41 research outputs found

    Single Image Super Resolution via Neighbor Reconstruction

    Get PDF
    Super Resolution (SR) is a complex, ill-posed problem where the aim is to construct the mapping between the low and high resolution manifolds of image patches. Anchored neighborhood regression for SR (namely A+  [27]) has shown promising results. In this paper we present a new regression-based SR algorithm that overcomes the limitations of A+ and benefits from an innovative and simple Neighbor Reconstruction Method (NRM). This is achieved by vector operations on an anchored point and its corresponding neighborhood. NRM reconstructs new patches which are closer to the anchor point in the manifold space. Our method is robust to NRM sparsely-sampled points: increasing PSNR by 0.5 dB compared to the next best method. We comprehensively validate our technique on standardised datasets and compare favourably with the state-of-the-art methods: we obtain PSNR improvement of up to 0.21 dB compared to previously-reported work

    Image Super-Resolution Based on Sparse Coding with Multi-Class Dictionaries

    Get PDF
    Sparse coding-based single image super-resolution has attracted much interest. In this paper, a super-resolution reconstruction algorithm based on sparse coding with multi-class dictionaries is put forward. We propose a novel method for image patch classification, using the phase congruency information. A sub-dictionary is learned from patches in each category. For a given image patch, the sub-dictionary that belongs to the same category is selected adaptively. Since the given patch has similar pattern with the selected sub-dictionary, it can be better represented. Finally, iterative back-projection is used to enforce global reconstruction constraint. Experiments demonstrate that our approach can produce comparable or even better super-resolution reconstruction results with some existing algorithms, in both subjective visual quality and numerical measures

    Single image super resolution based on multi-scale structure and non-local smoothing

    Get PDF
    In this paper, we propose a hybrid super-resolution method by combining global and local dictionary training in the sparse domain. In order to present and differentiate the feature mapping in different scales, a global dictionary set is trained in multiple structure scales, and a non-linear function is used to choose the appropriate dictionary to initially reconstruct the HR image. In addition, we introduce the Gaussian blur to the LR images to eliminate a widely used but inappropriate assumption that the low resolution (LR) images are generated by bicubic interpolation from high-resolution (HR) images. In order to deal with Gaussian blur, a local dictionary is generated and iteratively updated by K-means principal component analysis (K-PCA) and gradient decent (GD) to model the blur effect during the down-sampling. Compared with the state-of-the-art SR algorithms, the experimental results reveal that the proposed method can produce sharper boundaries and suppress undesired artifacts with the present of Gaussian blur. It implies that our method could be more effect in real applications and that the HR-LR mapping relation is more complicated than bicubic interpolation
    corecore