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Highlights

• We present a novel regression-based SR method that is

built on neighbor reconstruction.

• We designed a new projector which has better numerical

stability to adapt to our new problem.

• When the harvested samples are sparse on the manifold,

our method can still construct much closer points.
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ABSTRACT

Super Resolution (SR) is a complex, ill-posed problem where the aim is to construct the mapping

between the low and high resolution manifolds of image patches. Anchored neighborhood regression

for SR (namely A+ (Timofte et al., 2014)) has shown promising results. In this paper we present a new

regression-based SR algorithm that overcomes the limitations of A+ and benefits from an innovative

and simple Neighbor Reconstruction Method (NRM). This is achieved by vector operations on an

anchored point and its corresponding neighborhood. NRM reconstructs new patches which are closer

to the anchor point in the manifold space. Our method is robust to NRM sparsely-sampled points:

increasing PSNR by 0.5 dB compared to the next best method. We comprehensively validate our

technique on standardised datasets and compare favourably with the state-of-the-art methods: we

obtain PSNR improvement of up to 0.21 dB compared to previously-reported work.

c© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of single image super-resolution (SR) is to esti-

mate a high resolution (HR) image from a single low resolution

(LR) image. It provides a way to enhance the existing images

which were generated by delayed imaging equipment or lim-

ited imaging conditions, and have been widely studied in recent

years. Acquiring a HR estimation from an LR observation is an

ill-posed problem and so priors of high quality images are nor-

mally relied on in the estimation process. Based on the different

priors, existing single image SR methods can be broadly clas-

sified into three categories: interpolation-based methods (Irani

and Peleg, 1991; Duchon, 1979; Li and Orchard, 2001; Fat-

tal, 2007; Freeman et al., 2002), reconstruction-based methods

(Chang et al., 2004; Glasner et al., 2009; Protter et al., 2009)

and example learning-based methods (Dai et al., 2015; Dong

et al., 2011; Cui et al., 2014; Kim and Kwon, 2010; Zhang

et al., 2015; Timofte et al., 2013; Dong et al., 2016; Timofte

et al., 2014).

⋆⋆The first two authors contribute equally to this work.
∗∗Corresponding author

e-mail: jerry.wang@connect.polyu.hk. (Zeli Wang)

Interpolation-based methods use priors based on rigid mod-

els of the imaging process. The unknown pixel values are

estimated by interpolation (i.e. bilinear, bicubic and cubic

spline interpolation). Representative methods include Iterative

Back Projection (IBP) (Irani and Peleg, 1991), Lanczos up-

sampling (Duchon, 1979) and New Edge Directed Interpola-

tion (NEDI) (Li and Orchard, 2001). Although such generative

methods are able to capture some of the characteristics of high

quality images, they cannot recover the high-frequency infor-

mation in texture regions and also produce many ringing and

jaggy artifacts along edges since no new information is added

in the procedure.

Reconstruction-based methods view the SR problem as an

inverse problem and impose reconstruction constraints on the

HR image estimation. Such constraints aim to find a down-

sampled and blurred HR image which is well approximated by

the LR input image. However, artifacts like jaggies and ringing

may be introduced in SR results because of the ill-conditioned

nature of deconvolution of the blur operation. To stabilise the

estimated image and suppress artifacts, a prior knowledge is

combined with the reconstruction constraint to regularize the

reconstruction results. Representative priors, such as the soft
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Fig. 1: Average PSNR (dB) vs time (s) of our algorithm (NRM) compared to

other SR methods. We largely improve (red) over the original example based

single image super-resolution methods (blue), i.e. our NRM method is 0.21dB

better than A+(Timofte et al., 2014) and 0.91dB better than the Global Regres-

sion (GR)(Timofte et al., 2013). Results reported on Set5 with magnification 4.

Details in Section 4.

(a) Original (b) Bicubic,

23.2(dB)

(c) Zeyde et al,

24.1(dB)

(d) NE+LLE,

24.0(dB)

(e) A+, 24.4(dB) (f) SRCNN,

24.5(dB)

(g) RFL,

24.4(dB)

(h) Proposed,

24.5(dB)

Fig. 2: Visual qualitative assessment for soldier image with magnification 3.

edge smoothness prior proposed in (Dai et al., 2007), similar-

ity redundancy priors (Zhang et al., 2012) and total variation

regularization (Marquina and Osher, 2008) are widely used in

reconstruction-based methods. Although the prior knowledge

can produce sharp edges and suppress aliasing effects, they do

not add new high-frequency details that are lost in degradation,

especially at high magnification (e.g. grater than × 2).

