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Abstract In this paper spectral subtractive method and 

some of its modification are compared. Performance of 

spectral subtraction, its limitations, artifacts introduced by 

it, and spectral subtraction modifications for eliminating 

these artifacts are discussed in the paper in details. The 

algorithms are compared based on SNR improvement 

introduced by them. Spectrograms of speech enhanced by 

the algorithms, which show the algorithms performance 

and degree of speech distortion, are also presented.  
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1. Introduction  

The speech processing systems used to communicate 

or store speech are usually designed for a noise free 

environment but in a real-world environment, the presence 

of background interference in the form of additive 

background and channel noise drastically degrades the 

performance of these systems, causing inaccurate 

information exchange and listener’s fatigue. Speech 

enhancement algorithms attempt to improve the 

performance of communication systems when their input or 

output signals are corrupted by noise. The main objective 

of speech enhancement or noise reduction is to improve one 

or more perceptual aspects of speech, such as the speech 

quality or intelligibility. It is usually difficult to reduce 

noise without distorting speech and thus, the performance 

of speech enhancement systems is limited by the tradeoff 

between speech distortion and noise reduction. The 

complexity and ease of implementation of any proposed 

scheme is another important criterion especially since the 

majority of the speech enhancement and noise reduction 

algorithms find applications in real-time portable systems 

like cellular phones, hearing aids, hands free kits etc. The 

numerous of speech enhancement techniques have been 

developed based on short-time spectral attenuation, speech 

modeling, wavelet transformation, and etc. [1] The spectral 

subtraction method has been one of the most well-known 

techniques for noise reduction. Due to its minimal 

complexity and relatively ease in implementation, it has 

been in the spotlight over the past years. 

2. Basic principle of spectral 

subtraction 

Spectral subtraction is build upon the assumption 

that the noise signal and the speech signal are uncorrelated 

signals added together to form the noisy speech signal [2]. 

The principle of the spectral subtraction method is based on 

estimating clean speech power spectrum by subtracting the 

noise power spectrum from the speech power spectrum that 

includes noise.We assume to have a speech signal x(n) 

corrupted by an additive noise d(n). Then the received 

noisy signal y(n) is described by 

 )()()( ndnxny  (1) 

In the frequency domain, with their respective Fourier 

transforms, the power spectrum of the noisy signal can be 

represented as: 
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,where Y(ω),X(ω),D (ω) are DFT magnitudes of y(n), x(n), 

d(n) respectively, D (ω)
*
  and X (ω)

*
   represent the 

complex conjugates of D (ω) and X (ω) respectively. If we 

assume that d(n) is uncorrelated with x(n) , then the terms X 

(ω)D (ω)
*
 and X (ω)

*
D (ω) are reduced to zero. Power 

spectrum of the noise speech D (ω) cannot be obtained 

directly, but can be estimated during speech pauses (when 

y(n)=d(n)). The algorithm for separating conversational 

speech signal to speech and silence regions is called the 

voice activity detector (VAD). The estimation of noise 

signal power spectrum can be denoted by
2

)(D̂ . Thus 

from the above based assumptions, the estimate of clean 

speech can be given as (3): 
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Fig. 1. General representation of spectral subtraction. 

Alternatively a more general form is given by 

generalizing the exponent from 2 to a 
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,where the power spectrum is exchanged for a general form 

of spectral density. Once the estimate of the clean speech is 

obtained in the spectral domain with the (4) the enhanced 

speech signal is obtained by inverse DFT transformation 

of )(X̂ . Since the human ear is not sensitive to phase 

errors of the speech, the noisy speech phase can be used as 

an approximation to the clean speech phase, for 

reconstruction enhanced speech from its spectrum. Thus a 

general form of the estimated speech in frequency domain 

can be written as: 
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Fig. 1 shows a block diagram of the spectral 

subtraction method. The processing, is carried out on a 

short-time basis (frame-by-frame), therefore, a time-limited 

window should be applied to input noisy speech signal at 

the beginning of the algorithm, and overlap add at the end 

is done to reconstruct the speech estimate in the time 

domain. 

