the mutation in Guanine Nucleotide binding protein with alpha stimulatory activities in the human bone genesis. It slowly occupies the bone marrow and converts the bone cell into fibrous tissues. It weakens the bone structure and leads to permanent disability. This paper proposes the study of FD bone image analyzing techniques with deep networks. Also, the linear regression model is annotated for predicting the bone abnormality levels with observed coefficients. Modern image processing begins with various image filters. It describes the edges, shades, texture values of the receptive field. Different types of segmentation and edge detection mechanisms are applied to locate the tumor, lesion, and fibrous tissues in the bone image. Extract the fibrous region in the bone image using the region-based convolutional neural network algorithm. The segmented results are compared with their accuracy metrics. The segmentation loss is reduced by each iteration. The overall loss is 0.24% and the accuracy is 99%, segmenting the masked region produces 98% of accuracy, and building the bounding boxes is 99% of accuracy

    Real-time image dehazing by superpixels segmentation and guidance filter

    Get PDF
    Haze and fog had a great influence on the quality of images, and to eliminate this, dehazing and defogging are applied. For this purpose, an effective and automatic dehazing method is proposed. To dehaze a hazy image, we need to estimate two important parameters such as atmospheric light and transmission map. For atmospheric light estimation, the superpixels segmentation method is used to segment the input image. Then each superpixel intensities are summed and further compared with each superpixel individually to extract the maximum intense superpixel. Extracting the maximum intense superpixel from the outdoor hazy image automatically selects the hazy region (atmospheric light). Thus, we considered the individual channel intensities of the extracted maximum intense superpixel as an atmospheric light for our proposed algorithm. Secondly, on the basis of measured atmospheric light, an initial transmission map is estimated. The transmission map is further refined through a rolling guidance filter that preserves much of the image information such as textures, structures and edges in the final dehazed output. Finally, the haze-free image is produced by integrating the atmospheric light and refined transmission with the haze imaging model. Through detailed experimentation on several publicly available datasets, we showed that the proposed model achieved higher accuracy and can restore high-quality dehazed images as compared to the state-of-the-art models. The proposed model could be deployed as a real-time application for real-time image processing, real-time remote sensing images, real-time underwater images enhancement, video-guided transportation, outdoor surveillance, and auto-driver backed systems
    corecore