Example learning-based SR methods are superior to

reconstruction-based methods since they are able to produce

novel details that cannot be found in the LR input. These ap-

proaches exploit the information from a training dataset com-

posed of millions of co-occurring LR and HR image patch pairs

or a learned LR-HR overcomplete dictionary pair to estimate

the relationship between the LR and HR image patches for SR

reconstruction. One of the most successful learning approaches

is the sparse representation-based approach. For example, Yang

et al proposed to use a pair of LR and HR dictionaries to model

the relationship between LR and HR patches in (Yang et al.,

2010), this leads to a family of sparse representation methods,

including the efficient K-SVD/OMP method of Zeyde (Zeyde

et al., 2010). Apart from building relationships in the sparse

coefficient domain, different regression methods have been uti-

lized to model the relationship between LR and HR images;

These include local regression ( e.g. the Neighbor Embed-

ding with Locally Linear Embedding (NE+LLE) (Chang et al.,

2004), the Simple Functions (SF) method of Yang and Yang

(Yang and Yang, 2013), the Anchored Neighborhood Regres-

sion (ANR) method introduced by Timofte et al (Timofte et al.,

2013) and the Adjusted Anchored Neighborhood Regression

(A+) by the same authors (Timofte et al., 2014) ) and the convo-

lutional neural network method (SR-CNN) of Dong et al (Dong

et al., 2016).

Among the above mapping-based methods, neighbor em-

bedding approaches have achieved great research interests. In

(Timofte et al., 2013), Timofte et al proposed a highly efficient

and effective SR algorithm called ANR, which maps the LR

patches onto the HR domain using the projections learned form

neighborhoods. Specifically, it relaxes the ℓ1-norm regulariza-

tion commonly used in most of the neighbor embedding and

sparse coding approaches (Zeyde et al., 2010; Yang et al., 2010)

to a ℓ2-norm regularized regression which can be solved offline

and stored for each dictionary atom/anchor. This results in large

speed benefits. Subsequently, those authors proposed an im-

proved variant of the ANR method called A+ (Timofte et al.,

2014) that learns the regressors from the locally nearest train-

ing LR and HR patches instead of the small dictionary. It thus

better utilizes the prior data to achieve improved performance.

Under the framework of A+, many notable methods such as the

Half Hypersphere Confinement Regression (HHCR) (Salvador

et al., 2016), the Patch Symmetry Collapse (PSyCo) (Prez-

Pellitero et al., 2016) and RFL (Schulter et al., 2015) were pro-

posed.

Although the A+ method (Timofte et al., 2014) has achieved

great success in delivering high quality HR estimation, it has

two serious limitations: First, to obtain dense sample patches,

A+ needs to harvest data images with different scales repeat-

edly, resulting in a large amount of computation and storage;

Second, even if A+ does a so-called densely harvesting, we

find that these patches are still too sparse for the high dimen-

sion space.

In this paper, we propose a novel and simple neighbor recon-

struction method and extend the concept of A+ resulting in a

significant improvement.

1. Compared with A+, our method utilizes fewer features to

construct a closer neighbor and that results in a more ac-

curate reconstruction coefficient vector x. Specifically, we

present a new neighbor reconstruction method which adds

an anchor point and its corresponding neighbor features

together and divides the result by a scalar to generate a

much closer neighbor. Compared with the A+ method, our

method requires fewer features to generate a closer neigh-

bor set.

2. Meanwhile, we have also designed a new projector which

has much better numerical stability to adapt to our new
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problem. As in A+, to obtain the low resolution recon-

struction coefficient vector x, we solve a regularized and

over-completed least-squares problem detailed in Eq.(4).

We present a numerically stable projector Eq. (6) to sup-

plement our method.

3. In this case, by benefiting from closer neighbor we ob-

tain a more accurate reconstruction coefficient vector x

leading to an improvement circa 0.1 ∼ 0.21 dB over A+.

Moreover, with fixed memory, more anchor points can be

trained leading to much better generalization. Fig.1 shows

improved quantitative performance, and Fig.2 gives an il-

lustrative qualitative output.

The remainder of this paper is organized as follows. In Sec-

tion 2, we present related work and discuss the relationship be-

tween our proposed model NRM and alternative methods. In

Section 3, we present a formal definition of the model, includ-

ing descriptions of neighbor reconstruction method and its op-

timization procedures. In Section 4, we investigate why NRM

is useful to generate better neighbor set. This is followed by an

experimental evaluation in Section 5 which explores the perfor-

mance of NRM at single image super resolution task. Finally,

conclusions are presented in Section 6.