3. Noise estimation and speech/silence 

detection 

A practical speech enhancement system consists of 

two major components, the estimation of noise power 

spectrum, and the estimation of speech. Therefore, a critical 

component of any frequency domain enhancement 

algorithm is the estimation of the noise power spectrum. In 

single channel noise reduction/speech enhancement 

systems, most algorithms require an estimation of average 

noise spectrum, and since a secondary channel is not 

available this estimation of the noise spectrum is usually 

performed during speech pauses. This requires a reliable 

speech/silence detector. The speech/silence detection  

 Scheme can be a determining factor for the 

performance of the whole system of noise reduction based 

on spectral subtraction. The speech/silence detection is 

necessary to determine frames of speech pauses or noise 

only frames, to allow an update of the noise estimate. If the  

Fig. 2. Block diagram of a basic VAD design. 

speech/silence decision is not correct then speech 

echoes and residual noise tends to be present in the 

enhanced speech. Typically, in recognizing the speech and 

noise segments of a speech signal, its energy level [3], 

pitch, zero crossing rate, statistical and spectral properties 

are used. The basic principle of a speech/silence detector is 

that it extracts measured features or quantities from the 

input signal and then compares these values with thresholds 

usually extracted from noise-only periods. Voice activity 

(VAD=1) is declared if the measured values exceed the 

thresholds. Otherwise, no speech activity or noise, silence 

(VAD=0) is present. Voice activity detector (VAD) tends 

to follow a common paradigm comprising a pre-processing 

stage, a feature-extraction stage, a threshold comparison 

stage, and an output-decision stage. A general block 

diagram of a VAD design is shown in Fig. 2. 

4. Limitation of spectral subtraction 

Noise spectrum estimate is obtained from the non-

active regions of noisy speech. This assumption is valid for 

the case of stationary noise in which the noise spectrum 

does not vary much over time. Traditional VADs track the 

noise only frames of the noisy speech to update the noise 

estimate. But the update of noise estimate in those methods 

is limited to speech absent frames. This is not enough for 

the case of non-stationary noise in which the power 

spectrum of noise varies even during speech activity. 

Spectral subtraction performance is limited by the 

accuracy of noise estimation, which additionally is limited 

by the performance of speech/pause detectors [4].VAD 

performance degrades significantly at lower SNR. 

However, the main problem with spectral subtraction is the 

processing distortions caused by random variations of the 

noise spectrum. Irrespective of the methods used for 

estimating the noise statistics, the true short spectrum of the 

noise will always have a finite variance. Thus the noise 

estimate will always be over or under the estimate of the 

true noise level. Therefore, wherever the noisy signal level 

is near the level of the estimated noise spectrum, spectral 

subtraction (4) results in some randomly located negative 

values for the estimated clean speech magnitude. To 

remove the negative components half-wave rectification 

(setting the negative portions to zero), or full wave 

rectification (absolute value) are used. The non-linear 

mapping of the negative, or small valued spectral estimates, 

results in the estimated magnitude spectrum to consist of a 

succession of randomly spaced spectral peaks [5]. This 

leads to an annoying residual noise, also called musical 

noise due to their narrow band spectrum and presence of 

tone-like characteristics. This noise although very different 
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from the original noise, can be very disturbing. A poorly 

designed spectral subtraction, can sometime results in a 

signal that is of a lower perceived quality and lower 

information content, than the original noisy signal. To 

eliminate the problem of musical noise and enhance 

spectral subtraction performance some modifications were 

introduced. 

5. Modifications of spectral 

subtraction 

5.1 Spectral subtraction using scaling factor 

and spectral floor 

The first spectral subtraction method proposed by 

Boll [2] consists of implementation of the following 

relationship: 
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As it was discussed above, though the noise is 

reduced by this method, there is still considerable 

broadband noise (musical noise) remaining in the processed 

speech. To eliminate this problem the method proposed in 

[5] introduces two additional parameters to basic spectral 

subtraction algorithm. There are scaling factor α, and 

spectral floor β. Since the residual noise spectrum consists 

of peaks and valleys with random occurrences, spectral 

subtraction using scaling factor and spectral floor tries to 

reduce the spectral excursions for improving speech 

quality. This proposed technique can be expressed as: 
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Fig. 3. Block diagram of modified spectral subtraction. 

Where ≥0, and β<<1. The harshness of the subtraction 

can be varied by applying a scaling factor . The values of 

scaling factor  higher than 1 result in high SNR level of 

denoised signal, but too high values may cause distortion in 

perceived speech quality. Therefore, the value of α has to 

be chosen carefully in order to prevent both the musical 

noise and too much signal distortion. The introduction of 

spectral floor prevents the spectral components of the 

enhanced speech spectrum to descend below the lower 

bound
2

)(D  , thereby “filling-in” the deep valleys 

surrounding narrow peaks (from the enhanced spectrum). 

