82 research outputs found

    Blue Channel and Fusion for Sandstorm Image Enhancement

    Get PDF

    Mapping and Deep Analysis of Image Dehazing: Coherent Taxonomy, Datasets, Open Challenges, Motivations, and Recommendations

    Get PDF
    Our study aims to review and analyze the most relevant studies in the image dehazing field. Many aspects have been deemed necessary to provide a broad understanding of various studies that have been examined through surveying the existing literature. These aspects are as follows: datasets that have been used in the literature, challenges that other researchers have faced, motivations, and recommendations for diminishing the obstacles in the reported literature. A systematic protocol is employed to search all relevant articles on image dehazing, with variations in keywords, in addition to searching for evaluation and benchmark studies. The search process is established on three online databases, namely, IEEE Xplore, Web of Science (WOS), and ScienceDirect (SD), from 2008 to 2021. These indices are selected because they are sufficient in terms of coverage. Along with definition of the inclusion and exclusion criteria, we include 152 articles to the final set. A total of 55 out of 152 articles focused on various studies that conducted image dehazing, and 13 out 152 studies covered most of the review papers based on scenarios and general overviews. Finally, most of the included articles centered on the development of image dehazing algorithms based on real-time scenario (84/152) articles. Image dehazing removes unwanted visual effects and is often considered an image enhancement technique, which requires a fully automated algorithm to work under real-time outdoor applications, a reliable evaluation method, and datasets based on different weather conditions. Many relevant studies have been conducted to meet these critical requirements. We conducted objective image quality assessment experimental comparison of various image dehazing algorithms. In conclusions unlike other review papers, our study distinctly reflects different observations on image dehazing areas. We believe that the result of this study can serve as a useful guideline for practitioners who are looking for a comprehensive view on image dehazing

    Transmission Map and Atmospheric Light Guided Iterative Updater Network for Single Image Dehazing

    Full text link
    Hazy images obscure content visibility and hinder several subsequent computer vision tasks. For dehazing in a wide variety of hazy conditions, an end-to-end deep network jointly estimating the dehazed image along with suitable transmission map and atmospheric light for guidance could prove effective. To this end, we propose an Iterative Prior Updated Dehazing Network (IPUDN) based on a novel iterative update framework. We present a novel convolutional architecture to estimate channel-wise atmospheric light, which along with an estimated transmission map are used as priors for the dehazing network. Use of channel-wise atmospheric light allows our network to handle color casts in hazy images. In our IPUDN, the transmission map and atmospheric light estimates are updated iteratively using corresponding novel updater networks. The iterative mechanism is leveraged to gradually modify the estimates toward those appropriately representing the hazy condition. These updates occur jointly with the iterative estimation of the dehazed image using a convolutional neural network with LSTM driven recurrence, which introduces inter-iteration dependencies. Our approach is qualitatively and quantitatively found effective for synthetic and real-world hazy images depicting varied hazy conditions, and it outperforms the state-of-the-art. Thorough analyses of IPUDN through additional experiments and detailed ablation studies are also presented.Comment: First two authors contributed equally. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible. Project Website: https://aupendu.github.io/iterative-dehaz

    Haze visibility enhancement: A Survey and quantitative benchmarking

    Get PDF
    This paper provides a comprehensive survey of methods dealing with visibility enhancement of images taken in hazy or foggy scenes. The survey begins with discussing the optical models of atmospheric scattering media and image formation. This is followed by a survey of existing methods, which are categorized into: multiple image methods, polarizing filter-based methods, methods with known depth, and single-image methods. We also provide a benchmark of a number of well-known single-image methods, based on a recent dataset provided by Fattal (2014) and our newly generated scattering media dataset that contains ground truth images for quantitative evaluation. To our knowledge, this is the first benchmark using numerical metrics to evaluate dehazing techniques. This benchmark allows us to objectively compare the results of existing methods and to better identify the strengths and limitations of each method.This study is supported by an Nvidia GPU Grant and a Canadian NSERC Discovery grant. R. T. Tan’s work in this research is supported by the National Research Foundation, Prime Ministers Office, Singapore under its International Research Centre in Singapore Funding Initiativ
    • …
    corecore