2. Related work

Neighbor Embedding (NE) approaches assume that features

which are drawn from small low- and high-resolution patches

lie on two local geometrically similar manifolds (Wang et al.,

2019; Bai et al., 2014, 2018). Based on this assumption NE

approaches reconstruct high-resolution features with local geo-

metric structure recording coefficients which are shared in low-

resolution space (Liu and Bai, 2012; Cui et al., 2017, 2019). A

representative NE approach is A+ method proposed by Timo-

fte et al (Timofte et al., 2014). A+ has succeeded in reducing

the time complexity and has achieved improved performance.

However in training phase it can not handle large databases

and its anchor points do not generalize well. Under the frame-

work of A+, many notable methods like HHCR (Salvador et al.,

2016), PSyCo (Prez-Pellitero et al., 2016) and RFL (Schulter

et al., 2015) were proposed. HHCR and PSyCo utilizes sym-

metric prior over the manifolds to collapse the redundant vari-

ability of the neighbor of anchor points. When employed with

random forests RFL directly maps from low to high-resolution

patches to avoid tedious parameter tweaking. Although all of

these methods give further improvements, they all suffer from

limitations caused by framework A+.

Deep Learning has been applied to SR with remarkable suc-

cess. A representative deep learning based SR method is SR-

CNN (Dong et al., 2016) which consists of three layers: a) patch

representation. b) non-linear mapping. c) reconstruction with

filters of spatial sizes 9×9, 1×1, 5×5 respectively. However, to

achieve a result which surpasses A+’s, SRCNN needs to be fed

with a large database, like ILSVRC2013 ImageNet which con-

tains 395,909 images. Following SRCNN, more CNN methods

were proposed: like CSCN (Wang et al., 2015), VDSR (Kim

et al., 2016). They utilize more effective priors, such as the

sparse prior and the deep learning structure prior, to surpass

SRCNN.

3. Analysis of manifold-based single image SR

We analyse in more detail the A+ technique and explain the

limitations of their method. All of our analysis is based on

a basic property of the manifold: if an assigned neighbor is

close enough then the local manifold subspace can be well de-

scribed by the observed coordinates of the neighbor. Namely,

if the neighbor of aimed anchor point is close enough, we can

use our coordinated points to describe the inherent property of

the manifold. The well-known Local Linear Embedding (LLE)

(Roweis and Saul, 2000) was proposed based on this property

and A+ method was, in turn, motivated by LLE. There are two

major deficiencies of A+ method.

1. To harvest dense sample patches, the A+ method samples

patches at different scales. If we generate dense patches

with the A+ method on a large database, it is massively

expensive in both computation and memory. For example,

for a 91-image dataset, to obtain dense pathes around the

anchored point, A+ method attempts to harvest 12 times at

different scales resulting in about 5 millions patches.

2. A simple estimation shows that the patches harvested with

the A+ method are not close enough. In practice the

dimension of features drawn from the low dimensional

patches is around 30. We aim to find a neighbor which

lies within an anchor point centred hypersphere whose ra-

dius is 0.1. Without loss of generality, supposing that fea-

tures are normalized and uniformly distributed, at least

1030 features are needed to reconstruct that required neigh-

bor while only 5 million features are used in A+.

3.1. A manifold-based model

We analyse the generalisation capacity of manifold-based

single image SR. Firstly, some notation is introduced. Suppose

ph are small sampled patches which are directly cropped from

raw training images. pl is downsampled patches from ph. And

that fl and fh are normalized features extracted from pl and ph

respectively by feature extractors,

fl = Kl(pl),

fh = Kh(ph).

where Kl and Kh is linear feature extractors.

Further suppose that M̂l and M̂h are sampled manifolds cor-

responding to low-dimensional and high-dimensional feature

spaces, namely,

M̂l = {f
(i)

l
}n
i=1
,

M̂h = {f
(i)

h
}n
i=1
,

where n is the number of extracted features in the low-

dimensional or high-dimensional feature space. Suppose Ml

and Mh are continuous ground truth manifolds corresponding

to the LR and HR feature spaces. These two manifolds are
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(a) (b)