Reducing the spectral excursions of noise peaks (as 

compared to when the negative components are set to zero) 

reduces the amount of musical noise.  

The performance of this type of SS algorithm is limited 

in the usage of stationary optimized parameters, which are 

difficult to choose for all speech and noise situations. It is 

difficult to suppress noise without decreasing intelligibility 

and without speech distortion, especially for very low 

signal-to-noise ratios. 

5.2 Wiener filtration 

It is convenient to consider the spectral subtraction as 

a filter, by manipulating (4) such that, it can be expressed 

as the product of noisy speech signal spectrum and the 

frequency response of a spectral subtraction filter as: 
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The spectral subtraction filter is a zero phase filter, 

with its frequency response H(ω), is in the range of 0 

<H(ω)< 1. The filter acts as a SNR-dependent attenuator. 

The attenuation in each frequency increases with the 

decreasing SNR, and vice-versa.  

A transfer function of the Wiener filter [6], H(ω)wiener 

, is expressed in terms of the power spectrum of clean 

speech Ps ( ) and the power spectrum of noise Pd ( ) as in 

(9). But power spectrum of clean speech is not known, the 

power spectrum of the noisy speech Py ( ) signal is used 

instead as: 
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Wiener filter cannot be applied directly to estimate the 

clean speech since speech cannot be assumed to be 

stationary. Therefore, an adaptive Wiener filter 

implementation can be used to approximate the above filter 

(10) as: 
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Comparing H(ω) and H(ω)wiener  from (9) and (11), it 

can be seen that the Wiener filter is based on the ensemble 

average spectra of the signal and noise, whereas the 

spectral subtraction filter (with a=2) uses the instantaneous 

spectra for noise signal and the running average (time-

averaged spectra) of the noise. In Wiener filter theory the 

averaging operations are taken across the ensemble of 

different realization of the signal and noise processes. In 

spectral subtraction we have access only to single 

realization of the process. 

Using of power spectrum of noisy speech, instead of 

that of clean speech for calculating the transfer function 

degrades Wiener filter accuracy. To solve this problem, an 

iterative algorithm is used [6]. In the algorithm the output 

signal of the Wiener filter is utilized to design a more 

accurate Wiener filter. Thus by iterating this process, we 

can design a high accurate Wiener filter. The input signal of 

the iterative Wiener filter is not renewed at each iteration. 

This means that only the filter is renewed. 

5.3 Iterative spectral subtraction 

To consider the musical noise problem common to 

conventional spectral subtraction method, an iterative 

spectral subtraction method was proposed in [7]. The 

iterative method is motivated by iterative Wiener filtering, 

where filtering output signal is used to design a higher 

performance Wiener filter. In iterative spectral subtraction 

the filtering output signal is used not only for designing the 

filter but also as the input signal of the next iteration 

process. Specifically for spectral subtraction, after the first 

spectral subtraction process, the type of additive noise is 

changed to that of musical noise. Then the noise signal is 

estimated from unvoiced segment parts. And, a new 

spectral subtraction filter is designed by using the new 

estimated noise (musical noise) and the new noisy speech 

(inc1uding the musical noise), which is the output signal by 

the first spectral subtraction. By the designed filter, an 

enhanced output signal can be obtained from the input 

signal. At every iteration musical noise is estimated in 

different frames, because the musical noise is not stationary 

in short time frames analysis. When we do such noise 

estimation, the spectral subtraction filter is always designed 

so as to reduce the musical noise remained in the previous 

spectral subtraction process. Therefore, the musical noise 

can be reduced significantly by performing the iterative 

spectral subtraction as shown.  

5.4  Spectral subtraction based on perceptual 

properties 

The choice of the subtraction parameters α, β and a is a 

main challenge in subtractive type speech enhancement 

algorithms. To track changes in background noise it is 

necessary to subtraction parameters to be adaptive. Good 

results are obtained, when the adaptation of subtractive 

parameters in time and frequency domain based on masking 

properties. Masking consists in the fact, that the human 

auditory system does not distinguish two signals when the 

signals are close to each other (in the time or frequency 

domain). In [8] the noise masking threshold T(ω) is used 

for adjusting spectral subtraction parameters α and β on a 

per frame and per frequency basis. The noise masking 

threshold is obtained through modeling the frequency 

selectivity of the human ear and its masking property. The 

different calculation steps are summarized in [8]. 

