4,682 research outputs found

    Block-Online Multi-Channel Speech Enhancement Using DNN-Supported Relative Transfer Function Estimates

    Get PDF
    This work addresses the problem of block-online processing for multi-channel speech enhancement. Such processing is vital in scenarios with moving speakers and/or when very short utterances are processed, e.g., in voice assistant scenarios. We consider several variants of a system that performs beamforming supported by DNN-based voice activity detection (VAD) followed by post-filtering. The speaker is targeted through estimating relative transfer functions between microphones. Each block of the input signals is processed independently in order to make the method applicable in highly dynamic environments. Owing to the short length of the processed block, the statistics required by the beamformer are estimated less precisely. The influence of this inaccuracy is studied and compared to the processing regime when recordings are treated as one block (batch processing). The experimental evaluation of the proposed method is performed on large datasets of CHiME-4 and on another dataset featuring moving target speaker. The experiments are evaluated in terms of objective and perceptual criteria (such as signal-to-interference ratio (SIR) or perceptual evaluation of speech quality (PESQ), respectively). Moreover, word error rate (WER) achieved by a baseline automatic speech recognition system is evaluated, for which the enhancement method serves as a front-end solution. The results indicate that the proposed method is robust with respect to short length of the processed block. Significant improvements in terms of the criteria and WER are observed even for the block length of 250 ms.Comment: 10 pages, 8 figures, 4 tables. Modified version of the article accepted for publication in IET Signal Processing journal. Original results unchanged, additional experiments presented, refined discussion and conclusion

    Spatial Diffuseness Features for DNN-Based Speech Recognition in Noisy and Reverberant Environments

    Full text link
    We propose a spatial diffuseness feature for deep neural network (DNN)-based automatic speech recognition to improve recognition accuracy in reverberant and noisy environments. The feature is computed in real-time from multiple microphone signals without requiring knowledge or estimation of the direction of arrival, and represents the relative amount of diffuse noise in each time and frequency bin. It is shown that using the diffuseness feature as an additional input to a DNN-based acoustic model leads to a reduced word error rate for the REVERB challenge corpus, both compared to logmelspec features extracted from noisy signals, and features enhanced by spectral subtraction.Comment: accepted for ICASSP201

    Spectral subtractive type speech enhancement methods

    Get PDF
    In this paper spectral subtractive method and some of its modification are compared. Performance of spectral subtraction, its limitations, artifacts introduced by it, and spectral subtraction modifications for eliminating these artifacts are discussed in the paper in details. The algorithms are compared based on SNR improvement introduced by them. Spectrograms of speech enhanced by the algorithms, which show the algorithms performance and degree of speech distortion, are also presented

    A Deep Learning Loss Function Based on the Perceptual Evaluation of the Speech Quality

    Get PDF
    This letter proposes a perceptual metric for speech quality evaluation, which is suitable, as a loss function, for training deep learning methods. This metric, derived from the perceptual evaluation of the speech quality algorithm, is computed in a per-frame basis and from the power spectra of the reference and processed speech signal. Thus, two disturbance terms, which account for distortion once auditory masking and threshold effects are factored in, amend the mean square error (MSE) loss function by introducing perceptual criteria based on human psychoacoustics. The proposed loss function is evaluated for noisy speech enhancement with deep neural networks. Experimental results show that our metric achieves significant gains in speech quality (evaluated using an objective metric and a listening test) when compared to using MSE or other perceptual-based loss functions from the literature.Spanish MINECO/FEDER (Grant Number: TEC2016-80141-P)Spanish Ministry of Education through the National Program FPU (Grant Number: FPU15/04161)NVIDIA Corporation with the donation of a Titan X GP
    corecore