Fig. 3: Illustration of sample reconstruction. (a) geometric interpretation of neighborhood reconstruction. The figure shows how to create a cosine similarity closer

point (f
tk
l
+ ft

l
)/c by using ft

l
and its neighbor f

tk
l

. c is an adjustable parameter to make (f
tk
l
+ ft

l
)/c be close to the intrinsic manifold, namely the solid line. In this

figure, when c = 1.85, (f
tk
l
+ ft

l
)/c can fall on the intrinsic manifold. (b) shows how to do neighbor reconstruction process iteratively.

structurally similar at local subspace. The relationship between

the sampled manifolds and ground truth manifolds is:

Ml = limn→∞ M̂l,

Mh = limn→∞ M̂h,

There is an important one-to-one mapping, H(ph) = fl(∈ M̂l),

which is a naturally formed result when we are preparing the

low and high patches. In practice we firstly train an LR dictio-

nary Dl,

Dl, α
i
= arg min

Dl,α
i
Σi‖f

(i)

l
− Dlα

i‖22 + λ
2‖αi‖22. (1)

Each column of Dl is called as an atom, dl. In A+ researchers

use atoms as anchor points in M̂l to anchor offline projectors.

Given a target low dimensional feature ft
l

researchers use a

neighbor set of its nearest atom to reconstruct ft
l
. This recon-

struction leads to a reconstruction parameter x. The reconstruc-

tion process can be formulated as,

x = arg minx ‖f
t
l
− Nl(dl)x‖

2
2
+ λ2‖x‖2

2 (2)

where Nl(dl) is a neighbor set of dl. The Eq.(2) can be solved

with a closed-form,

x = Pft
l
,

where P = (NT
l

Nl + λ
2I)−1NT

l
. Obviously for each atom its

corresponding P can be prepared offline. With parameter x and

the one-to-one mapping H(ph) = fl(∈ M̂l) high-dimensional

patch pl can be reconstructed in the way used in LLE (Roweis

and Saul, 2000).

The SR problem in the NE framework is to construct a gen-

eralized function G(fl) ≈ ph : Ml → Ph where Ph is continuous

high-dimensional image patches manifold space. referring to

the former one-to-one mapping H. During testing, a given eval-

uation criterion is used, such as PSNR (Peak Signal to Noise

Ratio), SSIM (Structural Similarity Index) and IFC (Informa-

tion Fidelity Criterion), to estimate the performance of G. The

estimator is,

C(I(G(f
(i)

l
)) − I(p

(i)

h
)),

where C is a chosen image evaluation criterion, I is a patch

combining function which generates final patch-combining im-

ages. And f
(i)

l
∈ M̂l,p

(i)

h
∈ P̂h, P̂h are HR patch sets harvested

from the training database.

The object fun of SR is,

max
G

∑

i

C(I(G(f
(i)

l
)) − I(p

(i)

h
)),

3.2. The neighbor reconstruction method

As in A+ when we are training the function G, given a target

feature ft
l
, we want to obtain a reconstruction coefficient vector

x. Then we directly transfer the coefficient vector into HR patch

space, and construct the interest pt
h

with one-to-one mapping H.

In the HR patch space we use the coefficient vector x and the

corresponding neighbor to reconstruct target pt
h
. So it is crucial

to choose a good neighbor. Inspired by a Euclidean theorem

in plane space, namely the parallelogram axiom of vectors, we

have designed a neighbor reconstruction method denoted NRM,

more detailed in Fig.3(a). Based on the cosine similarity metric

we construct a closer, or more highly correlative, neighbor set

for ft
l

which will be beneficial in generating a more accurate

reconstruction coefficient x.

Denote the neighbors Nl(dl) of ft
l

as the set of vectors

[f
t1
l
, f

t2
l
, ..., f

tk
l

]. We concatenate the central point and its cor-

responding neighbors together as column in the matrix F̄ =

[f
t1
l
, f

t2
l
, ..., f

tk
l
, ft

l
]. We induce a reconstruction operator,

R =



1
c

0 . . . 0 0

0 1
c
. . . 0 0

...
...
. . .

...
...

0 0 0 1
c

0
1
c

1
c

1
c

1
c

1



∈ R(k+1)×(k+1) (3)
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where c(> 1) is an adjustable parameter. For the jth(1 ≤ j <

k + 1) column R j, it can generate the jth reconstructed neigh-

bor 1
c
ft
l
+

1
c
f

t j

l
by the right multiplication F̄R j. For the (k + 1)th

column, it is used to preserve central point ft
l

for the next it-

eration. In NRM, reconstruction manipulation is achieved in

parallel by right multiplying R by F̄. This manipulation can

be done achieved iteratively. F̄(r)
= F̄Rr(r ∈ {0, 1, 2, 3, ..., s})

where s is a truncation number. After operating on F̄ for s

times, NRM collects ±F̄(r) as a large set F = {±F̄(r)}s
r=0

. The

final step in NRM is to select k the nearest points for ft
l

from F

to replace the original neighbor set. Further details of the iter-

ative approach are shown in Fig. 3(b). And the complete NRM

algorithm is summarized in Alg. 1

Algorithm 1 NRM

Require:

Target low-dimensional feature ft
l
;

Low-dimensional dictionary Dl;

Truncation number s;

Adjustable parameter c.