Therefore, the adaptation of subtractive parameters is 

based on the consideration, that if the masking threshold is 

high, residual noise will be masked and consequently be 

inaudible. Therefore, when the threshold is high, the 

subtraction parameters are kept minimal, thereby reducing 

speech distortion. When the masking threshold is low, the 

residual noise is not masked and the subtraction parameters 

are maximized. The following relations perform the 

adaptation of the subtraction parameters: 
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where αmin, βmin and αmax, βmax are the minimal and maximal 

values of scaling factor and spectral floor respectively. Fα 

and Fβ are the functions for a maximum reduction of 

residual noise: Fα=αmax when T(ω)=T(ω)min and Fα=αmin 

when T(ω)=T(ω)max, where T(ω)min and T(ω)max are the 

minimal and maximal values, respectively, of the updated 

masking threshold. The values Fα between these two 

extreme limits are obtained by the interpolation of values 

T(ω). By similar considerations we obtain the values Fβ. 

The following values were experimentally obtained to 

provide a good tradeoff for a human listener: αmin=1 and 

αmax=6; βmin=0 and βmax=0.02; exponent is 

Fig. 4. Block diagram of a spectral subtraction with perceptual weighting 

,constant a=2. Principle of SS with perceptual weighting is 

shown on Fig. 4.  
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6. Experiments and discussion 

To compare speech enhancement techniques some 

experiments were made in Matlab environment. For 

experiments we have used speech signals from SpeechDat 

database [9] constituted by sentences pronounced in Czech 

language by male and female speakers. Sentesces were 

corrupted by two types of additive noise (AWGN and car 

noise) to obtain noisy speech with different values of the 

signal to noise ratio (SNRinput=15, 10, 5 and 0dB). The 

amount of noise reduction is generally measured with the 

SNR improvement, given by the difference between input 

and output segmental SNR. The obtained values of SNR 

improvement for two types of noise are given in Fig. 5. The 

best noise reduction is obtained in case of white Gaussian 

noise (AWGN), while for car noise this improvement 

decreases. For both types of noise, the SS with perceptual 

weighting and iterative SS achieve result in significant 

improvement over conventional SS. Modified SS and 

Wiener filtering outperform conventional SS on 1-2 dB. 

The greatest difference in algorithms performance can be 

observed in case of input signal at 0dB SNR level. 

The main drawback of the SNR is the fact that it has a 

very poor correlation with subjective quality assessment 

results. SNR of enhanced speech is not sufficient objective 

indicator of speech quality. Structure of residual noise and 

speech distortion can be seen on spectrograms of denoised 

speech. Fig.6 represents spectrograms of speech enhanced 

by above described algorithms (conventional spectral 

subtraction (CSS), modified spectral subtraction (MSS) 

with scaling factor and spectral floor, Wiener filtration 

(WF), Iterative spectral subtraction (ISS) and spectral 

subtraction with perceptual weighting (SSPW)). As it 

shown on Fig. 6 conventional SS as well as modified SS 

contain audible residual noise, which can be annoying for 

listener. Wiener filtering results in a smaller amount of 

residual noise, but this noise has musical structure and 

speech regions, especially fricative consonants, are also 

attenuated. This type of SS can result in speech distortion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. SNR improvement of noise reduction algorithms for (a) AWGN 

noise, (b) Car noise. 

 The best results were obtained with SS algorithm with 

perceptual weighting. In case of this type of SS small 

amount of residual noise is leaved, but this noise has a 

perceptually white quality and distortion remains 

acceptable. 

7. Conslusion 

In this paper, some subtractive-type methods for acoustic 

noise reducing are introduced. In particular, methods based 

on short time Fourier transforms are examined. The 

limitations of spectral subtraction are briefly discussed. The 

artifacts introduced by SS methods are described, and how 

the conventional SS method is modified to counter these 

artifacts. From the SNR improvement point of view 

iterative SS and SS with perceptual weighting show the best 

noise reduction results from the other methods. 

Conventional SS, iterative SS and Wiener filtration 

algorithms results in audible residual noise, which can 

cause decreasing of speech intelligibility. The most 

progressive method of noise reduction is a SS with 

perceptual weighting based on masking properties of 

auditory model. This speech enhancement method takes 

advantage of how people perceive the frequencies instead 

of just working with SNR. It results in appropriate residual 

noise attenuating and acceptable degree of speech 

distortion. 
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Fig. 6. Speech spectrograms. (a) Clean speech, (b) Noisy speech in the case of additive car noise (SNR = 0 dB), (c) – (g) 

Speech enhanced by noise reduction algorithms
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