Ensure:

Reconstructed neighbor set Nnew
l

;

1: Find nearest atom dt
l

from Dl for ft
l

;

2: Find k neighbors [f
t1
l
, f

t2
l
, ..., f

tk
l

] from M̂l for dt
l
;

3: for r=1,2, ..., s do

4: Put low-dimensional feature and neighbors together F̄ =

[f
t1
l
, f

t2
l
, ..., f

tk
l
, ft

l
];

5: Do the manipulation F̄(r)
= F̄Rr;

6: Collect F̄(r) into F = [±F̄(0),±F̄(1), ...,±F̄(r−1)];

7: end for

8: In F select another k nearest neighbors except ±ft
l

to be

Nnew
l

;

9: return Nnew
l

;

−1 before F̄(r) reverse the sign, if we want to employ the

parallelogram axiom of vectors to efficiently generate a closer

neighbor feature, we must ensure ft
l

and f
t j

l
lie on the same side

of the anchor. Considering the existence of antipodal points

we reverse the neighbor set by multiplying a negative one (−1)

on its features, and utilize these reversed antipodal points to

generate reconstructed points.

3.3. Solving the model

First, given a target feature ft
l
, we employ NRM to gener-

ate a corresponding neighbor set Nl. To obtain reconstruction

coefficients x in a low resolution space, we need to solve the

optimization problem,

min
x
‖ft

l − Nlx‖
2
2 + λ

2‖x‖22. (4)

For the problem, in A+, the solution is,

x = Pft
l ,

where the projector P = (NT
l

Nl + λ
2I)−1NT

l
.

In our method, we reconstruct a closer neighbor leading to a

greater condition number of Nl. If we still apply the projector

Fig. 4: PSNR results of proposed projector and original projector in A+. The

red line shows PSNR performance of our method employing with proposed

projector. The green one shows the performance of our method employing with

original projector.

P which is deduced with normal equation method to obtain x in

Eq.(4), this will lead to poor results. Because in normal equa-

tion method an inverse of matrix is needed to be computed, a

large condition number will lead to a big numerical error which

can be a deviation from our best results about 6dB as shown in

Fig. 4.

To regular this great condition number problem we design a

new projector based on matrix QR decomposition in which we

do not have to compute a inverse of matrix. Rewriting Eq.(4) in

the least-squares form:

min‖

[
λI

Nl

]

(m+n,n)

x −

[
O

ft
l

]

(m+n,1)

‖22, (5)

where m is the dimension of the features in Nl, n is the number

of neighbor features, (m ≪ n). And Nl ∈ R
m×n, λI ∈ Rn×n,O ∈

R
n×1, ft

l
∈ Rm×1.

Applying the QR decomposition method to Eq.(5) gives:

[
λI

Nl

]

(m+n,n)

= QR,

where Q is unitary, R is upper-triangular, Q ∈ R(m+n)×(n+m),R ∈

R
(m+n)×(n).

Our problem now becomes:

(QR)x =

[
O

ft
l

]

(m+n,1)

,

Rx = Q̂

[
O

ft
l

]

(m+n,1)

=

[
Q̂n Q̂m

][O
ft
l

]

(m+n,1)

⇒ Rx = Q̂mft
l ,

y = Q̂mft
l
,

Rx = y,
(6)

where, Q̂ = Q∗, and Q̂m is the last mth columns of Q̂, Q∗ is con-

jugate transpose of Q, and Rx = y can be solved by substitution
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Fig. 5: The trace of reconstructed points. Reconstructed neighbor point fi walk

from f
tk
l

to ft
l

alone the dashed intersection line. With enough steps, fi always

fall on a contour line on which points have shorter geodesic to ft
l
.

method. The performance comparison between normal equa-

tion method based and our method based projector is shown in

Fig. 4.

4. Advantages

In this section we investigate why NRM is useful to generate

better neighbor set. To quantify the meaning of better, we define

a metric. Specially we define a distance function on intrinsic

manifold M which we suppose it is a Riemann manifold:

L : Rd×(k+1) → R

L(T̄) =

k∑

i=1

∫ t ji

t j

|l
′

i(t)|dt (7)

where t is a d dimensional intrinsic parameter point in M, t j

and t ji are the central point and the neighbor points respectively.

Like F̄, T̄ = [t j1 , t j2 , ..., t jk , t j]. And li(t j, t ji ) is the geodesic be-

tween t j and t ji .

Given a local coordinate system, Eq.(7) can be rewritten in a

coordinate form:

L(T̄) =

k∑

i=1

∫ t ji

t j

D∑

a,b=1

√
ga,b(li(t))

dxa

dt

dxb

dt
dt (8)

where ga,b = g
( ∂
∂xa ,

∂

∂xb

)
, and g is a Riemann metric on M. Ac-

cording to the properties of Riemann metric which is an 2 order

covariant tensor, Eq.(8) is invariant to the choice of coordinates.

So the defined metric can describe the intrinsic relationships

on M with different coordinates. We use L(T̄) to measure the

distance between the central point and its corresponding neigh-

bors. To its neighbors when the value of L is small, the central

point is closer, namely the neighbors are closer.

Based on the defined metric, for comparison, we can firstly

focus on one neighbor point. In Figure 5, a target low-

dimensional feature ft
l

and a neighbor point f
tk
l

are given. The

black curves are contours on which the points have the same

geodesic length to ft
l
. H =< ft

l
, f

tk
l
> is a hyperplane spanned

by ft
l

and f
tk
l

. The dashed curve is a subset of the intersec-

tion between H and M. All of the reconstructed feature points

fi(i ∈ (1, 2, ..., r)) are lie in the intersection subspace. The solid

red curve is the geodesic between ft
l

and f
tk
l

. The NRM recon-

structed neighbor points fi ∈ H will walk along the dashed

curve from f
tk
l

to ft
l

until fi fall on a contour on which points

have smaller geodesic distance than that of f
tk
l

. For two or more

neighbors, on the meaning of former proposed metric we can

always find closer neighbors by carefully fine-tuning parame-

ters.

5. Experiments

We now comprehensively analyze the performance of our

proposed NRM in relation to its design parameters and bench-

mark it in quantitative and qualitative comparison with A+ and

other state-of-the-art methods.

We use the training set of images as proposed by Yang et al

(Yang et al., 2010), Timofte et al (Timofte et al., 2014) and by

Zeyde et al (Zeyde et al., 2010). However we use a different

way to harvest patches from these images. Timofte et al (Timo-

fte et al., 2014) repeatedly harvested dense patches by means of

image pyramid. Because NRM can group a set of dense patches

by reconstruction, which is shown in Fig. 6(c), we employ the

Augmented Data set proposed by Timofte et al in (Timofte

et al., 2016), which is a more general sparse data set, and har-

vest it once. To compare with A+ as fairly as possible, we also

trained A+ on the Augmented Data set with the same harvest

configuration. However, this configuration degraded A+s qual-

ity results. So in the following we use the original configura-

tions of A+.

Note that Set5 and Set14 contain respectively 5 and 14 com-

monly used images for super-resolution evaluation. B100 aka

Berkeley Segmentation Dataset is the B100 data set proposed

by Timofte et al in (Timofte et al., 2014). We use the same LR

path features as Zeyde et al (Zeyde et al., 2010) and Timofte et

al (Timofte et al., 2014).

We compare with the following six methods which share the

same training data set: standard bicubic upsampling method,

the efficient sparse coding method of Zeyde et al (Zeyde et al.,

2010), neighbor Embedding with Locally Linear Embedding

(referred to as NE+LLE) (Chang et al., 2004), Adjusted An-

chored Neighborhood Regression (referred to as A+) of Timo-

fte et al (Timofte et al., 2014), Convolutional Neural Network

Method (referred to as SRCNN) of Dong et al (Dong et al.,

2016) and Fast and Accurate Image Upscaling with Super-

Resolution Forest (referred to as RFL) of Schulter et al (Schul-

ter et al., 2015).

5.1. Parameters

We analyze the main parameters of our proposed method,

and at the same time compare with A+ which is the most re-

lated method. The standard settings we use are upscaling fac-

tor x4, 5000000 training samples of LR and HR patches which

were sampled from the Augmented Data set, a dictionary size of

1024, a neighborhood size of 2048 and for NRM iteration time

is 2. A+ is set up with the same parameters as reported in its

original work. To verify our method is benefited by sample re-

construction rather than the choice of cosine metric like HHCR
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(a) (b)

(c) (d)

Fig. 6: Parameter influence and method comparison on average for Set5. (a) Iteration times for proposed method versus PSNR, with three kind of dictionary sizes;

(b) Neighborhood size for proposed method versus for PSNR, with different dictionary sizes; (c) Number of training samples versus PSNR for A+, proposed and

compared version of proposed method; (d) Dictionary size for A+, proposed method and its compared version.

(a) Original (b) Bicubic, 19.8(dB) (c) Zeyde et al, 20.2(dB) (d) NE+LLE, 20.2(dB)

(e) A+, 20.3(dB) (f) SRCNN, 20.6(dB) (g) RFL, 20.5(dB) (h) Proposed, 20.4(dB)

Fig. 7: Illustrative output qualitative assessment for building image with magnification 3.
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Table 1: Performance of x2, x3,and x4 magnification in terms of averaged PSNR (dB),SSIM and execution time (s) on data set Set5, Set14 and BSD100. Best

results in red and runner-up in blue.

data Bicubic Zeyde NE+LLE A+ SRCNN RFL Proposed

set s PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time PSNR SSIM Time

2 33.66|0.9382|0.0 35.78|0.9563|2.5 35.77|0.9560|4.1 36.55|0.9611|0.8 36.34|0.9590|3.0 36.55|0.9585|1.1 36.65|0.9614|1.6

Set5 3 30.39|0.8802|0.0 31.90|0.9075|1.1 31.84|0.9064|1.9 32.59|0.9139|0.5 32.39|0.9141|3.0 32.45|0.9162|1.0 32.67|0.9202|0.8

4 28.42|0.8246|0.0 29.69|0.8565|0.7 29.61|0.8540|1.1 30.28|0.8737|0.3 30.09|0.8669|3.2 30.13|0.8680|0.8 30.40|0.8760|0.5

2 30.23|0.9415|0.0 31.81|0.9611|5.0 31.76|0.9620|8.5 32.28|0.9649|1.6 32.18|0.9637|4.9 32.27|0.9442|2.3 32.39|0.9649|3.6

Set14 3 27.54|0.8587|0.0 28.67|0.8859|2.4 28.60|0.8868|3.9 29.13|0.8940|0.9 29.00|0.8910|5.0 29.03|0.8923|1.8 29.20|0.8946|1.7

4 26.00|0.7838|0.0 26.88|0.8159|1.5 26.81|0.7322|2.4 27.32|0.8281|0.6 27.20|0.8210|5.2 27.21|0.8247|1.3 27.42|0.8300|1.1

2 29.32|0.8338|0.0 30.40|0.8682|3.6 30.41|0.8708|6.1 30.77|0.8773|1.1 31.14|0.8847|3.4 31.13|0.8838|2.5 30.83|0.8772|2.3

B100 3 27.15|0.7364|0.0 27.87|0.7695|1.8 27.85|0.7713|2.9 28.18|0.7791|0.6 28.21|0.7800|3.4 28.21|0.7805|2.3 28.23|0.7820|1.1

4 25.92|0.6673|0.0 26.51|0.6968|1.0 26.47|0.6974|1.5 26.77|0.7085|0.4 26.71|0.7022|3.5 26.74|0.7054|2.1 26.83|0.7105|0.7

(a) Original (b) Bicubic, 23.7(dB) (c) Zeyde et al, 25.2(dB) (d) NE+LLE, 24.9(dB)

(e) A+, 26.1(dB) (f) SRCNN, 26.1(dB) (g) RFL, 25.8(dB) (h) Proposed, 26.2(dB)

Fig. 8: Visual qualitative assessment for ppt3 image with magnification 3.

(Salvador et al., 2016), we also evaluate a compared NRM ver-

sion based on Euclidean metric. Fig. 6 depicts the most relevant

results of the parameter settings and comparisons.

In Fig. 6 (a) we compare the behavior of three kinds of dic-

tionary size setup NRM, while varying the iteration time. Note

that NRM’s peak only at the first or second iteration and de-

crease with more iterations. It means more iterations lead to

an overfitting on truth ground neighborhood. Fig. 6(b) shows

the influence of neighborhood on NRM. The same as A+ (Tim-

ofte et al., 2014), NRM faces a plateau at 2048. As indicated

in A+ this plateau limitation is caused by our training pool. In

Fig. 6(c) we present the comparison between A+ and our NRM

and NRMs comparison version while varying sample sizes from

0.01 million to 0.28 million. The quality is around 0.5 dB

higher than A+ for a small sample size (e.g. 0.01 millions) and

around 0.2 dB for 0.28 millions (which is the size set in A+).

This is a notable fact that NRM can reconstruct useful neigh-

borhoods and perform well even if the ground truth manifold

is sampled sparsely. At the same time compared with the origi-

nal NRM, the Euclidean version has slightly decreased (i.e 0.05

dB). This fact makes a difference between the influence of sam-

ple reconstruction and HHCRs. Fig. 6(d) shows the influence

of dictionary size on the algorithms. Limited by the training

pool, the algorithms still face a plateau that our NRM and its

Euclidean version do not suffer from.

5.2. Results

In order to assess the quality of our proposed method, we

tested on 3 datasets (Set5, Set14, B100) used by Timofte et al

(Timofte et al., 2014) for 3 upscaling factors (x2, x3, x4) in the

same CPU (Intel Core i7 4750HQ 2GHz) and memory (8Gb).

Considering quality and time cost, we use dictionary with 4096

atoms and a neighborhood size of 2048. The method of Zeyde

et al, NE+LLE, the similarity to Chang et al (Chang et al.,

2004), and A+ is set up with its common parameters. SRCNN
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and RFL are training on the same training data set proposed by

Timofte et al leading to a decrease compared to their best per-

formance reported in articles. We report quantitative PSNR and

(structural similarity ) SSIM results, as well as running times

for our bank of methods. In Table 1 we summarize the quan-

titative results, while in Figs. 7, 2, 8 we provide visual assess-

ments.

In Table 1 we show the averaged PSNR, SSIM and execution

times of the benchmark. NRM almost obtains the best PSNR

values, around 0.12dB higher across all scale and data set when

compare to the most related algorithm A+. We also outperform

some very recent methods (SRCNN and RFL) which are less

competitive when trained on the same 91 images training data

set. In the terms of computation time, our algorithm is very

slightly slower than A+ but still faster than all other methods.

In Figs. 7, 2, 8 as can be seen, the proposed NRM produces

a visual quality comparable or superior to the other compared

methods.

6. Conclusion

In this paper we present a new method for regression-based

SR that is built on a novel neighbor reconstruction method

(NRM). Via manipulations on anchored points and correspond-

ing neighborhoods, NRM can reconstruct new points which are

more closer to anchor point on the assumed manifold. Our con-

tributions are: (1) a new sample reconstruction method with ap-

plication to regression-based SR; (2) Supported by matrix QR

decomposition, we design a more condition-number-stable re-

gressor to compute effective result under closer neighborhood

situation. Our results confirm the effectiveness of this approach

using various accepted benchmarks, where we clearly outper-

form the current state-of-the-art. Finally, when the harvested

samples are sparse on the manifold, NRM can still construct

much closer points and perform well.
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Appendix A. The Proof Under High Dimensional Condi-

tion

Theorem 1. Given vectors a,b ∈ R
n, which satisfy ‖a‖2 =

‖b‖2 = 1 and 〈a,b〉 > 0, then we have 〈a,b〉 ≥ 〈a, a + b〉, where

〈·, ·〉 represents the angle between a pair of vectors.

Proof. Employed with cosine similarity,

f (a,b) = |
(a,b)

‖a‖2‖b‖2
| = |(a,b)| (A.1)

f (a, a + b) = |
(a, a + b)

‖a‖2‖a + b‖2
| = |

(a, a + b)

‖a + b‖2
| (A.2)

≥ |(a, a + b)|/2 (A.3)

with ‖a + b‖2 ≤ ‖a‖2 + ‖b‖2 = 2.

From Eq.(1)-(3), we have,

f (a, a + b) − f (a,b) = |
(a, a + b)

‖a + b‖2
| − |(a,b)| (A.4)

= (|(a, a) + (a,b)| − 2|(a,b)|)/2 (A.5)

= (|1 + (a,b)| − 2|(a,b)|)/2 (A.6)

because 〈a, b〉 > 0, then

f (a, a + b) − f (a,b) (A.7)

= (1 − (a,b))/2 ≥ 0 (A.8)

(A.9)

with (a,b) = cos〈a,b〉 ∈ (0, 1).

Finally we get,

f (a, a + b) − f (a,b) (A.10)

⇒ | cos〈a, a + b〉| ≥ | cos〈a, a〉| (A.11)

⇒ 〈a, a + b〉 ≤ 〈a,b〉 (A.12)
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